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1. INTRODUCTION

Let £ be a real normed space with dual spdce The normalized duality mas the map
J : E — 2F" defined for all: € E by

Jr:={g" € E": (z,9") = |lz[llg"[l, Izl = lg"lI},

where(.,.) denotes the generalized duality pairing between elemenisarfd £*. It known

that if F is strictly convex,J is injective. If, in addition E is reflexive and smooth, then the
inverse ofJ, J=! : E* — E exists. Several other properties of the normalized duality map
abound in the literature (see e.g., Alber [1], CioraneScu [26]). A mhapE — FE* is called
monotonef for eachz, y € F, the following inequality holds:

(1.2) <Ax — Ay, — y> > 0.

It is calledmaximal monotond, in addition, the graph ofd is not properly contained in the
graph of any other monotone map. Alsd,is called~-inverse strongly monotonié for all
x,y € E, there existsy > 0 such that the following inequality holds:

(Az — Ay, — y) > 7||Az — Ay|”.
It is easy to see that evefyyinverse strongly monotone maglipschitzwith Lipschitz constant
1 . . . .
—, where a mafi” with domainD(7") in a normed spac#, and range?(7") in a normed space

g
Y is calledLipschitzwith Lipschitz constanL if for all z,y € D(T), there existd. > 0 such
that the following inequality holds:

1Tz = Ty|| < Lf|lz —yll.

Monotone maps were first studied in Hilbert spaces by Zarantonello [22], Minty [1€lidaskii

[12] and a host of other authors. Interest in such maps stems mainly from their usefulness in
several applications. In particular, monotone maps appear in convex optimization theory. Con-
sider, for example, the following.

Let H be a real Hilbert space anfl: H — R U {oco} be a proper convex function. The
subdifferentiabf ¢, 9g : H — 2%, is defined for each € H by

Og(x) = {z" € H:g(y) — g(x) 2 (y —z,2") Yy € H}.

It is easy to check thalg is amonotone operatoon H, and that) € dg(u) if and only ifu is

a minimizer ofg. Settingdg = A, it follows that solving the inclusiofi € Au, in this case, is
solving for a minimizer oly. AmapA : £ — F is calledaccretiveif for eachz,y € F, there
existsj(z —y) € J(x — y), such that

(1.2) <Ax — Ay, j(z — y)> > 0.

A is calledm-accretiveif, in addition, the graph ofd is not properly contained in the graph

of any other accretive operator. It is known thiis m-accretiveif and only if it is accretive
andR(I +tA) = Eforall t > 0, whereR(I + tA) denotes the range ¢f + tA). In a real
Hilbert space, the normalized duality map is the identity map, and so, in this case, inequality
(1.7) and inequality| (I]1) coincide. Hence Hiibert spaces, accretivity and monotonicity are
equivalent

Accretive maps were introduced independently in 1967 by Browder [6] and Kato [13]. Interest
in such maps stems mainly from their firm connection with the existence theory for nonlinear
equations of evolution in real Banach spaces. Furthermore, it is known (see e.qg., Zeidler [23])
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that many physically significant problems can be modelled in terms of an initial-value problem
of the form

d
(1.3) d—? + Au =0, u(0) = up,
where A is an accretive map on an appropriate real Banach space. Typical examples of such
evolution equations are found in models involving the heat, wave or Schrédinger equations (see
e.g., Browder[[7], Zeidler [23]). Observe that in the mogel|(1.3), if the solutimindependent

. . e d
of time (i.e., at the equilibrium state of the system), thﬁn: 0 and [1.B) reduces to

(1.4) Au =0,

whose solutions then correspond to the equilibrium state of the system describhed by (1.3). So-
lutions of equation[(1]4) wheH is accretive can also represent solutions of partial differential
equations (see e.g., Benilan, Crandall and Pazy [4], Khatibzadeh and Morosanu [14], Khati-
bzadeh and Shokri [15], Showalter [19], Volpert [20], and so on). In studying the equation
Au = 0 where A is an accretive operator on a Hilbert spaée Browder [6] introduced an
operator]’ defined byl" .= I — A wherel is the identity map orf{. He called such an oper-

ator pseudocontractivelt is clear that solutions ofiu = 0, if they exist, correspond to fixed
points of 7. Examples of pseudocontractive maps inclmd@expansive mapsvhere a map

T :D(T) C E — Eis callednonexpansivé |7z — Ty|| < ||z —y|| ¥V ,z,y € D(T).

