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1. INTRODUCTION AND PRELIMINARIES

The stability problem of functional equations originated from a question of Ulam [58] con-
cerning the stability of group homomorphisms. Hyers [28] gave a first affirmative partial answer
to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [3] for
additive mappings and by Th.M. Rassias [49] for linear mappings by considering an unbounded
Cauchy difference. The paper of Th.M. Rassias [49] has provided a lot of influence in the de-
velopment of what we call generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of
functional equations. A generalization of the Th. M. Rassias theorem was obtained by Găvruta
[24] by replacing the unbounded Cauchy difference by a general control function in the spirit
of Th. M. Rassias’ approach.

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for
the quadratic functional equation was proved by Skof [57] for mappings f : X → Y , where
X is a normed space and Y is a Banach space. Cholewa [11] noticed that the theorem of Skof
is still true if the relevant domain X is replaced by an Abelian group. Czerwik [13] proved the
generalized Hyers-Ulam stability of the quadratic functional equation. The stability problems
of several functional equations have been extensively investigated by a number of authors and
there are many interesting results concerning this problem (see [1, 4, 6, 12, 14], [18]–[22],
[29, 32, 33, 39, 41], [50]–[54]).

In [31], Jun and Kim considered the following cubic functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x).(1.1)

It is easy to show that the function f(x) = x3 satisfies the functional equation (1.1), which is
called a cubic functional equation and every solution of the cubic functional equation is said to
be a cubic mapping.

In [35], Lee et al. considered the following quartic functional equation

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y).(1.2)

It is easy to show that the function f(x) = x4 satisfies the functional equation (1.2), which is
called a quartic functional equation and every solution of the quartic functional equation is said
to be a quartic mapping.

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .
We recall a fundamental result in fixed point theory.

Theorem 1.1. [7, 15] Let (X, d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element
x ∈ X , either

d(Jnx, Jn+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
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(4) d(y, y∗) ≤ 1
1−Ld(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th. M. Rassias [30] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with applications. By
using fixed point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [42, 43, 48]).

The aim of this paper is to investigate the generalized Hyers-Ulam stability of the additive-
quadratic-cubic-quartic functional equation

f(x+ 2y) + f(x− 2y) = 4f(x+ y) + 4f(x− y)− 6f(x)(1.3)
+ f(2y) + f(−2y)− 4f(y)− 4f(−y)

in Banach spaces, in random Banach spaces and in non-Archimedean Banach spaces by using
the direct method random and by the fixed point method.

2. GENERALIZED HYERS-ULAM STABILITY OF AN AQCQ-FUNCTIONAL EQUATION
IN BANACH SPACES: DIRECT METHOD

One can easily show that an odd mapping f : X → Y satisfies (1.3) if and only if the odd
mapping mapping f : X → Y is an additive-cubic mapping, i.e.,

f(x+ 2y) + f(x− 2y) = 4f(x+ y) + 4f(x− y)− 6f(x).

It was shown in Lemma 2.2 of [17] that g(x) := f(2x)− 2f(x) and h(x) := f(2x)− 8f(x) are
cubic and additive, respectively, and that f(x) = 1

6
g(x)− 1

6
h(x).

One can easily show that an even mapping f : X → Y satisfies (1.3) if and only if the even
mapping f : X → Y is a quadratic-quartic mapping, i.e.,

f(x+ 2y) + f(x− 2y) = 4f(x+ y) + 4f(x− y)− 6f(x) + 2f(2y)− 8f(y).

It was shown in Lemma 2.1 of [16] that g(x) := f(2x) − 4f(x) and h(x) := f(2x) − 16f(x)
are quartic and quadratic, respectively, and that f(x) = 1

12
g(x)− 1

12
h(x).

In this section, assume that X is a normed space and Y is a Banach space.
For a given mapping f : X → Y , we define

Df(x, y) : = f(x+ 2y) + f(x− 2y)− 4f(x+ y)− 4f(x− y) + 6f(x)

− f(2y)− f(−2y) + 4f(y) + 4f(−y)

for all x, y ∈ X .
Note that the main results of this section are contained in [47].
We prove the generalized Hyers-Ulam stability of the functional equation Df(x, y) = 0 in

Banach spaces: an odd case.

Theorem 2.1. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑
n=0

8nϕ
( x

2n
,
y

2n

)
<∞(2.1)

for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying

‖Df(x, y)‖ ≤ ϕ(x, y)(2.2)

for all x, y ∈ X . Then there exists a unique cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ 4Φ
(x

2
,
x

2

)
+ Φ

(
x,
x

2

)
(2.3)

for all x ∈ X .
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Proof. Letting x = y in (2.2), we get

‖f(3y)− 4f(2y) + 5f(y)‖ ≤ ϕ(y, y)(2.4)

for all y ∈ X .
Replacing x by 2y in (2.2), we get

‖f(4y)− 4f(3y) + 6f(2y)− 4f(y)‖ ≤ ϕ(2y, y)(2.5)

for all y ∈ X .
By (2.4) and (2.5),

‖f(4y)− 10f(2y) + 16f(y)‖ ≤ ‖4(f(3y)− 4f(2y) + 5f(y))‖
+ ‖f(4y)− 4f(3y) + 6f(2y)− 4f(y)‖
≤ 4ϕ(y, y) + ϕ(2y, y)

for all y ∈ X . Letting y := x
2

and g(x) := f(2x)− 2f(x) for all x ∈ X , we get∥∥∥g(x)− 8g
(x

2

)∥∥∥ ≤ 4ϕ
(x

2
,
x

2

)
+ ϕ

(
x,
x

2

)
for all x ∈ X . Hence

‖8lg(
x

2l
)− 8mg(

x

2m
)‖ ≤

m−1∑
j=l

4 · 8jϕ
( x

2j+1
,
x

2j+1

)
+

m−1∑
j=l

8jϕ
( x

2j
,
x

2j+1

)
(2.6)

for all nonnegative integers m and l with m > l and all x ∈ X . It follows from (2.1) and
(2.6) that the sequence {8kg( x

2k
)} is Cauchy for all x ∈ X . Since Y is complete, the sequence

{8kg( x
2k

)} converges. So one can define the mapping C : X → Y by

C(x) := lim
k→∞

8kg
( x

2k

)
for all x ∈ X .

By (2.1) and (2.2),

‖DC(x, y)‖ = lim
k→∞

8k
∥∥∥Dg ( x

2k
,
y

2k

)∥∥∥
≤ lim

k→∞
8k
(
ϕ

(
2x

2k
,
2y

2k

)
+ 2ϕ

( x
2k
,
y

2k

))
= 0

for all x, y ∈ X . So DC(x, y) = 0. Since g : X → Y is odd, C : X → Y is odd. So the
mapping C : X → Y is cubic. Moreover, letting l = 0 and passing the limit m → ∞ in (2.6),
we get (2.3). So there exists a cubic mapping C : X → Y satisfying (2.3).

Now, let C ′ : X → Y be another cubic mapping satisfying (2.3). Then we have

‖C(x)− C ′(x)‖ = 8q
∥∥∥C ( x

2q

)
− C ′

( x
2q

)∥∥∥
≤ 8q

∥∥∥C ( x
2q

)
− g

( x
2q

)∥∥∥+ 8q
∥∥∥C ′ ( x

2q

)
− g

( x
2q

)∥∥∥
≤ 2 · 4 · 8qΦ

( x

2q+1
,
x

2q+1

)
+ 2 · 8qΦ

( x
2q
,
x

2q+1

)
,

which tends to zero as q → ∞ for all x ∈ X . So we can conclude that C(x) = C ′(x) for all
x ∈ X . This proves the uniqueness of C.

Corollary 2.2. Let θ ≥ 0 and let p be a real number with p > 3. Let f : X → Y be an odd
mapping satisfying

‖Df(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)(2.7)
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for all x, y ∈ X . Then there exists a unique cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ 2p + 9

2p − 8
θ‖x‖p

for all x ∈ X .

Similarly, we can obtain the following. We will omit the proof.

Theorem 2.3. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑
n=0

1

8n
ϕ (2nx, 2ny) <∞

for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying (2.2). Then there exists a unique
cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ 1

2
Φ (x, x) +

1

8
Φ (2x, x)

for all x ∈ X .

Corollary 2.4. Let θ ≥ 0 and let p be a real number with 0 < p < 3. Let f : X → Y be an odd
mapping satisfying (2.7). Then there exists a unique cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ 9 + 2p

8− 2p
θ‖x‖p

for all x ∈ X .

Theorem 2.5. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑
n=0

2nϕ
( x

2n
,
y

2n

)
<∞

for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying (2.2). Then there exists a unique
additive mapping A : X → Y such that

‖f(2x)− 8f(x)− A(x)‖ ≤ 4Φ
(x

2
,
x

2

)
+ Φ

(
x,
x

2

)
for all x ∈ X .

Corollary 2.6. Let θ ≥ 0 and let p be a real number with p > 1. Let f : X → Y be an odd
mapping satisfying (2.7). Then there exists a unique additive mapping A : X → Y such that

‖f(2x)− 8f(x)− A(x)‖ ≤ 2p + 9

2p − 2
θ‖x‖p

for all x ∈ X .

Theorem 2.7. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑
n=0

1

2n
ϕ (2nx, 2ny) <∞(2.8)

for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying (2.2). Then there exists a unique
additive mapping A : X → Y such that

‖f(2x)− 8f(x)− A(x)‖ ≤ 2Φ (x, x) +
1

2
Φ (2x, x)

for all x ∈ X .

AJMAA, Vol. 8, No. 1, Art. 14, pp. 1-39, 2011 AJMAA

http://ajmaa.org


6 CHOONKIL PARK AND JUNG RYE LEE

Corollary 2.8. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let f : X → Y be an odd
mapping satisfying (2.7). Then there exists a unique additive mapping A : X → Y such that

‖f(2x)− 8f(x)− A(x)‖ ≤ 9 + 2p

2− 2p
θ‖x‖p

for all x ∈ X .

