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ABSTRACT. As is well-known, underwater ridges and submerged horizontal cylinders can serve
as waveguides for surface water waves. For large values of the wavenumber in the direction
of the ridge, there is only one trapped wave (this was proved in Bonnet & Joly (1993,SIAM
J. Appl. Math.,53, pp. 1507–1550)). We construct the asymptotics of these trapped waves
and their frequencies at high frequency by means of reducing the initial problem to a pair of
boundary integral equations and then by applying the method of Zhevandrov & Merzon (2003,
AMS Transl. (2),208, pp. 235–284), in order to solve them.
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1. I NTRODUCTION

It is well-known that underwater ridges (horizontal “bumps” on the bottom) can trap water
waves (see pioneering paper of Ursell [10] for the case of submerged horizontal cylinders as
waveguides; see Garipov [7] for the case of underwater ridges). In [2], Bonnet-Ben Dhia and
Joly proved that large values of the wavenumberk along the direction of the ridge, there is
only one trapped mode. Some estimates for the frequency of this mode were also obtained.
Our goal here is to construct the asymptotics of this frequency for large values ofk to the case
of n ridges. The general plan of the present paper is the same as in [8].In our case, we use a
technique similar to that of [11], where a close analogy of the problem of water waves and small
perturbations of the one-dimensional Schrödinger equation is established. The latter problem
was studied by a number of authors (we mention, for example, [6, 9, 3], and, in the context of
water waves, [5]). We note that the asymptotics turns out to be exponential, i.e., the distance of
the trapped wave frequency to the cut-off frequency is exponentially small ink. Nevertheless,
in fact we construct an exact convergent expansion, and no additional difficulties arise.

2. M ATHEMATICAL FORMULATION AND MAIN RESULTS

We will be mainly occupied by the problem of an underwater ridge. Consider the water layer
Ω = {−h(x) < y < 0}, wherex is the horizontal coordinate orthogonal to the direction of
the ridge,y is the vertical coordinate and the bottom satisfiesy = −h(x). With the velocity
potential in the formΦ(x, y)ei(ωt−kz), wherez is the horizontal coordinate along the ridge and
ω is the frequency, we come to the problem

Φy = λΦ, y = 0,(2.1)

Φxx + Φyy − k2Φ = 0, −h(x) < y < 0,(2.2)

∂Φ/∂n = 0, y = −h,(2.3)

for the functionΦ; hereλ = ω2/g. Trapped waves are the solutions of this problem from the
Sobolev spaceH1(Ω) and exist only for certain values ofλ for k fixed.

We assume thath(x) = h0 for |x| ≥ R > 0 andh is a C∞-function that has exactlyn
nondegenerate local minima atx = 0, 1, 2, · · · , n < R , say,h′′(0) > 0, h′′(1) > 0, h′′(2) >
0, · · · , h′′(n) > 0 (the last condition is for simplicity only, refer to Figure 2.1). The con-
tinuous spectrum of (2.1)-(2.3) coincides with that for the flat bottom and represents the ray
λ ∈ [k tanh(kh0),∞). From the results of [2] it follows that there is only one eigenfrequencyλ
below the continuous spectrum for large values ofk (with dimensionless coordinates choosing).
We will construct an asymptotics of this frequency. The main result consists in the following
statement.

Theorem 2.1.The unique eigenvalueλ(k) of (2.1)-(2.3) has the form

(2.4) λ(k) = k tanh kh0 − β2,

where

(2.5) β =
n∑

j=0

k

√
π

2h′′(j)
e−2kh(j)

(
1 + O

(
1

k

))
.