Within the past 40 years or so, methods for approximating solutions of equatipn (1.4)Avhen

is anaccretive-typeoperator have become a flourishing area of research for numerous math-
ematicians. Numerous convergence theorems have been published in various Banach spaces
and under various continuity assumptions on the operatoMany important theorems have

been proved, thanks to geometric properties of Banach spaces developed from the mid 1980s
to the early 1990s. The theory of approximation of solutions of equdtioh (1.4) wheof the
accretive-typaeached a level of maturity appropriate for an examination of its central themes.
This resulted in the publication of several monographs which presented in-depth coverage of
the main ideas, concepts and most important theorems on iterative algorithms for approxima-
tion of fixed points of nonexpansiand pseudocontractive mapand theirgeneralisations
approximation ofzeros of accretive-type operatoiterative algorithms for solutions of Ham-
merstein integral equations involviragcretive-type mapsterative approximation ofommon

fixed point§andcommon zergsof families of these maps; solutions of equilibrium problems;

and so on (see e.g., Agarwet al. [2], Berinde [5], Chidume[[9], Kartsatos [18], Censor and
Reich [8], William and Shahzad [21] and the references contained in them). Typical theorems
published are the following.

Theorem 1.1(Chidume, [11]) Let £ be a uniformly smooth real Banach space with modulus
of smoothnesg;, and letA : E — 2F be a multi-valued bounded-accretive operator with
D(A) = E such that the inclusiof € Au has a solution. For arbitraryr; € E, define a
sequencéx, } by,

Tpi1l = Tp — Ay — ApOp (T — 1), Uy € Az, n > 1,
where{\,} and{6,,} are sequences if0, 1) satisfying appropriate conditions and there exists

a constanty, > 0 such that%j") < 7v,9.. Then, the sequende:,,} converges strongly to a
zero of A.

Theorem 1.2 (Ofoedu, [28]) Let C' be a closed convex nonempty subset of a reflexive and
strictly convex real Banach spade which has a uniformly Gateaux differentiable norm. Let
Ay, : C — E, k € N, be a countable infinite family ef-accretive maps such thag® , A, (0) #
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(). Suppose that every bounded closed convex nonempty subskastthe fixed point property
for nonexpansive maps. For arbitraty z, € C, let{z, } be iteratively generated by

Tpi1 = apu+ (1 — a,)Sz,, n > 1,

whereS = Y epJa,; Ja, = (I + Ax)~' k € N. Then,{z,},>1 converges strongly to a
k=1
common zero of A }i>1.

From the foregoing, itis clear that in real Banach spaces more general than Hilbert spaces, much
has been done on the approximation of solutions of equatioh (1.4) Wlieof accretive-type
However, little has been done in the case where the opefatoof themonotone-typeThis is
perhaps, because of the following two challenges.

First, most of thenequalitiesdeveloped for proving convergence results for iterative schemes
for zero ofaccretive-type mapare not directly applicable in the caserabnotone-type maps

as they involve the generalized duality maps, whereas the definition of monotone-type maps
does not involve the generalized duality maps. Secoffidlgd point techniquentroduced by
Browder is not readily applicable here becausmaps a Banach spaéginto anotherBanach
spaceE*; thus the usual notion of fixed point does not make sense here.

However, with intensive research efforts, these challenges are gradually being overcome. Re-
cently, Alber [1] (see also, Alber and Ryazantseva [27]) introduced a Lyapunov functional de-
fined on real normed spaces which turns out to be very useful in developing inequalities that are
applicable in iterative approximation of solutions of equatjon|(1.4) whésnof monotone-type

(see e.g., Aoyamaet al. [31], Kamimuraet al. [32], Kamimura and Takahashi[33], Zegeye and
Shahzad [34], Chidumet al. ([29] , [30]), Zegeyell[35]). A typical example of these results is
contained in the following theorem of Chiduratal J29].

Theorem 1.3(Chidumeet al]29] ). Let E be a uniformly convex and uniformly smooth real
Banach space and lgt* be its dual. Letd : £ — E* be a generalize@®-strongly monotone
and bounded map witd—1(0) # (). For arbitrary v, € F, define a sequende., } iteratively
by:

Uni1 = J N (Jup — MAuy), n > 1,

where{\,} is a sequence 0, 1) satisfying certain conditions. Then, the sequeficg}®,
converges strongly to*, a solution ofAu = 0.