Now we prove the generalized Hyers-Ulam stability of the functional equation Df(x, y) = 0
in Banach spaces: an even case.

Theorem 2.9. Let ϕ : X2 → [0,∞) be a function such that

Ψ(x, y) :=
∞∑
n=0

16nϕ
( x

2n
,
y

2n

)
<∞(2.9)

for all x, y ∈ X . Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.2). Then there
exists a unique quartic mapping Q : X → Y such that

‖f(2x)− 4f(x)−Q(x)‖ ≤ 4Ψ
(x

2
,
x

2

)
+ Ψ

(
x,
x

2

)
for all x ∈ X .

Proof. Letting x = y in (2.2), we get

‖f(3y)− 6f(2y) + 15f(y)‖ ≤ ϕ(y, y)(2.10)

for all y ∈ X .
Replacing x by 2y in (2.2), we get

‖f(4y)− 4f(3y) + 4f(2y) + 4f(y)‖ ≤ ϕ(2y, y)(2.11)

for all y ∈ X .
By (2.10) and (2.11),

‖f(4x)− 20f(2x) + 64f(x)‖
≤ ‖4(f(3x)− 6f(2x) + 15f(x))‖

+‖f(4x)− 4f(3x) + 4f(2x) + 4f(x)‖
≤ 4ϕ(x, x) + ϕ(2x, x)

for all x ∈ X . Letting g(x) := f(2x)− 4f(x) for all x ∈ X , we get∥∥∥g(x)− 16g
(x

2

)∥∥∥ ≤ 4ϕ
(x

2
,
x

2

)
+ ϕ

(
x,
x

2

)
for all x ∈ X .

The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.10. Let θ ≥ 0 and let p be a real number with p > 4. Let f : X → Y be an even
mapping satisfying f(0) = 0 and (2.7). Then there exists a unique quartic mappingQ : X → Y
such that

‖f(2x)− 4f(x)−Q(x)‖ ≤ 2p + 9

2p − 16
θ‖x‖p

for all x ∈ X .

Similarly, we can obtain the following. We will omit the proof.
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Theorem 2.11. Let ϕ : X2 → [0,∞) be a function such that

Ψ(x, y) :=
∞∑
n=0

1

16n
ϕ (2nx, 2ny) <∞

for all x, y ∈ X . Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.2). Then there
exists a unique quartic mapping Q : X → Y such that

‖f(2x)− 4f(x)−Q(x)‖ ≤ 1

4
Ψ (x, x) +

1

16
Ψ (2x, x)

for all x ∈ X .

Corollary 2.12. Let θ ≥ 0 and let p be a real number with 0 < p < 4. Let f : X → Y be
an even mapping satisfying f(0) = 0 and (2.7). Then there exists a unique quartic mapping
Q : X → Y such that

‖f(2x)− 4f(x)−Q(x)‖ ≤ 9 + 2p

16− 2p
θ‖x‖p

for all x ∈ X .

Theorem 2.13. Let ϕ : X2 → [0,∞) be a function such that

Ψ(x, y) :=
∞∑
n=0

4nϕ
( x

2n
,
y

2n

)
<∞

for all x, y ∈ X . Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.2). Then there
exists a unique quadratic mapping T : X → Y such that

‖f(2x)− 16f(x)− T (x)‖ ≤ 4Ψ
(x

2
,
x

2

)
+ Ψ

(
x,
x

2

)
for all x ∈ X .

Corollary 2.14. Let θ ≥ 0 and let p be a real number with p > 2. Let f : X → Y be an
even mapping satisfying f(0) = 0 and (2.7). Then there exists a unique quadratic mapping
T : X → Y such that

‖f(2x)− 16f(x)− T (x)‖ ≤ 2p + 9

2p − 4
θ‖x‖p

for all x ∈ X .

Theorem 2.15. Let ϕ : X2 → [0,∞) be a function such that

Ψ(x, y) :=
∞∑
n=0

1

4n
ϕ (2nx, 2ny) <∞

for all x, y ∈ X . Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.2). Then there
exists a unique quadratic mapping T : X → Y such that

‖f(2x)− 16f(x)− T (x)‖ ≤ Ψ (x, x) +
1

4
Ψ (2x, x)

for all x ∈ X .

Corollary 2.16. Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let f : X → Y be
an even mapping satisfying f(0) = 0 and (2.7). Then there exists a unique quadratic mapping
T : X → Y such that

‖f(2x)− 16f(x)− T (x)‖ ≤ 9 + 2p

4− 2p
θ‖x‖p

for all x ∈ X .
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Let fo(x) := f(x)−f(−x)
2

and fe(x) := f(x)+f(−x)
2

. Then fo is odd and fe is even. fo and fe
satisfy the functional equation (1.3). Let go(x) := fo(2x) − 2fo(x) and ho(x) := fo(2x) −
8fo(x). Then fo(x) = 1

6
go(x)− 1

6
ho(x). Let ge(x) := fe(2x)− 4fe(x) and he(x) := fe(2x)−

16fe(x). Then fe(x) = 1
12
ge(x)− 1

12
he(x). Thus

f(x) =
1

6
go(x)− 1

6
ho(x) +

1

12
ge(x)− 1

12
he(x).

Hence we obtain the following results.

Theorem 2.17. Let ϕ : X2 → [0,∞) be a function satisfying (2.9). Let f : X → Y be a
mapping satisfying f(0) = 0 and (2.2). Then there exist an additive mapping A : X → Y ,
a quadratic mapping T : X → Y , a cubic mapping C : X → Y and a quartic mapping
Q : X → Y such that∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥
≤ 2

3
Φ1

(x
2
,
x

2

)
+

1

6
Φ1

(
x,
x

2

)
+

1

3
Ψ2

(x
2
,
x

2

)
+

1

12
Ψ2

(
x,
x

2

)
+

2

3
Φ3

(x
2
,
x

2

)
+

1

6
Φ3

(
x,
x

2

)
+

1

3
Ψ4

(x
2
,
x

2

)
+

1

12
Ψ4

(
x,
x

2

)
for all x ∈ X . Here Φ1 := Φ,Ψ2 := Ψ,Φ3 := Φ and Ψ4 := Ψ are given in the statements of
Theorems 2.5, 2.13, 2.1 and 2.9, respectively.

Corollary 2.18. Let θ ≥ 0 and let p be a real number with p > 4. Let f : X → Y be a mapping
satisfying f(0) = 0 and (2.7). Then there exist an additive mapping A : X → Y , a quadratic
mapping T : X → Y , a cubic mapping C : X → Y and a quartic mapping Q : X → Y such
that ∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥
≤
(

2p + 9

6(2p − 2)
+

2p + 9

12(2p − 4)
+

2p + 9

6(2p − 8)
+

2p + 9

12(2p − 16)

)
θ‖x‖p

for all x ∈ X .

Theorem 2.19. Let ϕ : X2 → [0,∞) be a function satisfying (2.8). Let f : X → Y be a
mapping satisfying f(0) = 0 and (2.2). Then there exist an additive mapping A : X → Y ,
a quadratic mapping T : X → Y , a cubic mapping C : X → Y and a quartic mapping
Q : X → Y such that∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥
≤ 1

3
Φ1 (x, x) +

1

12
Φ1 (2x, x) +

1

12
Ψ2 (x, x) +

1

48
Ψ2 (2x, x)

+
1

12
Φ3 (x, x) +

1

48
Φ3 (2x, x) +

1

48
Ψ4 (x, x) +

1

192
Ψ4 (2x, x)

for all x ∈ X . Here Φ1 := Φ,Ψ2 := Ψ,Φ3 := Φ and Ψ4 := Ψ are given in the statements of
Theorems 2.7, 2.15, 2.3 and 2.11, respectively.

Corollary 2.20. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let f : X → Y be
a mapping satisfying f(0) = 0 and (2.7). Then there exist an additive mapping A : X → Y ,
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a quadratic mapping T : X → Y , a cubic mapping C : X → Y and a quartic mapping
Q : X → Y such that∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥
≤
(

2p + 9

6(2− 2p)
+

2p + 9

12(4− 2p)
+

2p + 9

6(8− 2p)
+

2p + 9

12(16− 2p)

)
θ‖x‖p

for all x ∈ X .

3. GENERALIZED HYERS-ULAM STABILITY OF AN AQCQ-FUNCTIONAL EQUATION
IN BANACH SPACES: FIXED POINT METHOD

In this section, assume that X is a normed space and Y is a Banach space.
Using the fixed point method, we prove the generalized Hyers-Ulam stability of the functional

equation Df(x, y) = 0 in Banach spaces: an odd case.
Note that the fundamental ideas in the proofs of the main results are contained in [7, 8, 9],

and that the main results of this section are contained in [34].

Theorem 3.1. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

8
ϕ (2x, 2y)

for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying

‖Df(x, y)‖ ≤ ϕ(x, y)(3.1)

for all x, y ∈ X . Then there is a unique cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ L

8− 8L
(4ϕ(x, x) + ϕ(2x, x))(3.2)

for all x ∈ X .

Proof. Letting x = y in (3.1), we get

‖f(3y)− 4f(2y) + 5f(y)‖ ≤ ϕ(y, y)(3.3)

for all y ∈ X .
Replacing x by 2y in (3.1), we get

‖f(4y)− 4f(3y) + 6f(2y)− 4f(y)‖ ≤ ϕ(2y, y)(3.4)

for all y ∈ X .
By (3.3) and (3.4),

‖f(4y)− 10f(2y) + 16f(y)‖ ≤ ‖4(f(3y)− 4f(2y) + 5f(y))‖
+ ‖f(4y)− 4f(3y) + 6f(2y)− 4f(y)‖
≤ 4ϕ(y, y) + ϕ(2y, y)

for all y ∈ X . Letting y := x
2

and g(x) := f(2x)− 2f(x) for all x ∈ X , we get

‖g(x)− 8g
(x

2

)
‖ ≤ 4ϕ

(x
2
,
x

2

)
+ ϕ

(
x,
x

2

)
(3.5)

for all x ∈ X .
Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf{µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µ(4ϕ(x, x) + ϕ(2x, x)), ∀x ∈ X},
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where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see the proof of Lemma
2.1 of [37]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 8g
(x

2

)
for all x ∈ X .

Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖ ≤ 4ϕ(x, x) + ϕ(2x, x)

for all x ∈ X . Hence

‖Jg(x)− Jh(x)‖ = ‖8g
(x

2

)
− 8h

(x
2

)
‖ ≤ L(4ϕ(x, x) + ϕ(2x, x))

for all x ∈ X . So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (3.5) that

‖g(x)− 8g
(x

2

)
‖ ≤ L

8
(4ϕ(x, x) + ϕ(2x, x))

for all x ∈ X . So d(g, Jg) ≤ L
8

.
By Theorem 1.1, there exists a mapping C : X → Y satisfying the following:
(1) C is a fixed point of J , i.e.,

C
(x

2

)
=

1

8
C(x)(3.6)

for all x ∈ X . Since g : X → Y is odd, C : X → Y is an odd mapping. The mapping C is a
unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.
This implies that C is a unique mapping satisfying (3.6) such that there exists a µ ∈ (0,∞)
satisfying

‖g(x)− C(x)‖ ≤ µ(4ϕ(x, x) + ϕ(2x, x))

for all x ∈ X;
(2) d(Jng, C)→ 0 as n→∞. This implies the equality

lim
n→∞

8ng
( x

2n

)
= C(x)

for all x ∈ X;
(3) d(g, C) ≤ 1

1−Ld(g, Jg), which implies the inequality

d(g, C) ≤ L

8− 8L
.

This implies that the inequality (3.2) holds.
By (3.1), ∥∥∥8nDg

( x
2n
,
y

2n

)∥∥∥ ≤ 8n
(
ϕ

(
2x

2n
,
2y

2n

)
+ 2ϕ

( x
2n
,
y

2n

))
for all x, y ∈ X and all n ∈ N. So∥∥∥8nDg

( x
2n
,
y

2n

)∥∥∥ ≤ Ln(ϕ (2x, 2y) + 2ϕ(x, y))

AJMAA, Vol. 8, No. 1, Art. 14, pp. 1-39, 2011 AJMAA

http://ajmaa.org


AQCQ-FUNCTIONAL EQUATION AND ITS APPLICATIONS 11

for all x, y ∈ X and all n ∈ N. So

‖DC(x, y)‖ = 0

for all x, y ∈ X . Thus the mapping C : X → Y is cubic, as desired.

Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 3. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying

‖Df(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)(3.7)

for all x, y ∈ X . Then there is a unique cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ 2p + 9

2p − 8
θ‖x‖p

for all x ∈ X .

Proof. The proof follows from Theorem 3.1 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X . Then we can choose L = 23−p and we get the desired result.

Similarly, we can obtain the following. We will omit the proof.

Theorem 3.3. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 8Lϕ
(x

2
,
y

2

)
for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying (3.1). Then there is a unique
cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ 1

8− 8L
(4ϕ(x, x) + ϕ(2x, x))

for all x ∈ X .

Corollary 3.4. Let θ ≥ 0 and let p be a real number with 0 < p < 3. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (3.7). Then there is a
unique cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ 9 + 2p

8− 2p
θ‖x‖p

for all x ∈ X .

Theorem 3.5. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

2
ϕ (2x, 2y)

for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying (3.1). Then there is a unique
additive mapping A : X → Y such that

‖f(2x)− 8f(x)− A(x)‖ ≤ L

2− 2L
(4ϕ(x, x) + ϕ(2x, x))

for all x ∈ X .
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Corollary 3.6. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (3.7). Then there is a
unique additive mapping A : X → Y such that

‖f(2x)− 8f(x)− A(x)‖ ≤ 2p + 9

2p − 2
θ‖x‖p

for all x ∈ X .

Theorem 3.7. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 2Lϕ
(x

2
,
y

2

)
for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying (3.1). Then there is a unique
additive mapping A : X → Y such that

‖f(2x)− 8f(x)− A(x)‖ ≤ 1

2− 2L
(4ϕ(x, x) + ϕ(2x, x))

for all x ∈ X .

Corollary 3.8. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (3.7). Then there is a
unique additive mapping A : X → Y such that

‖f(2x)− 8f(x)− A(x)‖ ≤ 9 + 2p

2− 2p
θ‖x‖p

for all x ∈ X .

Using the fixed point method, we prove the generalized Hyers-Ulam stability of the functional
equation Df(x, y) = 0 in Banach spaces: an even case.

Theorem 3.9. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

16
ϕ (2x, 2y)

for all x, y ∈ X . Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.1). Then there
is a unique quartic mapping Q : X → Y such that

‖f(2x)− 4f(x)−Q(x)‖ ≤ L

16− 16L
(4ϕ(x, x) + ϕ(2x, x))

for all x ∈ X .

Proof. Letting x = y in (3.1), we get

‖f(3y)− 6f(2y) + 15f(y)‖ ≤ ϕ(y, y)(3.8)

for all y ∈ X .
Replacing x by 2y in (3.1), we get

‖f(4y)− 4f(3y) + 4f(2y) + 4f(y)‖ ≤ ϕ(2y, y)(3.9)

for all y ∈ X .
By (3.8) and (3.9),

‖f(4x)− 20f(2x) + 64f(x)‖
≤ ‖4(f(3x)− 6f(2x) + 15f(x))‖

+‖f(4x)− 4f(3x) + 4f(2x) + 4f(x)‖
≤ 4ϕ(x, x) + ϕ(2x, x)
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for all x ∈ X . Letting g(x) := f(2x)− 4f(x) for all x ∈ X , we get∥∥∥g(x)− 16g
(x

2

)∥∥∥ ≤ 4ϕ
(x

2
,
x

2

)
+ ϕ

(
x,
x

2

)
(3.10)

for all x ∈ X .
Let (S, d) be the generalized metric space defined in the proof of Theorem 3.1.
It follows from (3.10) that∥∥∥g(x)− 16g

(x
2

)∥∥∥ ≤ L

16
(4ϕ(x, x) + ϕ(2x, x))

for all x ∈ X . So d(g, Jg) ≤ L
16

.
The rest of the proof is similar to the proof of Theorem 3.1.

Corollary 3.10. Let θ ≥ 0 and let p be a real number with p > 4. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.7). Then
there is unique quartic mapping Q : X → Y such that

‖f(2x)− 4f(x)−Q(x)‖ ≤ 2p + 9

2p − 16
θ‖x‖p

for all x ∈ X .

Similarly, we can obtain the following. We will omit the proof.

Theorem 3.11. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 16Lϕ
(x

2
,
y

2

)
for all x, y ∈ X . Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.1). Then there
is a unique quartic mapping Q : X → Y such that

‖f(2x)− 4f(x)−Q(x)‖ ≤ 1

16− 16L
(4ϕ(x, x) + ϕ(2x, x))

for all x ∈ X .

Corollary 3.12. Let θ ≥ 0 and let p be a real number with 0 < p < 4. Let X be a normed
vector space with norm ‖ ·‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.7).
Then there is a unique quartic mapping Q : X → Y such that

‖f(2x)− 4f(x)−Q(x)‖ ≤ 9 + 2p

16− 2p
θ‖x‖p

for all x ∈ X .

Theorem 3.13. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

4
ϕ (2x, 2y)

for all x, y ∈ X . Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.1). Then there
is a unique quadratic mapping T : X → Y such that

‖f(2x)− 16f(x)− T (x)‖ ≤ L

4− 4L
(4ϕ(x, x) + ϕ(2x, x))

for all x ∈ X .
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Corollary 3.14. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.7). Then
there is a unique quadratic mapping T : X → Y such that

‖f(2x)− 16f(x)− T (x)‖ ≤ 2p + 9

2p − 4
θ‖x‖p

for all x ∈ X .

Theorem 3.15. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 4Lϕ
(x

2
,
y

2

)
for all x, y ∈ X . Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.1). Then there
is a unique quadratic mapping T : X → Y such that

‖f(2x)− 16f(x)− T (x)‖ ≤ 1

4− 4L
(4ϕ(x, x) + ϕ(2x, x))

for all x ∈ X .

Corollary 3.16. Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let X be a normed
vector space with norm ‖ ·‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.7).
Then there is a unique quadratic mapping T : X → Y such that

‖f(2x)− 16f(x)− T (x)‖ ≤ 9 + 2p

4− 2p
θ‖x‖p

for all x ∈ X .

Hence we obtain the following results.

Theorem 3.17. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

16
ϕ (2x, 2y)

for all x, y ∈ X . Let f : X → Y be a mapping satisfying f(0) = 0 and (3.1). Then there
exist an additive mapping A : X → Y , a quadratic mapping T : X → Y , a cubic mapping
C : X → Y and a quartic mapping Q : X → Y such that∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥
≤
(

L

12− 12L
+

L

48− 48L
+

L

48− 48L
+

L

192− 192L

)
×(4ϕ(x, x) + ϕ(2x, x))

for all x ∈ X .

Corollary 3.18. Let θ ≥ 0 and let p be a real number with p > 4. Let f : X → Y be a mapping
satisfying f(0) = 0 and (3.7). Then there exist an additive mapping A : X → Y , a quadratic
mapping T : X → Y , a cubic mapping C : X → Y and a quartic mapping Q : X → Y such
that ∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥
≤
(

2p + 9

6(2p − 2)
+

2p + 9

12(2p − 4)
+

2p + 9

6(2p − 8)
+

2p + 9

12(2p − 16)

)
θ‖x‖p

for all x ∈ X .
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Theorem 3.19. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ 2Lϕ
(x

2
,
y

2

)
for all x, y ∈ X . Let f : X → Y be a mapping satisfying f(0) = 0 and (3.1). Then there
exist an additive mapping A : X → Y , a quadratic mapping T : X → Y , a cubic mapping
C : X → Y and a quartic mapping Q : X → Y such that∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥
≤
(

1

12− 12L
+

1

48− 48L
+

1

48− 48L
+

1

192− 192L

)
×(4ϕ(x, x) + ϕ(2x, x))

for all x ∈ X .

