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1. I NTRODUCTION

Let E be a real normed space with dual spaceE∗. The normalized duality mapis the map
J : E → 2E∗

defined for allx ∈ E by

Jx :=
{
g∗ ∈ E∗ :

〈
x, g∗

〉
= ‖x‖.‖g∗‖, ‖x‖ = ‖g∗‖

}
,

where〈., .〉 denotes the generalized duality pairing between elements ofE andE∗. It known
that if E is strictly convex,J is injective. If, in addition E is reflexive and smooth, then the
inverse ofJ, J−1 : E∗ → E exists. Several other properties of the normalized duality map
abound in the literature (see e.g., Alber [1], Cioranescu [26]). A mapA : E → E∗ is called
monotoneif for eachx, y ∈ E, the following inequality holds:〈

Ax− Ay, x− y
〉
≥ 0.(1.1)

It is calledmaximal monotoneif, in addition, the graph ofA is not properly contained in the
graph of any other monotone map. Also,A is calledγ-inverse strongly monotoneif for all
x, y ∈ E, there existsγ > 0 such that the following inequality holds:

〈Ax− Ay, x− y〉 ≥ γ||Ax− Ay||2.

It is easy to see that everyγ-inverse strongly monotone mapis Lipschitzwith Lipschitz constant
1

γ
, where a mapT with domainD(T ) in a normed spaceX, and rangeR(T ) in a normed space

Y is calledLipschitzwith Lipschitz constantL if for all x, y ∈ D(T ), there existsL > 0 such
that the following inequality holds:

||Tx− Ty|| ≤ L||x− y||.

Monotone maps were first studied in Hilbert spaces by Zarantonello [22], Minty [17], Kačurovskii
[12] and a host of other authors. Interest in such maps stems mainly from their usefulness in
several applications. In particular, monotone maps appear in convex optimization theory. Con-
sider, for example, the following.

Let H be a real Hilbert space andg : H → R ∪ {∞} be a proper convex function. The
subdifferentialof g, ∂g : H → 2H , is defined for eachx ∈ H by

∂g(x) =
{
x∗ ∈ H : g(y)− g(x) ≥

〈
y − x, x∗

〉
∀ y ∈ H

}
.

It is easy to check that∂g is amonotone operatoron H, and that0 ∈ ∂g(u) if and only ifu is
a minimizer ofg. Setting∂g ≡ A, it follows that solving the inclusion0 ∈ Au, in this case, is
solving for a minimizer ofg. A mapA : E → E is calledaccretiveif for eachx, y ∈ E, there
existsj(x− y) ∈ J(x− y), such that〈

Ax− Ay, j(x− y)
〉
≥ 0.(1.2)

A is calledm-accretiveif, in addition, the graph ofA is not properly contained in the graph
of any other accretive operator. It is known thatA is m-accretiveif and only if it is accretive
andR(I + tA) = E for all t > 0, whereR(I + tA) denotes the range of(I + tA). In a real
Hilbert space, the normalized duality map is the identity map, and so, in this case, inequality
(1.2) and inequality (1.1) coincide. Hence, inHilbert spaces, accretivity and monotonicity are
equivalent.

Accretive maps were introduced independently in 1967 by Browder [6] and Kato [13]. Interest
in such maps stems mainly from their firm connection with the existence theory for nonlinear
equations of evolution in real Banach spaces. Furthermore, it is known (see e.g., Zeidler [23])
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that many physically significant problems can be modelled in terms of an initial-value problem
of the form

(1.3)
du

dt
+ Au = 0, u(0) = u0,

whereA is an accretive map on an appropriate real Banach space. Typical examples of such
evolution equations are found in models involving the heat, wave or Schrödinger equations (see
e.g., Browder [7], Zeidler [23]). Observe that in the model (1.3), if the solutionu is independent

of time (i.e., at the equilibrium state of the system), then
du

dt
= 0 and (1.3) reduces to

(1.4) Au = 0,

whose solutions then correspond to the equilibrium state of the system described by (1.3). So-
lutions of equation (1.4) whenA is accretive can also represent solutions of partial differential
equations (see e.g., Benilan, Crandall and Pazy [4], Khatibzadeh and Morosanu [14], Khati-
bzadeh and Shokri [15], Showalter [19], Volpert [20], and so on). In studying the equation
Au = 0 whereA is an accretive operator on a Hilbert spaceH, Browder [6] introduced an
operatorT defined byT := I − A whereI is the identity map onH. He called such an oper-
atorpseudocontractive. It is clear that solutions ofAu = 0, if they exist, correspond to fixed
points ofT . Examples of pseudocontractive maps includenonexpansive maps, where a map
T : D(T ) ⊂ E → E is callednonexpansiveif ‖Tx− Ty‖ ≤ ‖x− y‖ ∀ , x, y ∈ D(T ).