Furthermore, a new notion of-fixed points(see Chidume and Idu _[24]) also callddality

fixed point(see Liu [25]) orsemi-fixed poinfsee Zegeye [34]) and-pseudocontractionésee
Chidume and Idu[24]) recently introduced, turns out to be very useful for approximating so-
lutions of equation[(1]4) wher is of monotone-type For instance, Chidume and Idu [24]
showed thata map : £ — E* is J-pseudocontractive if and only # := J — T"is monotone

and hatz* € FE is a J-fixed point of 7" if and only if Az* = 0, whereFE is a smooth real Ba-
nach space with dual spaé&. They employed this technique and proved the following strong
convergence theorems.

Theorem 1.4(Chidume and Idu [24])Let E be a uniformly convex and uniformly smooth real
Banach space and |éf* be its dual. Lefl” : E — 2F" be a.J-pseudocontractive and bounded
map such thatJ — T') is maximal monotone. SuppoBg(7T) := {v € E : Jv € Tv} # (). For
arbitrary z;, u € E, define a sequende:,, } iteratively by:

(15) 2, =J"! (1= N\)Jzn + Ay, — MNbn(Jxy, — Ju)], n, € Ty, n > 1,
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where{\,} and {6, } are sequences i(0, 1) satisfying appropriate conditions. Then, the se-
quence{z, } converges strongly to d-fixed point of7".

Theorem 1.5(Chidume and Idu [24])Let E be a uniformly convex and uniformly smooth real
Banach space and lgf* be its dual. Letd : £ — 27" be a multi-valued maximal monotone
and bounded map such thdt ' (0) # 0. For arbitrary z;, v € E, define a sequencgr,, }
iteratively by:

(1.6) Tpir = J [ Jxn — Aan,, — Mbn(Jz — Ju)], m, € Az, 1> 1,

where{\, } and {6, } are in (0, 1) and satisfying certain conditions. Then, the sequencg
converges strongly to a zero df

In this paper, itis our purpose to apply theofem1.4 and approximate a common zero of an infinite
family of an important class of monotone maps; the clasgiofzerse strongly monotone maps
defined on a uniformly smooth and uniformly convex real Banach space. Our results are new
and improve some recent important results for this class of nonlinear operators.

2. PRELIMINARIES

Let £ be a real normed space of dimensir2. Themodulus of smoothnes$ £,
pg :10,00) — [0, 00) is defined by:

THY|+|r—y
pi(r) = sup LIy 1y =7, 7> 0}

It known that in a smooth spadg, p;(7) < 7 for all 7 > 0. A normed space” is called
uniformly smoothf lim, el — 0, It is well known (seee.g, Chidume [9] p. 16, also

Lindenstrauss and Tzafriri[:Lé]) thaj, is nondecreasing. If there exist a constant 0 and a
real numbel; > 1 such thatp,(7) < ¢79, thenE' is said to bej-uniformly smooth Typical

examples of such spaces are the/, andW" spaces foll < p < oo where,

" 2 — uniformly smooth if 2 < p < oc;
Ly (or 1) or Wy is { p — uniformly smooth if 1 < p < 2.

A Banach spacé’ is said to bestrictly convexf ||z|| = ||y|| =1, z #y —
Themodulus of convexityf E is the functiony g : (0,2] — [0, 1] defined by
r+y

op(e) = inf {1 — | 2| llzll = lyll = 15 e = flo — gl }.

The space? is uniformly convexf and only if dg(e) > 0 for everye € (0,2]. It is also well
known (seee.g, Chidumel[9] p. 34, Lindenstrauss and Tzaftiri[[16]) thatis nondecreasing.
If there exist a constant > 0 and a real numbes > 1 such that z(e) > ce?, thenFE' is said
to bep-uniformly convex Typical examples of such spaces are thel, andW;" spaces for
1 < p < oo Where,

oty
bl < 1.

p — uniformly convex if 2 <p < oc;

Ly (or Iy) or W™ I { 2 — uniformly convex if 1 <p < 2.
We now present the following definitions and remarks which will be used in the sequel.