Corollary 3.20. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let f : X → Y be
a mapping satisfying f(0) = 0 and (3.7). Then there exist an additive mapping A : X → Y ,
a quadratic mapping T : X → Y , a cubic mapping C : X → Y and a quartic mapping
Q : X → Y such that∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥
≤
(

2p + 9

6(2− 2p)
+

2p + 9

12(4− 2p)
+

2p + 9

6(8− 2p)
+

2p + 9

12(16− 2p)

)
θ‖x‖p

for all x ∈ X .

4. GENERALIZED HYERS-ULAM STABILITY OF AN AQCQ-FUNCTIONAL EQUATION
IN RANDOM BANACH SPACES: DIRECT METHOD

Fuzzy set theory is a powerful tool set for modeling uncertainty and vagueness in various
problems arising in the field of science and engineering. It has also very useful applications in
various fields, e.g., population dynamics [5], chaos control [23], computer programming [25],
nonlinear operators [40], etc. Recently, the fuzzy topology has proved to be a very useful tool
to deal with such situations where the use of classical theories breaks down.

In the sequel, we adopt the usual terminology, notations and conventions of the theory of
random normed spaces, as in [10, 36, 37, 55, 56]. Throughout this paper, ∆+ is the space of
distribution functions, that is, the space of all mappings F : R∪{−∞,∞} → [0, 1] such that F
is left-continuous and non-decreasing on R, F (0) = 0 and F (+∞) = 1. D+ is a subset of ∆+

consisting of all functions F ∈ ∆+ for which l−F (+∞) = 1, where l−f(x) denotes the left
limit of the function f at the point x, that is, l−f(x) = limt→x− f(t). The space ∆+ is partially
ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and only if F (t) ≤ G(t)
for all t in R. The maximal element for ∆+ in this order is the distribution function ε0 given by

ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.

Definition 4.1. ([55]) A mapping T : [0, 1] × [0, 1] → [0, 1] is a continuous triangular norm
(briefly, a continuous t-norm) if T satisfies the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
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(c) T (a, 1) = a for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are TP (a, b) = ab, TM(a, b) = min(a, b) and
TL(a, b) = max(a + b − 1, 0) (the Lukasiewicz t-norm). Recall (see [26, 27]) that if T is a
t-norm and {xn} is a given sequence of numbers in [0, 1], then T ni=1xi is defined recurrently
by T 1

i=1xi = x1 and T ni=1xi = T (T n−1i=1 xi, xn) for n ≥ 2. T∞i=nxi is defined as T∞i=1xn+i−1. It is
known ([27]) that for the Lukasiewicz t-norm the following implication holds:

lim
n→∞

(TL)∞i=1xn+i−1 = 1⇐⇒
∞∑
n=1

(1− xn) <∞.

Definition 4.2. ([56]) A random normed space (briefly, RN-space) is a triple (X,µ, T ), where
X is a vector space, T is a continuous t-norm and µ is a mapping from X into D+ such that the
following conditions hold:
(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;
(RN2) µαx(t) = µx(

t
|α|) for all x ∈ X , α 6= 0;

(RN3) µx+y(t+ s) ≥ T (µx(t), µy(s)) for all x, y ∈ X and all t, s ≥ 0.

Every normed space (X, ‖.‖) defines a random normed space (X,µ, TM), where

µx(t) =
t

t+ ‖x‖
for all t > 0, and TM is the minimum t-norm. This space is called the induced random normed
space.

Definition 4.3. Let (X,µ, T ) be an RN-space.
(1) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and λ > 0, there
exists a positive integer N such that µxn−x(ε) > 1− λ whenever n ≥ N .
(2) A sequence {xn} in X is called a Cauchy sequence if, for every ε > 0 and λ > 0, there
exists a positive integer N such that µxn−xm(ε) > 1− λ whenever n ≥ m ≥ N .
(3) An RN-space (X,µ, T ) is said to be complete if and only if every Cauchy sequence in X is
convergent to a point in X .

Theorem 4.4. ([55]) If (X,µ, T ) is an RN-space and {xn} is a sequence such that xn → x,
then limn→∞ µxn(t) = µx(t) almost everywhere.

Throughout this section, assume that X is a real vector space and that (Y, µ, T ) is a complete
RN-space.

Note that the main results of this section are contained in [46].
We prove the generalized Hyers-Ulam stability of the functional equation Df(x, y) = 0 in

complete RN-spaces: an odd case.

Theorem 4.5. Let f : X → Y be an odd mapping for which there is a ρ : X2 → D+ (ρ(x, y)
is denoted by ρx,y) such that

µDf(x,y)(t) ≥ ρx,y(t)(4.1)

for all x, y ∈ X and all t > 0. If

lim
n→∞

T∞k=1

(
T
(
ρ2k+n−1x,2k+n−1x

(
2k+n−3t

)
, ρ2k+nx,2k+n−1x

(
2k+n−1t

)))
= 1(4.2)

and

lim
n→∞

ρ2nx,2ny(2
nt) = 1(4.3)
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for all x, y ∈ X and all t > 0, then there exist a unique additive mapping A : X → Y and a
unique cubic mapping C : X → Y such that

µf(2x)−8f(x)−A(x)(t)(4.4)

≥ T∞k=1

(
T
(
ρ2k−1x,2k−1x

(
2k−3t

)
, ρ2kx,2k−1x

(
2k−1t

)))
,

µf(2x)−2f(x)−C(x)(t)(4.5)

≥ T∞k=1

(
T
(
ρ2k−1x,2k−1x

(
8k−1t

)
, ρ2kx,2k−1x

(
4 · 8k−1t

)))
for all x ∈ X and all t > 0.

Proof. Putting x = y in (4.1), we get

µf(3y)−4f(2y)+5f(y)(t) ≥ ρy,y(t)(4.6)

for all y ∈ X and all t > 0. Replacing x by 2y in (4.1), we get

µf(4y)−4f(3y)+6f(2y)−4f(y)(t) ≥ ρ2y,y(t)(4.7)

for all y ∈ X and all t > 0. It follows from (4.6) and (4.7) that

µf(4x)−10f(2x)+16f(x)(t)

= µ(4f(3x)−16f(2x)+20f(x))+(f(4x)−4f(3x)+6f(2x)−4f(x))(t)

≥ T

(
µ4f(3x)−16f(2x)+20f(x)

(
t

2

)
, µf(4x)−4f(3x)+6f(2x)−4f(x)

(
t

2

))
≥ T

(
ρx,x

(
t

8

)
, ρ2x,x

(
t

2

))
for all x ∈ X and all t > 0. Let g : X → Y be a mapping defined by g(x) := f(2x) − 8f(x).
Then we conclude that

µg(2x)−2g(x)(t) ≥ T

(
ρx,x

(
t

8

)
, ρ2x,x

(
t

2

))
for all x ∈ X and all t > 0. Thus we have

µ g(2x)
2
−g(x)(t) ≥ T

(
ρx,x

(
t

4

)
, ρ2x,x (t)

)
for all x ∈ X and all t > 0. Hence

µ g(2k+1x)

2k+1 − g(2kx)

2k

(t) ≥ T
(
ρ2kx,2kx

(
2k−2t

)
, ρ2k+1x,2kx

(
2kt
))

for all x ∈ X , all t > 0 and all k ∈ N. From 1 > 1
2

+ 1
22

+ · · ·+ 1
2n
, it follows that

µ g(2nx)
2n
−g(x)(t) ≥ T nk=1(µ g(2kx)

2k
− g(2k−1x)

2k−1

(
t

2k
))

≥ T nk=1

(
T
(
ρ2k−1x,2k−1x

(
2k−3t

)
, ρ2kx,2k−1x

(
2k−1t

)))
(4.8)

for all x ∈ X and all t > 0. In order to prove the convergence of the sequence {g(2
nx)

2n
},

replacing x with 2mx in (4.8), we obtain that

µ g(2n+mx)

2n+m − g(2mx)
2m

(t)

≥ T nk=1

(
T
(
ρ2k+m−1x,2k+m−1x

(
2k+m−3t

)
, ρ2k+mx,2k+m−1x

(
2k+m−1t

)))
.(4.9)

Since the right hand side of the inequality (4.9) tends to 1 as m and n tend to infinity, the
sequence {g(2

nx)
2n
} is a Cauchy sequence. Thus we may define A(x) = limn→∞

g(2nx)
2n

for all
x ∈ X .
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Now we show that A is an additive mapping. Replacing x and y with 2nx and 2ny in (4.1),
respectively, we get

µDf(2nx,2ny)
2n

(t) ≥ ρ2nx,2ny(2
nt).

Taking the limit as n → ∞, we find that A : X → Y satisfies (1.3) for all x, y ∈ X . Since
f : X → Y is odd, A : X → Y is odd. By Lemma 2.2 of [17], the mapping A : X → Y is
additive. Letting the limit as n→∞ in (4.8), we get (4.4).

