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ABSTRACT. In this short note, we present an elementary proof of the boundedness of the dis-
crete Hilbert transform oǹp(Z) spaces for1 < p < ∞. Our approach relies solely on Hölder’s
inequality, avoiding more sophisticated tools from harmonic analysis. This offers a simplified
and accessible pathway to understanding a classical result in operator theory.
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1. I NTRODUCTION

The Hilbert transform is a central object in harmonic analysis and has profound applications
across mathematics and engineering, especially in signal processing and the theory of singular
integrals. Its discrete analogue, thediscrete Hilbert transform(DHT), serves as a fundamental
example of a singular integral operator acting on sequences, and plays a crucial role in discrete
analysis and related fields.

Introduced in early studies on singular operators, the DHT is defined, for a sequencef =
{f(n)}n∈Z, by

Hf(n) =
∑
m∈Z
m6=n

f(m)

n−m
.

This operator preserves many of the essential features of its continuous counterpart, including
its boundedness on classical sequence spaces`p(Z) for 1 < p < ∞. Such boundedness is
a cornerstone result that guarantees stability and regularity in the analysis of sequences and
discrete signals.

Standard proofs of the boundedness of the DHT often rely on sophisticated tools such as
Fourier analysis, interpolation theorems, or the theory of singular integrals. In contrast, the aim
of this note is to offer a completely elementary proof of this fact using only Hölder’s inequality
and basic properties of`p spaces.

Our approach is inspired by a pedagogical interest in making classical results in harmonic
analysis more accessible to a broader audience, particularly students and researchers with min-
imal background in advanced functional analysis. This proof illustrates how fundamental in-
equalities and clever estimations can yield powerful results in operator theory.

We believe that this elementary perspective sheds light on the inner workings of the DHT and
may serve as a stepping stone for further explorations in both pure and applied contexts.

We begin recalling the definition of Lebesgue “little”`p = `p(Z) spaces.

Definition 1.1. For1 ≤ p < ∞ the Lebesgue sequence space (also known as discrete Lebesgue
space), is the set of all sequence of real numbersf = {f(n)}n∈N such that∑

n∈Z

|f(n)|p < ∞.

The set of all such sequences is denoted by`p(Z), which endowed with the norm

‖f‖`p(Z) = ‖{f(n)}n∈Z‖`p(Z) =

(∑
n∈Z

|f(n)|p
)1/p

,

turns out to be a Banach space.

The following result, known asHölder inequality, will be the main tool in proving our main
result. We establish it without proof, but the interested reader may find its proof and related
topics in [1, Lemma 2.3], [3], [5] and [6, Chapter 9].

Theorem 1.1 (Hölder inequality). Let p and q be real numbers such that1 < p < ∞ and
1
p

+ 1
q

= 1. If f ∈ Lp(Z) andg ∈ lq(Z), then

∑
n∈Z

|f(n)g(n)| ≤

(∑
n∈Z

|f(n)|p
) 1

p
(∑

n∈Z

|g(n)|q
) 1

q

.
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For more details oǹp(Z), see [1].
David Hilbert (1862-1943) introduced the Hilbert transform in 1905, which includes the

discrete Hilbert transform as a special case, and it is defined as an operatorH that acts on the
sequencef = {f(n)}n∈Z, and it is given by

(1.1) Hf(n) =
∑
m∈Z
m6=n

f(m)

n−m
.

For more on the Hilbert transform, the reader may check references [2, 4] and [7].

2. M AIN RESULT

Although Hilbert transform and its properties have been widely studied, this is not the case
for the DHT. In this regard, it is our goal to present an elementary proof for the boundedness of
DHT, which only involves Hölder inequality. The result reads as follows.

Theorem 2.1. The Hilbert transform(1.1) is a bounded linear operator oǹp(Z) for 1 < p <
∞. Moreover, the following inequality

(2.1) ‖Hf‖`p(Z) ≤ 2‖f‖`p(Z),

holds, for allf ∈ `p(Z).

Proof. Let f = {f(n)}n∈Z be a sequence iǹp(Z). Then, according to (1.1) and by Hölder
inequality, we have

∞∑
n=−∞

|Hf(n)|p =
∞∑

n=−∞

∣∣∣∣∣∑
n6=m

f(m)

n−m

∣∣∣∣∣
p

=
∞∑

n=−∞

∣∣∣∣∣∑
n6=m

f(m)

n−m

∣∣∣∣∣
∣∣∣∣∣∑
n6=m

f(m)

n−m

∣∣∣∣∣
p−1

≤
∞∑

n=−∞

∑
n6=m

∣∣∣∣ f(m)

n−m

∣∣∣∣
∣∣∣∣∣∑
n6=m

f(m)

n−m

∣∣∣∣∣
p−1

=
∑
n6=m

1

|n−m|

∞∑
n=−∞

|f(m)|

∣∣∣∣∣∑
n6=m

f(m)

n−m

∣∣∣∣∣
p−1

=
∞∑

k=1

∑
2k−1≤|n−m|<2k

1

|n−m|

(
∞∑

n=−∞

|f(n)|p
) 1

p
(

∞∑
n=−∞

∣∣∣∣∣∑
n6=m

f(m)

|n−m|

∣∣∣∣∣
p) 1

q

≤
∞∑

k=1

1

2k−1

(
∞∑

n=−∞

|f(n)|p
) 1

p
(

∞∑
n=−∞

|Hf(n)|p
) 1

q

.

Finally (
∞∑

n=−∞

|Hf(n)|p
)1− 1

q

≤ 2

(
∞∑

n=−∞

|f(n)|p
) 1

p

,

hence (
∞∑

n=−∞

|Hf(n)|p
) 1

p

≤ 2

(
∞∑

n=−∞

|f(n)|p
) 1

p

,
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which proves (2.1).
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