Definition 2.1. Let £ be anormed space. Amdp: £ — E'is calledstrictly pseudocontractive
in the terminology of Browder and Petryshiyithere existsy > 0 such that

(2.1) (T =Ty, j(z —y)) <lz —ylI> = lle —y — (T2 = Ty)|?
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forall z,y € F and for someg(x —y) € J(z —y). If E = H, areal Hilbert spacd : £ — FE
is calledstrictly pseudocontractivié

(2.2) 1Tz = Ty|I* < |lz = ylI* + kllz —y — (Tz — Ty)||*
holds for allz, y € E and for somé: € (0, 1).

Definition 2.2 (Chidume and Idu,[24].)Let £ be a normed space. Amdp: £ — 2% is
calledJ-pseudocontractivd for everyz, y € E,

(tr—Crx—y)<n—-v,xe—y) forallr € Tx, ( €Ty, ne Jx,vey.

If £ is a smooth real Banach space, then £ — E* is J-pseudocontractive if for every
x,y € E the following inequality holds:

(Te —Ty,x—y) < (Jo— Jy,x —y).

Definition 2.3 (Chidumeet al. [10]). Let E be a real normed space ahd be its dual. A map
T : E — 2F will be calledstrictly J-pseudocontractivé for everyz,y € F, 7, € Tz, 7, €
Ty, jz € Jx, jy € Jy, there existsy > 0 such that the following inequality is satisfied:

(o = Tyx —y) < (o — jy, o —y) =Gz — 72) — (Jy — 7).
Also, if E'is a smooth real Banach spad@e, £ — E* is strictly J-pseudocontraction if for
everyz,y € F, there existsy > 0 such that the following inequality holds:

(23) (Tz—-Ty,x—y) <(Jo—Jy,x—y) —|[(J —T)x— (J—T)yl*.

In this paper, strictly/-pseudocontractive maps shall be calledtrictly J-pseudocontractive
maps.

Definition 2.4 (Chidume and Idu [24])Let E be an arbitrary normed space aht be its dual.
LetT : E — 2F" be any map. A point € F is called aJ-fixed pointof 7" if and only if there
existsny € Tx such that) € Jx

From the above definitions, we have thakifs a smooth real Banach spaces F is aJ-fixed
pointof 7" : E — E*ifand only if T'x = Jx. Observe that i = H, a real Hilbert space, then
the notions of fixed point and-fixed point are equivalent, where a pointn the domain of a
self-mapT in a normed space is a fixed pointBfif and only if Tx = .

Remark 2.1. Let E be a smooth real Banach spadebe the normalized duality map afi
andT : EF — E* be any map. It is easy to see thatis J-pseudocontractive if and only if
A := (J—T)is monotone. Also] is v-strictly .J-pseudocontractive if and only i := (J—T)
sy-inverse strongly monotone. In both cases, it is also easy to see that is a.J-fixed point
of T if and only if x is a zero ofA; wherep € F is a zero ofA if and only if Ap = 0.

Remark 2.2. Observe that the class ofstrictly .J-pseudocontractive maps is a proper subclass
of the class of/-pseudocontractive maps.

We shall denote the set of fixed point ®f: £ — E by F(T'), the set ofJ-fixed points of
T : E — E* by F;(T) and the set of zeros of : £ — E* by A~1(0). We shall also denote
the domain and range of a malp by D(A) andR(A), respectively.

In the sequel, the following important lemma will be used.

Lemma 2.1 (Cioranescul[26], corrollary 2.7 pg 156)et £ be a real Banach space anfd*
be its dual space. Let : E — E* be a monotone and semicontinuous map i) = E.
Then,A is maximal monotone.
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3. MAIN RESULTS
We shall make use of the following lemmas in what follows.

Lemma 3.1. Let £ be a smooth real Banach space with dual spateand let.J be the nor-
malized duality map of. Let A, : £ — E* k = 1,2,3,... be an infinite family ofy,-
inverse srtongly monotone maps such that= inf,>; v, > 0 andn, 4, '(0) # (. Define

Ty :=J—AyandS := Z ex Ty, Wwhere{e, }72 , is a sequence of positive real numbers satis-

fying>_." ex = 1. Then
(1) Ty is J-pseudocontractive for eadh= 1,2, ...,

(1) S'is well defined,

(z3i) S is J-pseudocontractive,

(iv) S is bounded on bounded subsetgbf
(v) F5(S) = M2y Fy(Th) = MR, A, 1 (0).