Next, we prove the uniqueness of the additive mapping A : X → Y subject to (4.4). Let
us assume that there exists another additive mapping L : X → Y which satisfies (4.4). Since
A(2nx) = 2nA(x), L(2nx) = 2nL(x) for all x ∈ X and all n ∈ N, from (4.4), it follows that

µA(x)−L(x)(2t)

= µA(2nx)−L(2nx)(2
n+1t)

≥ T (µA(2nx)−g(2nx)(2
nt), µg(2nx)−L(2nx)(2

nt))(4.10)

≥ T (T∞k=1(T (ρ2n+k−1x,2n+k−1x(2
n+k−3t), ρ2n+kx,2n+k−1x(2

n+k−1t))),

T∞k=1(T (ρ2n+k−1x,2n+k−1x(2
n+k−3t), ρ2n+kx,2n+k−1x(2

n+k−1t))))

for all x ∈ X and all t > 0. Letting n→∞ in (4.10), we conclude that A = L.
Let h : X → Y be a mapping defined by h(x) := f(2x)− 2f(x). Then we conclude that

µh(2x)−8h(x)(t) ≥ T

(
ρx,x

(
t

8

)
, ρ2x,x

(
t

2

))
for all x ∈ X and all t > 0. Thus we have

µh(2x)
8
−h(x)(t) ≥ T

(
ρx,x (t) , ρ2x,x (4t)

)
for all x ∈ X and all t > 0. Hence

µh(2k+1x)

8k+1 −h(2kx)

8k

(t) ≥ T
(
ρ2kx,2kx

(
8kt
)
, ρ2k+1x,2kx

(
4 · 8kt

))
for all x ∈ X , all t > 0 and all k ∈ N. From 1 > 1

2
+ 1

22
+ · · ·+ 1

2n
, it follows that

µh(2nx)
8n

−h(x)(t) ≥ T nk=1(µh(2kx)

8k
−h(2k−1x)

8k−1

(
t

8k
))

≥ T nk=1

(
T
(
ρ2k−1x,2k−1x

(
8k−1t

)
, ρ2kx,2k−1x

(
4 · 8k−1t

)))
(4.11)

for all x ∈ X and all t > 0. In order to prove the convergence of the sequence {h(2
nx)

8n
},

replacing x with 2mx in (4.11), we obtain that

µh(2n+mx)

8n+m −h(2mx)
8m

(t) ≥ T nk=1

(
T
(
ρ2k+m−1x,2k+m−1x

(
8k+m−1t

)
,

ρ2k+mx,2k+m−1x

(
4 · 8k+m−1t

)))
.(4.12)

Since the right hand side of the inequality (4.12) tends to 1 as m and n tend to infinity, the
sequence {h(2

nx)
8n
} is a Cauchy sequence. Thus we may define C(x) = limn→∞

h(2nx)
8n

for all
x ∈ X .

Now we show that C is a cubic mapping. Replacing x and y with 2nx and 2ny in (4.1),
respectively, we get

µDf(2nx,2ny)
8n

(t) ≥ ρ2nx,2ny(8
nt).

Taking the limit as n → ∞, we find that C : X → Y satisfies (1.3) for all x, y ∈ X . Since
f : X → Y is odd, C : X → Y is odd. By Lemma 2.2 of [17], the mapping C : X → Y is
cubic. Letting the limit as n→∞ in (4.11), we get (4.5).
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The proof of the uniqueness of C : X → Y is similar to the proof of the uniqueness of
A : X → Y .

Similarly, one can obtain the following result.

Theorem 4.6. Let f : X → Y be an odd mapping for which there is a ρ : X2 → D+ (ρ(x, y)
is denoted by ρx,y) satisfying (4.1). If

lim
n→∞

T∞k=1

(
T

(
ρ x

2k+n ,
x

2k+n

(
t

4 · 8k+n

)
, ρ x

2k+n−1 ,
x

2k+n

(
t

8k+n

)))
= 1

and

lim
n→∞

ρ x
2n
, y
2n

(
t

8n

)
= 1

for all x, y ∈ X and all t > 0, then there exist a unique additive mapping A : X → Y and a
unique cubic mapping C : X → Y such that

µf(2x)−8f(x)−A(x)(t) ≥ T∞k=1

(
T

(
ρ x

2k
, x

2k

(
t

2k+2

)
, ρ x

2k−1 ,
x

2k

(
t

2k

)))
,

µf(2x)−2f(x)−C(x)(t) ≥ T∞k=1

(
T

(
ρ x

2k
, x

2k

(
t

4 · 8k

)
, ρ x

2k−1 ,
x

2k

(
t

8k

)))
for all x ∈ X and all t > 0.

Now we prove the generalized Hyers-Ulam stability of the functional equation Df(x, y) = 0
in complete RN-spaces: an even case.

Theorem 4.7. Let f : X → Y be an even mapping for which there is a ρ : X2 → D+ (ρ(x, y)
is denoted by ρx,y) satisfying f(0) = 0 and (4.1). If

lim
n→∞

T∞k=1

(
T
(
ρ2k+n−1x,2k+n−1x

(
2 · 4k+n−2t

)
, ρ2k+nx,2k+n−1x

(
2 · 4k+n−1t

)))
= 1

and

lim
n→∞

ρ2nx,2ny(4
nt) = 1

for all x, y ∈ X and all t > 0, then there exist a unique quadratic mapping P : X → Y and a
unique quartic mapping Q : X → Y such that

µf(2x)−16f(x)−P (x)(t)

≥ T∞k=1

(
T
(
ρ2k−1x,2k−1x

(
2 · 4k−2t

)
, ρ2kx,2k−1x

(
2 · 4k−1t

)))
,

µf(2x)−4f(x)−Q(x)(t)

≥ T∞k=1

(
T
(
ρ2k−1x,2k−1x

(
2 · 16k−1t

)
, ρ2kx,2k−1x

(
8 · 16k−1t

)))
for all x ∈ X and all t > 0.

Proof. Putting x = y in (4.1), we get

µf(3y)−6f(2y)+15f(y)(t) ≥ ρy,y(t)(4.13)

for all y ∈ X and all t > 0. Replacing x by 2y in (4.1), we get

µf(4y)−4f(3y)+4f(2y)+4f(y)(t) ≥ ρ2y,y(t)(4.14)
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for all y ∈ X and all t > 0. It follows from (4.13) and (4.14) that

µf(4x)−20f(2x)+64f(x)(t)

= µ(4f(3x)−24f(2x)+60f(x))+(f(4x)−4f(3x)+4f(2x)+4f(x))(t)

≥ T

(
µ4f(3x)−24f(2x)+60f(x)

(
t

2

)
, µf(4x)−4f(3x)+4f(2x)+4f(x)

(
t

2

))
≥ T

(
ρx,x

(
t

8

)
, ρ2x,x

(
t

2

))
for all x ∈ X and all t > 0. Let g : X → Y be a mapping defined by g(x) := f(2x)− 16f(x).
Then we conclude that

µg(2x)−4g(x)(t) ≥ T

(
ρx,x

(
t

8

)
, ρ2x,x

(
t

2

))
for all x ∈ X and all t > 0. Thus we have

µ g(2x)
4
−g(x)(t) ≥ T

(
ρx,x

(
t

2

)
, ρ2x,x (2t)

)
for all x ∈ X and all t > 0.

The rest of the proof is similar to the proof of Theorem 4.5.

Similarly, one can obtain the following result.

Theorem 4.8. Let f : X → Y be an even mapping for which there is a ρ : X2 → D+ (ρ(x, y)
is denoted by ρx,y) satisfying f(0) = 0 and (4.1). If

lim
n→∞

T∞k=1

(
T

(
ρ x

2k+n ,
x

2k+n

(
t

4 · 16k+n

)
, ρ x

2k+n−1 ,
x

2k+n

(
t

16k+n

)))
= 1

and

lim
n→∞

ρ x
2n
, y
2n

(
t

16n
) = 1

for all x, y ∈ X and all t > 0, then there exist a unique quadratic mapping P : X → Y and a
unique quartic mapping Q : X → Y such that

µf(2x)−16f(x)−P (x)(t) ≥ T∞k=1

(
T

(
ρ x

2k
, x

2k

(
t

4k+1

)
, ρ x

2k−1 ,
x

2k

(
t

4k

)))
,

µf(2x)−4f(x)−Q(x)(t) ≥ T∞k=1

(
T

(
ρ x

2k
, x

2k

(
t

4 · 16k

)
, ρ x

2k−1 ,
x

16k

(
t

2k

)))
for all x ∈ X and all t > 0.

5. GENERALIZED HYERS-ULAM STABILITY OF AN AQCQ-FUNCTIONAL EQUATION
IN RANDOM BANACH SPACES: FIXED POINT METHOD

Throughout this section, assume that X is a real vector space and that (Y, µ, T := min) is a
complete RN-space.

Note that the main results of this section are contained in [2].
Using the fixed point method, we prove the generalized Hyers-Ulam stability of the functional

equation Df(x, y) = 0 in complete RN-spaces: an odd case.
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Theorem 5.1. Let ϕ : X2 → [0,∞) be a function such that there exists a constant L < 1 with

ϕ(x, y) ≤ L

8
ϕ (2x, 2y)

for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying

µDf(x,y) (t) ≥ t

t+ ϕ(x, y)
(5.1)

for all x, y ∈ X and all t > 0. Then

C(x) := lim
n→∞

8n
(
f
( x

2n−1

)
− 2f

( x
2n

))
exists for each x ∈ X and defines a cubic mapping C : X → Y such that

µf(2x)−2f(x)−C(x) (t) ≥ (8− 8L)t

(8− 8L)t+ 5L(ϕ(x, x) + ϕ(2x, x))
(5.2)

for all x ∈ X and all t > 0.

Proof. Letting x = y in (5.1), we get

µf(3y)−4f(2y)+5f(y) (t) ≥ t

t+ ϕ(y, y)
(5.3)

for all y ∈ X and all t > 0.
Replacing x by 2y in (5.1), we get

µf(4y)−4f(3y)+6f(2y)−4f(y) (t) ≥ t

t+ ϕ(2y, y)
(5.4)

for all y ∈ X and all t > 0.
By (5.3) and (5.4),

µf(4y)−10f(2y)+16f(y) (4t+ t)

≥ min
{
µ4(f(3y)−4f(2y)+5f(y))(4t), µf(4y)−4f(3y)+6f(2y)−4f(y)(t)

}
(5.5)

≥ t

t+ ϕ(y, y) + ϕ(2y, y)

for all y ∈ X and all t > 0. Letting y := x
2

and g(x) := f(2x)− 2f(x) for all x ∈ X in (5.5),
we get

µg(x)−8g(x
2 ) (5t) ≥ t

t+ ϕ
(
x
2
, x
2

)
+ ϕ

(
x, x

2

)(5.6)

for all x ∈ X and all t > 0.
Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf{ν ∈ R+ : µg(x)−h(x)(νt)

≥ t

t+ ϕ(x, x) + ϕ(2x, x)
, ∀x ∈ X, ∀t > 0},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see the proof of Lemma
2.1 of [37]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 8g
(x

2

)
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for all x ∈ X .
Let g, h ∈ S be given such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(Lεt) = µ8g(x
2 )−8h(x

2 ) (Lεt) = µg(x
2 )−h(x

2 )

(
L

8
εt

)
≥

Lt
8

Lt
8

+ ϕ
(
x
2
, x
2

)
+ ϕ

(
x, x

2

) ≥ Lt
8

Lt
8

+ L
8
(ϕ(x, x) + ϕ(2x, x))

=
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (5.6) that

µg(x)−8g(x
2 )

(
5L

8
t

)
≥ t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(g, Jg) ≤ 5L
8

.
By Theorem 1.1, there exists a mapping C : X → Y satisfying the following:
(1) C is a fixed point of J , i.e.,

C
(x

2

)
=

1

8
C(x)(5.7)

for all x ∈ X . Since g : X → Y is odd, C : X → Y is an odd mapping. The mapping C is a
unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.
This implies that C is a unique mapping satisfying (5.7) such that there exists a ν ∈ (0,∞)
satisfying

µg(x)−C(x)(νt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jng, C)→ 0 as n→∞. This implies the equality

lim
n→∞

8ng
( x

2n

)
= C(x)

for all x ∈ X;
(3) d(g, C) ≤ 1

1−Ld(g, Jg), which implies the inequality

d(g, C) ≤ 5L

8− 8L
.