Within the past 40 years or so, methods for approximating solutions of equation (1.4) whenA
is anaccretive-typeoperator have become a flourishing area of research for numerous math-
ematicians. Numerous convergence theorems have been published in various Banach spaces
and under various continuity assumptions on the operatorA. Many important theorems have
been proved, thanks to geometric properties of Banach spaces developed from the mid 1980s
to the early 1990s. The theory of approximation of solutions of equation (1.4) whenA is of the
accretive-typereached a level of maturity appropriate for an examination of its central themes.
This resulted in the publication of several monographs which presented in-depth coverage of
the main ideas, concepts and most important theorems on iterative algorithms for approxima-
tion of fixed points of nonexpansiveand pseudocontractive mapsand theirgeneralisations,
approximation ofzeros of accretive-type operators; iterative algorithms for solutions of Ham-
merstein integral equations involvingaccretive-type maps; iterative approximation ofcommon
fixed points(andcommon zeros) of families of these maps; solutions of equilibrium problems;
and so on (see e.g., Agarwalet al. [2], Berinde [5], Chidume [9], Kartsatos [18], Censor and
Reich [8], William and Shahzad [21] and the references contained in them). Typical theorems
published are the following.

Theorem 1.1(Chidume, [11]). Let E be a uniformly smooth real Banach space with modulus
of smoothnessρE, and letA : E → 2E be a multi-valued boundedm-accretive operator with
D(A) = E such that the inclusion0 ∈ Au has a solution. For arbitraryx1 ∈ E, define a
sequence{xn} by,

xn+1 = xn − λnun − λnθn(xn − x1), un ∈ Axn, n ≥ 1,

where{λn} and{θn} are sequences in(0, 1) satisfying appropriate conditions and there exists
a constantγ0 > 0 such thatρE(λn)

λn
≤ γ0θn. Then, the sequence{xn} converges strongly to a

zero ofA.

Theorem 1.2 (Ofoedu, [28]). Let C be a closed convex nonempty subset of a reflexive and
strictly convex real Banach spaceE which has a uniformly Gâteaux differentiable norm. Let
Ak : C → E, k ∈ N, be a countable infinite family ofm-accretive maps such that∩∞k=1A

−1
k (0) 6=
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∅. Suppose that every bounded closed convex nonempty subset ofC has the fixed point property
for nonexpansive maps. For arbitraryu, x1 ∈ C, let {xn} be iteratively generated by

xn+1 = αnu + (1− αn)Sxn, n ≥ 1,

whereS =
∞∑

k=1

εkJAk
; JAk

= (I + Ak)
−1, k ∈ N. Then,{xn}n≥1 converges strongly to a

common zero of{Ak}k≥1.

From the foregoing, it is clear that in real Banach spaces more general than Hilbert spaces, much
has been done on the approximation of solutions of equation (1.4) whenA is of accretive-type.
However, little has been done in the case where the operatorA is of themonotone-type. This is
perhaps, because of the following two challenges.

First, most of theinequalitiesdeveloped for proving convergence results for iterative schemes
for zero ofaccretive-type mapsare not directly applicable in the case ofmonotone-type maps
as they involve the generalized duality maps, whereas the definition of monotone-type maps
does not involve the generalized duality maps. Secondly,fixed point techniqueintroduced by
Browder is not readily applicable here becauseA maps a Banach spaceE into anotherBanach
spaceE∗; thus the usual notion of fixed point does not make sense here.