Proof. (i) This follows from the fact thatl, is monotone for each = 1,2, ... (ii) Letx € E
andz* € N, A, '(0). Then, by the Lipschitz property of; for eachk > 1, we have

B-1) lexTixll = [lex(J — A)z|] < ]+ [|Awz — Apa™|| < ]| + 77 ] — 2™

This implies that) _ ¢, 7.z is absolutely convergent for eaehe E. Thus, S is well defined.
k=1

(i1i) Letx,y € E. SinceTy is J-pseudocontractive for eaéh> 1 and ) ¢, = 1, we have that
k=1

(Sz—Sy.x—y) = Y ex(Tix — Thy,x — y)
k=1
Therefore,S is J-pseudocontractive.
(iv) Let B be any bounded subset &fand letz € B, p € N2, 4, '(0). Then, using the fact
that A, is Vl—k-Lipschitz, there existd/ > 0 such that

1Sz]] = ||>el(J — Azl

1] + Y el Az — Appl|

k=1

VAN

1
< el + ;Hﬂf—pH < M.

Therefore,S is bounded on bounded sets) It is trivial to see that® | F;(T;) = N, A, 1(0)
and thatn®, F;(Ty) C F;(S). Now, letz* € F;(S). Letp € N2, A, '(0). Then,Sz* = Ja*.
Using the definition o5 and7},, we have

(3.2) 0= (Ja" — Sx*, 2" —p) = Z€k<Ak$* — Agp, " —p).
k=1

Since Ay, is monotone for each > 1 and ) ¢, = 1, we obtain from equatio.2) that
k=1

(Apa™ — Agp, 2™ —p) =0 YEk>1
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Since Ay is v,-inverse strongly monotone for eagh> 1, we obtain that/ & > 1,

0= (Arz* — Agp, 2" — p) = 7 l|Ae™ = Arpl]? > || A,
This impliesAgz* =0 Vk > 1. Thus,z* € N, A1 (0) = N, F;(T}) and this completes
the proof of the lemmag

Lemma 3.2. Let E be a smooth real Banach space ahitlbe its dual. Letd, : D(A) = F —

E* k=1,2,3,... be an infinite family ofy,-inverse strongly monotone maps. Theh— S) is

maximal monotone, whete = > .7y, T, = J — A and{e;} is a positive sequence of real
k=1

o0
numbers satisfying _ ¢, = 1.
k=1

Proof. By (iii) of lemma[3.1,5 is J-pseudocontractive. Thus, by remark|2(Z, — S) is
monotone. Clearly(J — S) is continuous and is defined on the wholeff Therefore, by
lemmd 2.1(J — S) is maximal monotones

In what follows, the sequencgs,, } and{6,,} are in(0, 1) and satisfy the same conditions as
in theoreni 1 K. That is:
(i) Sy Al = 00

(11) AaMg < Yobn; 05 (AaDME) < 7o,

571(9n—1*9n K) 67i(9n—1*9n K)
E On — 0 E On
by )

nOn Anbn

(iid)

— 0, asn — oo,

WQ%G%#@K)GmJ%

for some constantd/; > 0, K > 0 and~, > 0; wheredg : (0,00) — (0,00) is the
modulus of convexity ofE. Prototypes of{\,} and {6, } satisfying these conditions are:
Ay = m, 0, = m, for some positive constants andb. Verifications that these
prototypes satisfy conditior(3) — (iv) can be found in the paper of Chidume and Idu [24]. We

now prove the following theorem.

Theorem 3.3. Let £ be a uniformly convex and uniformly smooth real Banach space with dual
spaceE™ and letJ be the normalized duality map dfi. Let A, : D(Ay) = E — E* k =

1,2, 3, ... be an infinite family ofy, -inverse strongly monotone maps such that inf;>; v, >
0andn, A;*(0) # 0. For arbitrary x,, u € E, define a sequende,, } iteratively by:

(3.3) Tpi1 = J (1= N)Jxn + MSz — M (J, — Ju)], n > 1,

whereS = > 7 eTy, T, == J — Ay and {g;}32, is a positive sequence of real numbers
atisfyingd ;> e, = 1. Then{z,,} converges strongly to some € N;°,; 4, '(0).