This implies that the inequality (5.2) holds.
By (5.1),

µ8nDg( x
2n
, y
2n ) (8nt) ≥ t

t+ ϕ
(
x
2n
, y
2n

)
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for all x, y ∈ X , all t > 0 and all n ∈ N. So

µ8nDg( x
2n
, y
2n ) (t) ≥

t
8n

t
8n

+ Ln

8n
ϕ (x, y)

for all x, y ∈ X , all t > 0 and all n ∈ N. Since limn→∞
t
8n

t
8n

+Ln

8n
ϕ(x,y)

= 1 for all x, y ∈ X and
all t > 0,

µDC(x,y) (t) = 1

for all x, y ∈ X and all t > 0. Thus the mapping C : X → Y is cubic, as desired.

Corollary 5.2. Let θ ≥ 0 and let p be a real number with p > 3. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying

µDf(x,y) (t) ≥ t

t+ θ(‖x‖p + ‖y‖p)
(5.8)

for all x, y ∈ X and all t > 0. Then C(x) := limn→∞ 8n
(
f
(

x
2n−1

)
− 2f

(
x
2n

))
exists for each

x ∈ X and defines a cubic mapping C : X → Y such that

µf(2x)−2f(x)−C(x) (t) ≥ (2p − 8)t

(2p − 8)t+ 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 5.1 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X . Then we can choose L = 23−p and we get the desired result.

Similarly, we can obtain the following. We will omit the proof.

Theorem 5.3. Let ϕ : X2 → [0,∞) be a function such that there exists a constant L < 1 with

ϕ(x, y) ≤ 8Lϕ
(x

2
,
y

2

)
for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying (5.1). Then

C(x) := lim
n→∞

1

8n
(
f
(
2n+1x

)
− 2f(2nx)

)
exists for each x ∈ X and defines a cubic mapping C : X → Y such that

µf(2x)−2f(x)−C(x) (t) ≥ (8− 8L)t

(8− 8L)t+ 5ϕ(x, x) + 5ϕ(2x, x)

for all x ∈ X and all t > 0.

Corollary 5.4. Let θ ≥ 0 and let p be a real number with 0 < p < 3. Let X be a normed
vector space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (5.8). Then
C(x) := limn→∞

1
8n

(f (2n+1x)− 2f(2nx)) exists for each x ∈ X and defines a cubic mapping
C : X → Y such that

µf(2x)−2f(x)−C(x) (t) ≥ (8− 2p)t

(8− 2p)t+ 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.
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Theorem 5.5. Let ϕ : X2 → [0,∞) be a function such that there exists a constant L < 1 with

ϕ(x, y) ≤ L

2
ϕ (2x, 2y)

for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying (5.1). Then

A(x) := N - lim
n→∞

2n
(
f
( x

2n−1

)
− 8f

( x
2n

))
exists for each x ∈ X and defines an additive mapping A : X → Y such that

µf(2x)−8f(x)−A(x) (t) ≥ (2− 2L)t

(2− 2L)t+ 5L(ϕ(x, x) + ϕ(2x, x))

for all x ∈ X and all t > 0.

Corollary 5.6. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (5.8). Then A(x) :=
limn→∞ 2n

(
f
(

x
2n−1

)
− 8f

(
x
2n

))
exists for each x ∈ X and defines an additive mapping A :

X → Y such that

µf(2x)−8f(x)−A(x) (t) ≥ (2p − 2)t

(2p − 2)t+ 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Theorem 5.7. Let ϕ : X2 → [0,∞) be a function such that there exists a constant L < 1 with

ϕ(x, y) ≤ 2Lϕ
(x

2
,
y

2

)
for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying (5.1). Then

A(x) := lim
n→∞

1

2n
(
f
(
2n+1x

)
− 8f(2nx)

)
exists for each x ∈ X and defines an additive mapping A : X → Y such that

µf(2x)−8f(x)−A(x) (t) ≥ (2− 2L)t

(2− 2L)t+ 5ϕ(x, x) + 5ϕ(2x, x)

for all x ∈ X and all t > 0.

Corollary 5.8. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed
vector space with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (5.8). Then
A(x) := limn→∞

1
2n

(f (2n+1x)− 8f(2nx)) exists for each x ∈ X and defines an additive
mapping A : X → Y such that

µf(2x)−8f(x)−A(x) (t) ≥ (2− 2p)t

(2− 2p)t+ 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Using the fixed point method, we prove the generalized Hyers-Ulam stability of the functional
equation Df(x, y) = 0 in complete random normed spaces: an even case.

Theorem 5.9. Let ϕ : X2 → [0,∞) be a function such that there exists a constant L < 1 with

ϕ(x, y) ≤ L

16
ϕ (2x, 2y)

for all x, y ∈ X . Let f : X → Y be an even mapping satisfying f(0) = 0 and (5.1). Then

Q(x) := lim
n→∞

16n
(
f
( x

2n−1

)
− 4f

( x
2n

))
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exists for each x ∈ X and defines a quartic mapping Q : X → Y such that

µf(2x)−4f(x)−Q(x) (t) ≥ (16− 16L)t

(16− 16L)t+ 5L(ϕ(x, x) + ϕ(2x, x))

for all x ∈ X and all t > 0.

Proof. Letting x = y in (5.1), we get

µf(3y)−6f(2y)+15f(y) (t) ≥ t

t+ ϕ(y, y)
(5.9)

for all y ∈ X and all t > 0.
Replacing x by 2y in (5.1), we get

µf(4y)−4f(3y)+4f(2y)+4f(y) (t) ≥ t

t+ ϕ(2y, y)
(5.10)

for all y ∈ X and all t > 0.
By (5.9) and (5.10),

µf(4x)−20f(2x)+64f(x) (4t+ t)

≥ min
{
µ4(f(3x)−6f(2x)+15f(x)) (4t) , µf(4x)−4f(3x)+4f(2x)+4f(x)) (t)

}
≥ t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Letting g(x) := f(2x)− 4f(x) for all x ∈ X , we get

µg(x)−16g(x
2 ) (5t) ≥ t

t+ ϕ
(
x
2
, x
2

)
+ ϕ

(
x, x

2

)
for all x ∈ X and all t > 0.

The rest of the proof is similar to the proof of Theorem 5.1.

Corollary 5.10. Let θ ≥ 0 and let p be a real number with 0 < p < 4. Let X be a normed
vector space with norm ‖ ·‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (5.8).
Then Q(x) := limn→∞

1
16n

(f (2n+1x)− 4f(2nx)) exists for each x ∈ X and defines a quartic
mapping Q : X → Y such that

µf(2x)−4f(x)−Q(x) (t) ≥ (16− 2p)t

(16− 2p)t+ 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Similarly, we can obtain the following. We will omit the proof.

Theorem 5.11. Let ϕ : X2 → [0,∞) be a function such that there exists a constant L < 1 with

ϕ(x, y) ≤ L

4
ϕ (2x, 2y)

for all x, y ∈ X . Let f : X → Y be an even mapping satisfying f(0) = 0 and (5.1). Then

T (x) := lim
n→∞

4n
(
f
( x

2n−1

)
− 16f

( x
2n

))
exists for each x ∈ X and defines a quadratic mapping T : X → Y such that

µf(2x)−16f(x)−T (x) (t) ≥ (4− 4L)t

(4− 4L)t+ 5L(ϕ(x, x) + ϕ(2x, x))

for all x ∈ X and all t > 0.
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Corollary 5.12. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (5.8).
Then T (x) := limn→∞ 4n

(
f
(

x
2n−1

)
− 16f

(
x
2n

))
exists for each x ∈ X and defines a quadratic

mapping T : X → Y such that

µf(2x)−16f(x)−T (x) (t) ≥ (2p − 4)t

(2p − 4)t+ 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Theorem 5.13. Let ϕ : X2 → [0,∞) be a function such that there exists a constant L < 1 with

ϕ(x, y) ≤ 4Lϕ
(x

2
,
y

2

)
for all x, y ∈ X . Let f : X → Y be an even mapping satisfying f(0) = 0 and (5.1). Then

T (x) := lim
n→∞

1

4n
(
f
(
2n+1x

)
− 16f(2nx)

)
exists for each x ∈ X and defines a quadratic mapping T : X → Y such that

µf(2x)−16f(x)−T (x) (t) ≥ (4− 4L)t

(4− 4L)t+ 5ϕ(x, x) + 5ϕ(2x, x)

for all x ∈ X and all t > 0.