However, with intensive research efforts, these challenges are gradually being overcome. Re-
cently, Alber [1] (see also, Alber and Ryazantseva [27]) introduced a Lyapunov functional de-
fined on real normed spaces which turns out to be very useful in developing inequalities that are
applicable in iterative approximation of solutions of equation (1.4) whenA is of monotone-type
(see e.g., Aoyamaet al. [31], Kamimuraet al. [32], Kamimura and Takahashi [33], Zegeye and
Shahzad [34], Chidumeet al. ([29] , [30]), Zegeye [35]). A typical example of these results is
contained in the following theorem of Chidumeet al.[29].

Theorem 1.3(Chidumeet al.[29] ). Let E be a uniformly convex and uniformly smooth real
Banach space and letE∗ be its dual. LetA : E → E∗ be a generalizedΦ-strongly monotone
and bounded map withA−1(0) 6= ∅. For arbitrary u1 ∈ E, define a sequence{un} iteratively
by:

un+1 = J−1(Jun − λnAun), n ≥ 1,

where{λn} is a sequence in(0, 1) satisfying certain conditions. Then, the sequence{un}∞n=1

converges strongly tou∗, a solution ofAu = 0.

Furthermore, a new notion ofJ-fixed points(see Chidume and Idu [24]) also calledduality
fixed point(see Liu [25]) orsemi-fixed point(see Zegeye [34]) andJ-pseudocontractions(see
Chidume and Idu [24]) recently introduced, turns out to be very useful for approximating so-
lutions of equation (1.4) whenA is of monotone-type. For instance, Chidume and Idu [24]
showed that a mapT : E → E∗ is J-pseudocontractive if and only ifA := J − T is monotone
and hatx∗ ∈ E is aJ-fixed point ofT if and only if Ax∗ = 0, whereE is a smooth real Ba-
nach space with dual spaceE∗. They employed this technique and proved the following strong
convergence theorems.

Theorem 1.4(Chidume and Idu [24]). LetE be a uniformly convex and uniformly smooth real
Banach space and letE∗ be its dual. LetT : E → 2E∗

be aJ-pseudocontractive and bounded
map such that(J − T ) is maximal monotone. SupposeF J

E(T ) := {v ∈ E : Jv ∈ Tv} 6= ∅. For
arbitrary x1, u ∈ E, define a sequence{xn} iteratively by:

xn+1 = J−1 [(1− λn)Jxn + λnηn − λnθn(Jxn − Ju)] , ηn ∈ Txn, n ≥ 1,(1.5)
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where{λn} and{θn} are sequences in(0, 1) satisfying appropriate conditions. Then, the se-
quence{xn} converges strongly to aJ-fixed point ofT .

Theorem 1.5(Chidume and Idu [24]). LetE be a uniformly convex and uniformly smooth real
Banach space and letE∗ be its dual. LetA : E → 2E∗

be a multi-valued maximal monotone
and bounded map such thatA−1(0) 6= ∅. For arbitrary x1, u ∈ E, define a sequence{xn}
iteratively by:

xn+1 = J−1 [Jxn − λnηn − λnθn(Jxn − Ju)] , ηn ∈ Axn, n ≥ 1,(1.6)

where{λn} and{θn} are in (0, 1) and satisfying certain conditions. Then, the sequence{xn}
converges strongly to a zero ofA.

In this paper, it is our purpose to apply theorem1.4 and approximate a common zero of an infinite
family of an important class of monotone maps; the class ofγ-inverse strongly monotone maps
defined on a uniformly smooth and uniformly convex real Banach space. Our results are new
and improve some recent important results for this class of nonlinear operators.

2. PRELIMINARIES

Let E be a real normed space of dimension≥ 2. Themodulus of smoothnessof E ,
ρE : [0,∞) → [0,∞) is defined by:

ρE(τ) := sup

{
‖x + y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ , τ > 0

}
.

It known that in a smooth spaceE, ρE(τ) ≤ τ for all τ ≥ 0. A normed spaceE is called
uniformly smoothif limτ→0

ρE(τ)
τ

= 0. It is well known (seee.g., Chidume [9] p. 16, also
Lindenstrauss and Tzafriri[16]) thatρE is nondecreasing. If there exist a constantc > 0 and a
real numberq > 1 such thatρE(τ) ≤ cτ q, thenE is said to beq-uniformly smooth. Typical
examples of such spaces are theLp, `p andWm

p spaces for1 < p < ∞ where,

Lp (or lp) or Wm
p is

{
2− uniformly smooth if 2 ≤ p < ∞;
p− uniformly smooth if 1 < p < 2.