From now on we will devote to the proof of the statement and the construction of the corre-
sponding eigenfunction.
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Figure 2.1

3. REDUCTION TO A SYSTEM OF I NTEGRAL EQUATIONS

As a first step, we reduce (2.1)-(2.3) to a pair of integral equations onΓF andΓB for the
functionϕ = Φ|y=0 andθ = Φ|y=−h. To this end, we apply the Green formula toΦ(ξ, η) and
−(1/2π)K0(kr), wherer =

√
(x− ξ)2 + (y − η)2 andK0 is the Macdonald function (so that

−(1/2π)K0(kr) is the fundamental solution of the operator∆− k2). We obtain

πϕ(ξ) =λ

∞∫
−∞

K0(k|x− ξ|)ϕ(x)dx

+ k

∞∫
−∞

K ′
0(k

√
(x− ξ)2 + h(x)2)√

(x− ξ)2 + h(x)2
[h′(x)(x− ξ)− h(x)]θ(x)dx(3.1)

πθ(ξ) =λ

∞∫
−∞

K0(k
√

(x− ξ)2 + h(ξ)2)ϕ(x)dx

− kh(ξ)

∞∫
−∞

K ′
0(k

√
(x− ξ)2 + h(ξ)2)√

(x− ξ)2 + h(ξ)2
ϕ(x)dx(3.2)

+ k

∞∫
−∞

K ′
0(k

√
(x− ξ)2 + (h(x)− h(ξ))2√

(x− ξ)2 + (h(x)− h(ξ))2
[h′(x)(x− ξ)− (h(x)− h(ξ))]θ(x)dx.

In order to apply the technique of [11] to (3.1), (3.2) it is necessary to pass to the Fourier
transformϕ̃ of the functionϕ,

Fξ→p[ϕ(ξ)](p) ≡ ϕ̃(p) =
1√
2π

∞∫
−∞

e−ipξϕ(ξ)dξ.
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Using the formulas (see [1])

K ′
0(z) = −K1(z), Fξ→p[K0(k|ξ|)](p) =

π√
k2 + p2

,

Fξ→p

[
K1(k

√
ξ2 + h2

0)√
ξ2 + h2

0

]
(p) =

π

kh0

e−h0

√
k2+p2

,

Fξ→p

[
K0(k

√
ξ2 + h2

0)

]
(p) =

π√
k2 + p2

e−h0

√
k2+p2

,

we come to the following system for̃ϕ(p), θ(ξ):

(
1− λ

τ(p)

)
ϕ̃(p) =

∞∫
−∞

eipx−h(x)τ(p)

(
1 +

iph′(x)

τ(p)

)
θ(x)dx,(3.3)

θ(x) =
1

2π

∞∫
−∞

eipx−h(x)τ(p)(
λ

τ(p)
+ 1)ϕ̃(p)dp

+ k

∞∫
−∞

K ′
0(k

√
%(ξ, x))√

%(ξ, x)
[h′(ξ)(ξ − x)− (h(ξ)− h(x))]θ(ξ)dξ,(3.4)

where

τ(p) =:
√

k2 + p2,

%(ξ, x) =: (ξ − x)2 + (h(ξ)− h(x))2.

Rewrite system (3.3) - (3.4) as(
1− λ

τ(p)

)
ϕ̃(p) =(M̂1θ)(p),(3.5)

[(1− M̂3)θ](x) =(M̂2ϕ̃)(x),(3.6)

where

(M̂1θ)(p) =

∞∫
−∞

M1(p, x)θ(x)dx,

(M̂2ϕ̃)(x) =

∞∫
−∞

M2(x, p)ϕ̃(p)dp,

(M̂3θ)(x) =

∞∫
−∞

M3(x, ξ)θ(ξ)dξ,
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with

M1(p, x) = eipx−h(x)τ(p)

(
1 +

iph′(x)

τ(p)

)
,

M2(x, p) =
1

2π
eipx−h(x)τ(p)

(
1 +

λ

τ(p)

)
,

M3(x, ξ) =
k

π

K ′
0(k

√
%(ξ, x))√

%(ξ, x)
[h′(ξ)(ξ − x)− (h(ξ)− h(x))].

Obviously, a solution of (3.5), (3.6) gives via the standard formulas of the potential theory a
solution of (2.1)-(2.3).

4. SOLUTION OF THE SYSTEM OF I NTEGRAL EQUATIONS

Consider equation (3.6). Recall the following (see, e.g., [4])

Lemma 4.1. Let
∞∫

−∞

|K(x, y)|dx < M,

∞∫
−∞

|K(x, y)|dy < M.