Corollary 5.14. Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let X be a normed
vector space with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and
(5.8). Then T (x) := limn→∞

1
4n

(f (2n+1x)− 16f(2nx)) exists for each x ∈ X and defines a
quadratic mapping T : X → Y such that

µf(2x)−16f(x)−T (x) (t) ≥ (4− 2p)t

(4− 2p)t+ 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

6. GENERALIZED HYERS-ULAM STABILITY OF AN AQCQ-FUNCTIONAL EQUATION
IN NON-ARCHIMEDEAN BANACH SPACES: DIRECT METHOD

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique element
having the 0 valuation, |rs| = |r| · |s| and the triangle inequality holds, i.e.,

|r + s| ≤ |r|+ |s|, ∀r, s ∈ K.

A field K is called a valued field if K carries a valuation. Throughout this paper, we assume
that the base field is a valued field, hence call it simply a field. The usual absolute values of R
and C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality.
If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K,

then the function | · | is called a non-Archimedean valuation, and the field is called a non-
Archimedean field. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. A trivial example
of a non-Archimedean valuation is the function | · | taking everything except for 0 into 1 and
|0| = 0.
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Definition 6.1. ([38]) LetX be a vector space over a fieldK with a non-Archimedean valuation
| · |. A function ‖ · ‖ : X → [0,∞) is said to be a non-Archimedean norm if it satisfies the
following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖ (r ∈ K, x ∈ X);
(iii) the strong triangle inequality

‖x+ y‖ ≤ max{‖x‖, ‖y‖}, ∀x, y ∈ X

holds. Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 6.2. (i) Let {xn} be a sequence in a non-Archimedean normed space X . Then the
sequence {xn} is called Cauchy if for a given ε > 0 there is a positive integer N such that

‖xn − xm‖ ≤ ε

for all n,m ≥ N .
(ii) Let {xn} be a sequence in a non-Archimedean normed space X . Then the sequence {xn}

is called convergent if for a given ε > 0 there are a positive integer N and an x ∈ X such that

‖xn − x‖ ≤ ε

for all n ≥ N . Then we call x ∈ X a limit of the sequence {xn}, and denote by limn→∞ xn = x.
(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed space X

is called a non-Archimedean Banach space.

Throughout this section, assume that X is a normed space and that Y is a non-Archimedean
Banach space.

Note that the main results of this section are contained in [45].
We prove the generalized Hyers-Ulam stability of the functional equation Df(x, y) = 0 in

non-Archimedean Banach spaces: an odd case.

Theorem 6.3. Let θ and p be positive real numbers. Let f : X → Y be an odd mapping
satisfying

‖Df(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)(6.1)

for all x, y ∈ X . Then there exists a unique cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ 2p + 1

2p
θ‖x‖p(6.2)

for all x ∈ X .

Proof. Letting x = y in (6.1), we get

‖f(3y)− 4f(2y) + 5f(y)‖ ≤ 2θ‖y‖p(6.3)

for all y ∈ X .
Replacing x by 2y in (6.1), we get

‖f(4y)− 4f(3y) + 6f(2y)− 4f(y)‖ ≤ (2p + 1)θ‖y‖p(6.4)

for all y ∈ X .
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By (6.3) and (6.4),

‖f(4y)− 10f(2y) + 16f(y)‖ ≤ max {‖4(f(3y)− 4f(2y) + 5f(y))‖,
‖f(4y)− 4f(3y) + 6f(2y)− 4f(y)‖}(6.5)

≤ max {‖f(3y)− 4f(2y) + 5f(y)‖,
‖f(4y)− 4f(3y) + 6f(2y)− 4f(y)‖}

≤ max{2θ‖y‖p, (2p + 1)θ‖y‖p} = (2p + 1)θ‖y‖p

for all y ∈ X . Letting y := x
2

and g(x) := f(2x)− 2f(x) for all x ∈ X , we get∥∥∥g(x)− 8g
(x

2

)∥∥∥ ≤ 2p + 1

2p
θ‖x‖p

for all x ∈ X . Hence∥∥∥8lg
( x

2l

)
− 8mg

( x

2m

)∥∥∥
≤ max

{∥∥∥8lg
( x

2l

)
− 8l+1g

( x

2l+1

)∥∥∥ , · · · ,(6.6) ∥∥∥8m−1g
( x

2m−1

)
− 8mg

( x

2m

)∥∥∥}
≤ max

{∥∥∥g ( x
2l

)
− 8g

( x

2l+1

)∥∥∥ , · · · ,∥∥∥g ( x

2m−1

)
− 8g

( x

2m

)∥∥∥}
≤ 2p + 1

2p
max

{
θ‖x‖p

2pl
, · · · , θ‖x‖

p

2p(m−1)

}
=

2p + 1

2p(l+1)
θ‖x‖p

for all nonnegative integers m and l with m > l and all x ∈ X . It follows from (6.6) that the
sequence {8kg( x

2k
)} is Cauchy for all x ∈ X . Since Y is a non-Archimedean Banach space, the

sequence {8kg( x
2k

)} converges. So one can define the mapping C : X → Y by

C(x) := lim
k→∞

8kg
( x

2k

)
for all x ∈ X .

By (6.1),

‖DC(x, y)‖ = lim
k→∞

∥∥∥8kDg
( x

2k
,
y

2k

)∥∥∥
≤ max

{
2pθ

2pk
(‖x‖p + ‖y‖p), θ

2pk
(‖x‖p + ‖y‖p)

}
= lim

k→∞

(
2pθ

2pk
(‖x‖p + ‖y‖p)

)
= 0

for all x, y ∈ X . So DC(x, y) = 0. Since g : X → Y is odd, C : X → Y is odd. So the
mapping C : X → Y is cubic. Moreover, letting l = 0 and passing the limit m → ∞ in (6.6),
we get (6.2). So there exists a cubic mapping C : X → Y satisfying (6.2).

Now, let C ′ : X → Y be another cubic mapping satisfying (6.2). Then we have

‖C(x)− C ′(x)‖ =
∥∥∥8qC

( x
2q

)
− 8qC ′

( x
2q

)∥∥∥
≤ max

{∥∥∥C ( x
2q

)
− g

( x
2q

)∥∥∥ ,∥∥∥C ′ ( x
2q

)
− g

( x
2q

)∥∥∥}
≤ 2p + 1

2p(q+1)
θ‖x‖p,

which tends to zero as q → ∞ for all x ∈ X . So we can conclude that C(x) = C ′(x) for all
x ∈ X . This proves the uniqueness of C.
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Theorem 6.4. Let θ and p be positive real numbers. Let f : X → Y be an odd mapping
satisfying (6.1). Then there exists a unique additive mapping A : X → Y such that

‖f(2x)− 8f(x)− A(x)‖ ≤ 2p + 1

2p
θ‖x‖p

for all x ∈ X .

Proof. Letting y := x
2

and g(x) := f(2x)− 8f(x) in (6.5), we get∥∥∥g(x)− 2g
(x

2

)∥∥∥ ≤ 2p + 1

2p
θ‖x‖p

for all x ∈ X .
The rest of the proof is similar to the proof of Theorem 6.3.

Now we prove the generalized Hyers-Ulam stability of the functional equation Df(x, y) = 0
in non-Archimedean Banach spaces: an even case.

Theorem 6.5. Let θ and p be positive real numbers. Let f : X → Y be an even mapping
satisfying f(0) = 0 and (6.1). Then there exists a unique quartic mapping Q : X → Y such
that

‖f(2x)− 4f(x)−Q(x)‖ ≤ 2p + 1

2p
θ‖x‖p

for all x ∈ X .

Proof. Letting x = y in (6.1), we get

‖f(3y)− 6f(2y) + 15f(y)‖ ≤ 2θ‖y‖p(6.7)

for all y ∈ X .
Replacing x by 2y in (6.1), we get

‖f(4y)− 4f(3y) + 4f(2y) + 4f(y)‖ ≤ (2p + 1)θ‖y‖p(6.8)

for all y ∈ X .
By (6.7) and (6.8),

‖f(4x)− 20f(2x) + 64f(x)‖ ≤ max{‖4(f(3x)− 6f(2x) + 15f(x))‖,
‖f(4x)− 4f(3x) + 4f(2x) + 4f(x)‖}
≤ max{‖f(3x)− 6f(2x) + 15f(x)‖,
‖f(4x)− 4f(3x) + 4f(2x) + 4f(x)‖}

≤ max{2θ‖y‖p, (2p + 1)θ‖y‖p} = (2p + 1)θ‖y‖p

for all x ∈ X . Letting g(x) := f(2x)− 4f(x) for all x ∈ X , we get∥∥∥g(x)− 16g
(x

2

)∥∥∥ ≤ 2p + 1

2p
θ‖x‖p

for all x ∈ X .
The rest of the proof is similar to the proof of Theorem 6.3.

Theorem 6.6. Let θ and p be positive real numbers. Let f : X → Y be an even mapping
satisfying f(0) = 0 and (6.1). Then there exists a unique quadratic mapping T : X → Y such
that

‖f(2x)− 16f(x)− T (x)‖ ≤ 2p + 1

2p
θ‖x‖p

for all x ∈ X .

AJMAA, Vol. 8, No. 1, Art. 14, pp. 1-39, 2011 AJMAA

http://ajmaa.org


30 CHOONKIL PARK AND JUNG RYE LEE

Proof. Letting g(x) := f(2x)− 16f(x) in (6.9), we get∥∥∥g(x)− 16g
(x

2

)∥∥∥ ≤ 2p + 1

2p
θ‖x‖p

for all x ∈ X .
The rest of the proof is similar to the proof of Theorem 6.3.

Theorem 6.7. Let θ and p be positive real numbers. Let f : X → Y be a mapping satisfying
f(0) = 0 and (6.1). Then there exist an additive mapping A : X → Y , a quadratic mapping
T : X → Y , a cubic mapping C : X → Y and a quartic mapping Q : X → Y such that∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥ ≤ 2p + 1

|12| · 2p
θ‖x‖p

for all x ∈ X .

7. GENERALIZED HYERS-ULAM STABILITY OF AN AQCQ-FUNCTIONAL EQUATION
IN NON-ARCHIMEDEAN BANACH SPACES: FIXED POINT METHOD

Throughout this section, assume that X is a non-Archimedean normed vector space and that
Y is a non-Archimedean Banach space.