A Banach spaceE is said to bestrictly convexif ‖x‖ = ‖y‖ = 1, x 6= y =⇒
∥∥∥x+y

2

∥∥∥ < 1.

Themodulus of convexityof E is the functionδE : (0, 2] → [0, 1] defined by

δE(ε) := inf
{

1−
∥∥∥x + y

2

∥∥∥ : ‖x‖ = ‖y‖ = 1; ε = ‖x− y‖
}

.

The spaceE is uniformly convexif and only if δE(ε) > 0 for everyε ∈ (0, 2]. It is also well
known (seee.g., Chidume [9] p. 34, Lindenstrauss and Tzafriri [16]) thatδE is nondecreasing.
If there exist a constantc > 0 and a real numberp > 1 such thatδE(ε) ≥ cεp, thenE is said
to bep-uniformly convex. Typical examples of such spaces are theLp, `p andWm

p spaces for
1 < p < ∞ where,

Lp (or lp) or Wm
p is

{
p− uniformly convex if 2 ≤ p < ∞;
2− uniformly convex if 1 < p < 2.

We now present the following definitions and remarks which will be used in the sequel.

Definition 2.1. LetE be a normed space. A mapT : E → E is calledstrictly pseudocontractive
in the terminology of Browder and Petryshynif there existsγ > 0 such that

〈Tx− Ty, j(x− y)〉 ≤ ||x− y||2 − γ||x− y − (Tx− Ty)||2(2.1)
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for all x, y ∈ E and for somej(x− y) ∈ J(x− y). If E = H, a real Hilbert space,T : E → E
is calledstrictly pseudocontractiveif

||Tx− Ty||2 ≤ ||x− y||2 + k||x− y − (Tx− Ty)||2(2.2)

holds for allx, y ∈ E and for somek ∈ (0, 1).

Definition 2.2 (Chidume and Idu,[24] ). Let E be a normed space. A mapT : E → 2E∗
is

calledJ-pseudocontractiveif for everyx, y ∈ E,

〈τ − ζ, x− y〉 ≤ 〈η − ν, x− y〉 for all τ ∈ Tx, ζ ∈ Ty, η ∈ Jx, ν ∈ Jy.

If E is a smooth real Banach space, thenT : E → E∗ is J-pseudocontractive if for every
x, y ∈ E the following inequality holds:

〈Tx− Ty, x− y〉 ≤ 〈Jx− Jy, x− y〉.

Definition 2.3 (Chidumeet al. [10]). Let E be a real normed space andE∗ be its dual. A map
T : E → 2E∗

will be calledstrictly J-pseudocontractiveif for everyx, y ∈ E, τx ∈ Tx, τ y ∈
Ty, jx ∈ Jx, jy ∈ Jy, there existsγ > 0 such that the following inequality is satisfied:

〈τx − τ y, x− y〉 ≤ 〈jx− jy, x− y〉 − γ||(jx− τx)− (jy − τ y)||2.

Also, if E is a smooth real Banach space,T : E → E∗ is strictly J-pseudocontraction if for
everyx, y ∈ E, there existsγ > 0 such that the following inequality holds:

〈Tx− Ty, x− y〉 ≤ 〈Jx− Jy, x− y〉 − γ||(J − T )x− (J − T )y||2.(2.3)

In this paper, strictlyJ-pseudocontractive maps shall be calledγ-strictly J-pseudocontractive
maps.

Definition 2.4 (Chidume and Idu [24]). Let E be an arbitrary normed space andE∗ be its dual.
Let T : E → 2E∗

be any map. A pointx ∈ E is called aJ-fixed pointof T if and only if there
existsη ∈ Tx such thatη ∈ Jx

From the above definitions, we have that ifE is a smooth real Banach space,x ∈ E is aJ-fixed
point ofT : E → E∗ if and only if Tx = Jx. Observe that ifE = H, a real Hilbert space, then
the notions of fixed point andJ-fixed point are equivalent, where a pointx in the domain of a
self-mapT in a normed space is a fixed point ofT if and only if Tx = x.