Then

‖K̂u‖L2 ≤ M‖ u‖L2 ,

where

K̂u =

∞∫
−∞

K(x, y)u(y)dy.

It is not hard to see, using the asymptotics ofK1(x) for small and largex, that the kernelM3

in (3.6) satisfies the conditions of Lemma 4.1 withM = Const. k−1/2. Hence we can invert the
operator(1− M̂3) in (3.6) using the Neumann series and obtain

(4.1) θ(x) = [(1− M̂3)
−1M̂2ϕ̃](x),

where(1− M̂3)
−1 =

∑∞
n=0 M̂n

3 . Substituting (4.1) in (3.5) we finally come to

(4.2)

(
1− λ

τ(p)

)
ϕ̃(p) = [M̂1(1− M̂3)

−1M̂2ϕ̃](p).

We apply the reasoning of [11] to (4.2). Indeed, we know thatλ is given by (2.4), whereβ is
exponentially small ink [2]. Hence the first factor in the left-hand side of (4.2),

(4.3) L(p) := 1− λ

τ(p)
= 1− k − β2√

k2 + p2
+ O(e−2kh0),

is exponentially small ink for p = 0. In fact, the roots ofL(p) = 0 which tend to zero as
k →∞, as it is not hard to see, are simple and given by

(4.4) p = p± = ±i
√

2β√
ε

+ O(ε1/2β3), ε =
1

k
.

For this reason, the heuristic considerations of section 2 of [11] are applicable to (4.2). Fol-
lowing these arguments, we look forϕ̃ in the formϕ̃(p) = A(p)/L(p). As we shall see (see

AJMAA, Vol. 7, No. 2, Art. 16, pp. 1-7, 2011 AJMAA

http://ajmaa.org


6 A. M. M ARIN AND R. D. ORTIZ AND J. A. RODRIGUEZ-CEBALLOS

formula (4.6) below),A(p) andM2(x, p) are analytic in a strip containing the real axis, and we
can change the contour of integration in the integral

∞∫
−∞

M2(x, p)
A(p)

L(p)
dp

to that given by

C : = (−∞,−a] ∪ {p + iq : p2 + q2 = a2, q > 0} ∪ [a,∞)

in the complex plane, with a suitablea > 0 such that in the disc|p| < a there are no zeros of
L(p) apart fromp±.

We have, by the residue theorem,

(4.5)

∞∫
−∞

M2(x, p)
A(p)

L(p)
dp =

∫
C

M2(x, p)
A(p)

L(p)
dp + 2πi

M2(x, p+)A(p+)

(dL(p)/dp)|p=p+

.

Thus (4.2) transforms into

(4.6) A(p) = [M̂1(1− M̂3)
−1M̂4A](p) + [M̂1(1− M̂3)

−1f(x)]A(p+),

where

[M̂4A](x) =

∫
C

M2(x, p)
A(p)

L(p)
dp, f(x) = 2πi

M2(x, p+)A(p+)

(dL(p)/dp)|p=p+

.

Note that now the operator̂M5 = M̂1(1 − M̂3)
−1M̂4 is small inε since|L(p)| ≥ const k−2

alongC andM2(x, p) is exponentially small. Indeed, on the arc we have up toO(k−∞)

|L(p)| =

∣∣∣∣∣1− 1√
1 + p2/k2

∣∣∣∣∣ =
a2

2k2
+ O(k−4),

and on the part of the contour which lies on the real axis the minimum of|L(p)| is attained at
the pointsp = ±a, hence, the above estimate still holds. Rewriting (4.6) as

(4.7) (1− M̂5)A(p) = g(p)A(p+),

whereg(p) = M̂1(1 − M̂3)
−1f(x), we see that(1 − M̂5) is invertible andA(p) = (1 −

M̂5)
−1g(p)A(p+). Puttingp = p+ in the last equality and dividing byA(p+), we obtain an

equation forβ:

(4.8) 1 = (1− M̂5)
−1g(p)|p=p+ .

A standard application of the Laplace method of asymptotic evaluation of integrals to the lead-
ing term in (4.8) yields formula (2.5).
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