Proof. From (i¢) and(iv) of lemmg 3.1, we obtain that is J-pseudocontractive and bounded
on bounded subsets & From lemma 3]2(J — S) is maximal monotone. By theordm 1.4, we

obtain that{x,, } converges strongly to somé € F,;(S). Hence, by(v) of lemmd 3.1, we have
that{z, } converges strongly to some € N3, A4, '(0). This completes the prook

4. SOME APPLICATIONS

In this section, we apply our theorem to approximate a commdimed point of an infinite
family of strictly J-pseudocontractive maps in uniformly convex and uniformly smooth real
Banach spaces and also to approximate a common fixed point of an infinite family of strictly
pseudocontractive maps in real Hilbert spaces.
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Corollary 4.1. Let E be a uniformly convex and uniformly smooth real Banach space with
dual spaceE* and let.J be the normalized duality map ob. Let7, : D(T;) = F —
E* k = 1,2,3,... be an infinite family ofy,-strictly J-pseudocontractive maps such that
v = infgs1 7y, > 0and N2, F;(Ty) # 0. For arbitrary =1, u € E, define a sequencer,,}
iteratively by:

(4.2) Tpir = J (1= N) T2, + MNSz — M (Jz, — Ju)], n > 1,

whereS := " * | ¢, 1), and{e; } 32, is a positive sequence of real numbers satisfying , ¢, =
1. Then{x,} converges strongly to some € N2, F;(T}).

Proof. Clearly,S is J-pseudocontractive and bounded. Sifigés v, -strictly J-pseudocontractive,
then by remark 2|1, we have thd} := J — T}, is ,-inverse strongly monotone for eagh> 1
andn>_, A, (0) # 0 (sinceA, ' (0) = F;(Ty) foreachk > 1andni, F;(Ty,) # 0). Therefore,
the proof follows from theorein 3.3.

Corollary 4.2. Let H be a real Hilbert space. Léfy, : D(T,) = H — H,k=1,2,3,... be an
infinite family of~,-strictly pseudocontractive maps such that , F'(7,.) # 0. For arbitrary
x1, u € E, define a sequende,, } iteratively by:

4.2) Tonr1 = [(1 = X\)zn + A\Sxy — Nl (z, —w)], n > 1,
whereS := " ° | €, T}, and{e; } 72, is a positive sequence of real numbers satisfying , ¢, =

1. Assumey := infy>; 3, > 0, whereg, = 1;’“, then {x,} converges strongly to some
T e ﬂiole(Tk)

Proof. Since for eaclk > 1, T} is ~,-strictly pseudocontractive, then it is easy to see that for
eachr,y € F,

(T —Ty,x —y) < |lo —yl|* = Bll(I = T)z — (I - T)yl|*.
Thus, for eachk > 1, T} is (3,-strictly /-pseudocontractive. Hence, the proof follows from
corollary[4.1.x

5. CONCLUSION

In this paper, a new iterative algorithm is constructed and used to approximate a common zero
of an infinite family of gamma-inverse strongly monotone maps defined on uniformly convex
and uniformly smooth real Banach spaces. As a consequence of this result, a strong convergence
theorem for approximating a commahfixed point for an infinite family of gamma-strictly-
pseudocontractive maps is proved. Furthermore, in particular, all results obtained are applicable
in the important?, L?(G) and Sobolev spacé¥” (G),p € (1,00),p™ ' +¢ 1 = 1.

Remark 5.1. (see e.g., Alber and Ryazantseva, [27]; page 36) The analytical representations of
duality maps are known in a number of Banach spaces. For instance, in the Bpddg&’)
and Sobolev spacé®? (G), p € (1,00),p~ ! + ¢~ = 1, respectively,
Jr = H'r|’l2;py € lq7 Y= {|‘r1|p_2x17 |x2‘p—2x27 }7 Tr = {$1,ZE27 }7
J 7 = |zl € 1P, y = {|o1|9 20y, 20| 200, .}, @ = {21, 20, ..},
Jr = ||a:||2L;p|:E(s)|p_2m(s) € L1(G), s €q,

Jlr = Hx||i;q]x(s)|q_2x(s) € LP(@G), s €@,

and
Jo = lzlld Y (=)D D%(s)[P > D (s)) € W, (G),m > 0,5 € G.

laf<m
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