Remark 2.1. Let E be a smooth real Banach space,J be the normalized duality map onE
andT : E → E∗ be any map. It is easy to see thatT is J-pseudocontractive if and only if
A := (J−T ) is monotone. Also,T isγ-strictlyJ-pseudocontractive if and only ifA := (J−T )
sγ-inverse strongly monotone. In both cases, it is also easy to see thatx ∈ E is aJ-fixed point
of T if and only if x is a zero ofA; wherep ∈ E is a zero ofA if and only if Ap = 0.

Remark 2.2. Observe that the class ofγ-strictly J-pseudocontractive maps is a proper subclass
of the class ofJ-pseudocontractive maps.

We shall denote the set of fixed point ofT : E → E by F (T ), the set ofJ-fixed points of
T : E → E∗ by FJ(T ) and the set of zeros ofA : E → E∗ by A−1(0). We shall also denote
the domain and range of a mapA, by D(A) andR(A), respectively.

In the sequel, the following important lemma will be used.

Lemma 2.1 (Cioranescu [26], corrollary 2.7 pg 156). Let E be a real Banach space andE∗

be its dual space. LetA : E → E∗ be a monotone and semicontinuous map withD(A) = E.
Then,A is maximal monotone.

AJMAA, Vol. 14, No. 1, Art. 9, pp. 1-11, 2017 AJMAA

http://ajmaa.org


COMMON ZEROS OF A FAMILY OFGAMMA -INVERSE STRONGLY MONOTONE MAPS 7

3. M AIN RESULTS

We shall make use of the following lemmas in what follows.

Lemma 3.1. Let E be a smooth real Banach space with dual spaceE∗ and letJ be the nor-
malized duality map ofE. Let Ak : E → E∗, k = 1, 2, 3, ... be an infinite family ofγk-
inverse srtongly monotone maps such thatγ := infk≥1 γk > 0 and∩∞k=1A

−1
k (0) 6= ∅. Define

Tk := J − Ak andS :=
∞∑

k=1

εkTk, where{εk}∞k=1 is a sequence of positive real numbers satis-

fying
∑∞

n=1 εk = 1. Then,
(i) Tk is J-pseudocontractive for eachk = 1, 2, ... ,
(ii) S is well defined,
(iii) S is J-pseudocontractive,
(iv) S is bounded on bounded subsets ofE,
(v) FJ(S) = ∩∞k=1FJ(Tk) = ∩∞k=1A

−1
k (0).

Proof. (i) This follows from the fact thatAk is monotone for eachk = 1, 2, .... (ii) Let x ∈ E
andx∗ ∈ ∩∞k=1A

−1
k (0). Then, by the Lipschitz property ofAk for eachk ≥ 1, we have

||εkTkx|| = ||εk(J − Ak)x|| ≤ |x||+ ||Akx− Akx
∗|| ≤ ||x||+ γ−1||x− x∗||.(3.1)

This implies that
∞∑

k=1

εkTkx is absolutely convergent for eachx ∈ E. Thus, S is well defined.

(iii) Let x, y ∈ E. SinceTk is J-pseudocontractive for eachk ≥ 1 and
∞∑

k=1

εk = 1, we have that

〈Sx− Sy, x− y〉 =
∞∑

k=1

εk〈Tkx− Tky, x− y〉

≤ 〈Jx− Jy, x− y〉.
Therefore,S is J-pseudocontractive.
(iv) Let B be any bounded subset ofE and letx ∈ B, p ∈ ∩∞k=1A

−1
k (0). Then, using the fact

thatAk is 1
γk

-Lipschitz, there existsM > 0 such that

||Sx|| =
∣∣∣∣ ∞∑

k=1

εk(J − Ak)x
∣∣∣∣

≤ ||Jx||+
∞∑

k=1

εk||Akx− Akp||

≤ ||x||+ 1

γ
||x− p|| ≤ M.

Therefore,S is bounded on bounded sets.(v) It is trivial to see that∩∞k=1FJ(Tk) = ∩∞k=1A
−1
k (0)

and that∩∞k=1FJ(Tk) ⊂ FJ(S). Now, letx∗ ∈ FJ(S). Let p ∈ ∩∞k=1A
−1
k (0). Then,Sx∗ = Jx∗.

Using the definition ofS andTk, we have

0 = 〈Jx∗ − Sx∗, x∗ − p〉 =
∞∑

k=1

εk〈Akx
∗ − Akp, x

∗ − p〉.(3.2)

SinceAk is monotone for eachk ≥ 1 and
∞∑

k=1

εk = 1, we obtain from equation (3.2) that

〈Akx
∗ − Akp, x

∗ − p〉 = 0 ∀ k ≥ 1.
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SinceAk is γk-inverse strongly monotone for eachk ≥ 1, we obtain that∀ k ≥ 1,

0 = 〈Akx
∗ − Akp, x

∗ − p〉 ≥ γk||Akx
∗ − Akp||2 ≥ γ||Akx

∗||2.
This impliesAkx

∗ = 0 ∀ k ≥ 1. Thus,x∗ ∈ ∩∞k=1A
−1
k (0) = ∩∞k=1FJ(Tk) and this completes

the proof of the lemma.

Lemma 3.2. LetE be a smooth real Banach space andE∗ be its dual. LetAk : D(Ak) = E →
E∗, k = 1, 2, 3, ... be an infinite family ofγk-inverse strongly monotone maps. Then,(J − S) is

maximal monotone, whereS =
∞∑

k=1

εkTk, Tk = J − Ak and{εk} is a positive sequence of real

numbers satisfying
∞∑

k=1

εk = 1.

Proof. By (iii) of lemma 3.1,S is J-pseudocontractive. Thus, by remark 2.1,(J − S) is
monotone. Clearly,(J − S) is continuous and is defined on the whole ofE. Therefore, by
lemma 2.1,(J − S) is maximal monotone.

In what follows, the sequences{λn} and{θn} are in(0, 1) and satisfy the same conditions as
in theorem 1.4. That is:
(i)

∑∞
n=1 λnθn = ∞;

(ii) λnM
∗
0 ≤ γ0θn; δ−1

E (λnM
∗
0 ) ≤ γ0θn,

(iii)
δ−1

E

�
θn−1−θn

θn
K
�

λnθn
→ 0,

δ−1
E∗

�
θn−1−θn

θn
K
�

λnθn
→ 0, asn →∞,

(iv)
1

2

(
θn−1−θn

θn
K

)
∈ (0, 1),

for some constantsM∗
0 > 0, K > 0 and γ0 > 0; whereδE : (0,∞) → (0,∞) is the

modulus of convexity ofE. Prototypes of{λn} and {θn} satisfying these conditions are:
λn = 1

(n+1)a , θn = 1
(n+1)b , for some positive constantsa and b. Verifications that these

prototypes satisfy conditions(i)− (iv) can be found in the paper of Chidume and Idu [24]. We
now prove the following theorem.

Theorem 3.3.LetE be a uniformly convex and uniformly smooth real Banach space with dual
spaceE∗ and letJ be the normalized duality map onE. Let Ak : D(Ak) = E → E∗, k =
1, 2, 3, ... be an infinite family ofγk-inverse strongly monotone maps such thatγ := infk≥1 γk >
0 and∩∞n=1A

−1
k (0) 6= ∅. For arbitrary x1, u ∈ E, define a sequence{xn} iteratively by:

xn+1 = J−1 [(1− λn)Jxn + λnSxn − λnθn(Jxn − Ju)] , n ≥ 1,(3.3)

whereS :=
∑∞

k=1 εkTk, Tk := J − Ak and {εk}∞k=1 is a positive sequence of real numbers
atisfying

∑∞
k=1 εk = 1. Then,{xn} converges strongly to somex∗ ∈ ∩∞k=1A

−1
k (0).

Proof. From(iii) and(iv) of lemma 3.1, we obtain thatS is J-pseudocontractive and bounded
on bounded subsets ofE. From lemma 3.2,(J −S) is maximal monotone. By theorem 1.4, we
obtain that{xn} converges strongly to somex∗ ∈ FJ(S). Hence, by(v) of lemma 3.1, we have
that{xn} converges strongly to somex∗ ∈ ∩∞k=1A

−1
k (0). This completes the proof.

4. SOME APPLICATIONS

In this section, we apply our theorem to approximate a commonJ-fixed point of an infinite
family of strictly J-pseudocontractive maps in uniformly convex and uniformly smooth real
Banach spaces and also to approximate a common fixed point of an infinite family of strictly
pseudocontractive maps in real Hilbert spaces.
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Corollary 4.1. Let E be a uniformly convex and uniformly smooth real Banach space with
dual spaceE∗ and let J be the normalized duality map onE. Let Tk : D(Tk) = E →
E∗, k = 1, 2, 3, ... be an infinite family ofγk-strictly J-pseudocontractive maps such that
γ := infk≥1 γk > 0 and∩∞n=1FJ(Tk) 6= ∅. For arbitrary x1, u ∈ E, define a sequence{xn}
iteratively by:

xn+1 = J−1 [(1− λn)Jxn + λnSxn − λnθn(Jxn − Ju)] , n ≥ 1,(4.1)

whereS :=
∑∞

k=1 εkTk and{εk}∞k=1 is a positive sequence of real numbers satisfying
∑∞

k=1 εk =
1. Then,{xn} converges strongly to somex∗ ∈ ∩∞k=1FJ(Tk).

Proof. Clearly,S isJ-pseudocontractive and bounded. SinceTk isγk-strictlyJ-pseudocontractive,
then by remark 2.1, we have thatAk := J − Tk is γk-inverse strongly monotone for eachk ≥ 1
and∩∞n=1A

−1
k (0) 6= ∅ (sinceA−1

k (0) = FJ(Tk) for eachk ≥ 1 and∩∞k=1FJ(Tk) 6= ∅). Therefore,
the proof follows from theorem 3.3.

Corollary 4.2. LetH be a real Hilbert space. LetTk : D(Tk) = H → H, k = 1, 2, 3, ... be an
infinite family ofγk-strictly pseudocontractive maps such that∩∞k=1F (Tk) 6= ∅. For arbitrary
x1, u ∈ E, define a sequence{xn} iteratively by:

xn+1 = [(1− λn)xn + λnSxn − λnθn(xn − u)] , n ≥ 1,(4.2)

whereS :=
∑∞

k=1 εkTk and{εk}∞k=1 is a positive sequence of real numbers satisfying
∑∞

k=1 εk =

1. Assumeγ := infk≥1 βk > 0, whereβk = 1−γk

2
, then{xn} converges strongly to some

x∗ ∈ ∩∞k=1F (Tk).

Proof. Since for eachk ≥ 1, Tk is γk-strictly pseudocontractive, then it is easy to see that for
eachx, y ∈ E,

〈Tx− Ty, x− y〉 ≤ ||x− y||2 − βk||(I − T )x− (I − T )y||2.
Thus, for eachk ≥ 1, Tk is βk-strictly I-pseudocontractive. Hence, the proof follows from
corollary 4.1.

5. CONCLUSION

In this paper, a new iterative algorithm is constructed and used to approximate a common zero
of an infinite family of gamma-inverse strongly monotone maps defined on uniformly convex
and uniformly smooth real Banach spaces. As a consequence of this result, a strong convergence
theorem for approximating a commonJ-fixed point for an infinite family of gamma-strictlyJ-
pseudocontractive maps is proved. Furthermore, in particular, all results obtained are applicable
in the importantlp, Lp(G) and Sobolev spacesW p

m(G), p ∈ (1,∞), p−1 + q−1 = 1.

Remark 5.1. (see e.g., Alber and Ryazantseva, [27]; page 36) The analytical representations of
duality maps are known in a number of Banach spaces. For instance, in the spaceslp, Lp(G)
and Sobolev spacesW p

m(G), p ∈ (1,∞), p−1 + q−1 = 1, respectively,

Jx = ||x||2−p
lp y ∈ lq, y = {|x1|p−2x1, |x2|p−2x2, ...}, x = {x1, x2, ...},

J−1x = ||x||2−q
lq y ∈ lp, y = {|x1|q−2x1, |x2|q−2x2, ...}, x = {x1, x2, ...},
Jx = ||x||2−p

Lp |x(s)|p−2x(s) ∈ Lq(G), s ∈ G,

J−1x = ||x||2−q
Lq |x(s)|q−2x(s) ∈ Lp(G), s ∈ G,

and

Jx = ||x||2−p
W p

m

∑
|α|≤m

(−1)|α|Dα(|Dαx(s)|p−2Dαx(s)) ∈ W q
−m(G), m > 0, s ∈ G.
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