Note that the main results of this section are contained in [44].
We prove the generalized Hyers-Ulam stability of the functional equation Df(x, y) = 0 in

non-Archimedean Banach spaces: an odd case.

Theorem 7.1. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

|8|
ϕ (2x, 2y)

for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying

‖Df(x, y)‖ ≤ ϕ(x, y)(7.1)

for all x, y ∈ X . Then there is a unique cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ L

|8| − |8|L
max{|4|ϕ(x, x), ϕ(2x, x)}(7.2)

for all x ∈ X .

Proof. Letting x = y in (7.1), we get

‖f(3y)− 4f(2y) + 5f(y)‖ ≤ ϕ(y, y)(7.3)

for all y ∈ X .
Replacing x by 2y in (7.1), we get

‖f(4y)− 4f(3y) + 6f(2y)− 4f(y)‖ ≤ ϕ(2y, y)(7.4)

for all y ∈ X .
By (7.3) and (7.4),

‖f(4y)− 10f(2y) + 16f(y)‖ ≤ max {‖4(f(3y)− 4f(2y) + 5f(y))‖,
‖f(4y)− 4f(3y) + 6f(2y)− 4f(y)‖}

≤ max {|4| · ‖f(3y)− 4f(2y) + 5f(y)‖,(7.5)
‖f(4y)− 4f(3y) + 6f(2y)− 4f(y)‖}

≤ max{|4|ϕ(y, y), ϕ(2y, y)}
for all y ∈ X .
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Letting y := x
2

and g(x) := f(2x)− 2f(x) for all x ∈ X , we get∥∥∥g(x)− 8g
(x

2

)∥∥∥ ≤ max
{
|4|ϕ

(x
2
,
x

2

)
, ϕ
(
x,
x

2

)}
(7.6)

for all x ∈ X .
Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf{µ ∈ R+ : ‖g(x)− h(x)‖
≤ µ(max{|4|ϕ(x, x), ϕ(2x, x), ∀x ∈ X})},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see the proof of Lemma
2.1 of [37]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 8g
(x

2

)
for all x ∈ X .

Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖ ≤ ε ·max {|4|ϕ(x, x), ϕ(2x, x)}
for all x ∈ X . Hence

‖Jg(x)− Jh(x)‖ =
∥∥∥8g

(x
2

)
− 8h

(x
2

)∥∥∥
≤ |8|ε L

|8|
max{|4|ϕ(x, x), ϕ(2x, x)}

for all x ∈ X . So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (7.6) that∥∥∥g(x)− 8g

(x
2

)∥∥∥ ≤ L

|8|
(max{|4|ϕ(x, x), ϕ(2x, x)})

for all x ∈ X . So d(g, Jg) ≤ L
|8| .

By Theorem 1.1, there exists a mapping C : X → Y satisfying the following:
(1) C is a fixed point of J , i.e.,

C
(x

2

)
=

1

8
C(x)(7.7)

for all x ∈ X . The mapping C is a unique fixed point of J in the set

M = {h ∈ S : d(g, h) <∞}.
This implies that C is a unique mapping satisfying (7.7) such that there exists a µ ∈ (0,∞)
satisfying

‖g(x)− C(x)‖ ≤ µ ·max{|4|ϕ(x, x), ϕ(2x, x)}
for all x ∈ X; Since g : X → Y is odd, C : X → Y is an odd mapping.

(2) d(Jng, C)→ 0 as n→∞. This implies the equality

lim
n→∞

8ng
( x

2n

)
= C(x)
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for all x ∈ X;
(3) d(g, C) ≤ 1

1−Ld(g, Jg), which implies the inequality

d(g, C) ≤ L

|8| − |8|L
.

This implies that the inequality (7.2) holds.
By (7.1), ∥∥∥8nDg

( x
2n
,
y

2n

)∥∥∥ ≤ |8|nmax
{
ϕ

(
2x

2n
,
2y

2n

)
, |2|ϕ

( x
2n
,
y

2n

)}
for all x, y ∈ X and all n ∈ N. So∥∥∥8nDg

( x
2n
,
y

2n

)∥∥∥ ≤ |8|n Ln|8|nmax{ϕ(2x, 2y), |2|ϕ(x, y)}

for all x, y ∈ X and all n ∈ N. So

‖DC(x, y)‖ = 0

for all x, y ∈ X . Thus the mapping C : X → Y is cubic, as desired.

Corollary 7.2. Let θ and p be positive real numbers with p < 3. Let f : X → Y be an odd
mapping satisfying

‖Df(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)(7.8)

for all x, y ∈ X . Then there exists a unique cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ max{2 · |4|, |2|p + 1} θ

|2|p − |8|
‖x‖p

for all x ∈ X .

Proof. The proof follows from Theorem 7.1 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X . Then we can choose L = |8|
|2|p and we get the desired result.

Similarly, we can obtain the following. We will omit the proof.

Theorem 7.3. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ |8|Lϕ
(x

2
,
y

2

)
for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying (7.1). Then there is a unique
cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ 1

|8| − |8|L
max{|4|ϕ(x, x), ϕ(2x, x)}

for all x ∈ X .

Theorem 7.4. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

|2|
ϕ (2x, 2y)

for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying (7.1). Then there is a unique
additive mapping A : X → Y such that

‖f(2x)− 8f(x)− A(x)‖ ≤ L

|2| − |2|L
max{|4|ϕ(x, x), ϕ(2x, x)}
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for all x ∈ X .

Corollary 7.5. Let θ and p be positive real numbers with p < 1. Let f : X → Y be an odd
mapping satisfying (7.8). Then there exists a unique additive mapping C : X → Y such that

‖f(2x)− 8f(x)− A(x)‖ ≤ max{2 · |4|, |2|p + 1} θ

|2|p − |2|
‖x‖p

for all x ∈ X .

Theorem 7.6. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ |2|Lϕ
(x

2
,
y

2

)
for all x, y ∈ X . Let f : X → Y be an odd mapping satisfying (7.1). Then there is a unique
additive mapping A : X → Y such that

‖f(2x)− 8f(x)− A(x)‖ ≤ 1

|2| − |2|L
max{|4|ϕ(x, x), ϕ(2x, x)}

for all x ∈ X .

Now we prove the generalized Hyers-Ulam stability of the functional equation Df(x, y) = 0
in non-Archimedean Banach spaces: an even case.

Theorem 7.7. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

|16|
ϕ (2x, 2y)

for all x, y ∈ X . Let f : X → Y be an even mapping satisfying (7.1) and f(0) = 0. Then there
is a unique quartic mapping Q : X → Y such that

‖f(2x)− 4f(x)−Q(x)‖ ≤ L

|16| − |16|L
max{|4|ϕ(x, x), ϕ(2x, x)}

for all x ∈ X .

Proof. Letting x = y in (7.1), we get

‖f(3y)− 6f(2y) + 15f(y)‖ ≤ ϕ(y, y)(7.9)

for all y ∈ X .
Replacing x by 2y in (7.1), we get

‖f(4y)− 4f(3y) + 4f(2y) + 4f(y)‖ ≤ ϕ(2y, y)(7.10)

for all y ∈ X .
By (7.9) and (7.10),

‖f(4y)− 20f(2y) + 64f(y)‖ ≤ max {‖4(f(3y)− 6f(2y) + 15f(y))‖,
‖f(4y)− 4f(3y) + 4f(2y) + 4f(y)‖}

≤ max {|4| · ‖f(3y)− 6f(2y) + 15f(y)‖,
‖f(4y)− 4f(3y) + 4f(2y) + 4f(y)‖}

≤ max{|4|ϕ(y, y), ϕ(2y, y)}
for all y ∈ X .

Letting y := x
2

and g(x) := f(2x)− 4f(x) for all x ∈ X , we get∥∥∥g(x)− 16g
(x

2

)∥∥∥ ≤ max
{
|4|ϕ

(x
2
,
x

2

)
, ϕ
(
x,
x

2

)}
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for all x ∈ X .
The rest of the proof is similar to the proof of Theorem 7.1.

Corollary 7.8. Let θ and p be positive real numbers with p < 4. Let f : X → Y be an even
mapping satisfying (7.8) and f(0) = 0. Then there exists a unique quartic mappingQ : X → Y
such that

‖f(2x)− 4f(x)−Q(x)‖ ≤ max{2 · |4|, |2|p + 1} θ

|2|p − |16|
‖x‖p

for all x ∈ X .

Proof. The proof follows from Theorem 7.7 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X . Then we can choose L = |16|
|2|p and we get the desired result.

Similarly, we can obtain the following. We will omit the proof.

Theorem 7.9. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ |16|Lϕ
(x

2
,
y

2

)
for all x, y ∈ X . Let f : X → Y be an even mapping satisfying (7.1) and f(0) = 0. Then there
is a unique quartic mapping Q : X → Y such that

‖f(2x)− 4f(x)−Q(x)‖ ≤ 1

|16| − |16|L
max{|4|ϕ(x, x), ϕ(2x, x)}

for all x ∈ X .

Theorem 7.10. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

|4|
ϕ (2x, 2y)

for all x, y ∈ X . Let f : X → Y be an even mapping satisfying (7.1) and f(0) = 0. Then there
is a unique quadratic mapping T : X → Y such that

‖f(2x)− 16f(x)− T (x)‖ ≤ L

|4| − |4|L
max{|4|ϕ(x, x), ϕ(2x, x)}

for all x ∈ X .

Corollary 7.11. Let θ and p be positive real numbers with p < 2. Let f : X → Y be an
even mapping satisfying (7.8) and f(0) = 0. Then there exists a unique quadratic mapping
T : X → Y such that

‖f(2x)− 16f(x)− T (x)‖ ≤ max{2 · |4|, |2|p + 1} θ

|2|p − |4|
‖x‖p

for all x ∈ X .

Theorem 7.12. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x, y) ≤ |4|Lϕ
(x

2
,
y

2

)
for all x, y ∈ X . Let f : X → Y be an even mapping satisfying (7.1) and f(0) = 0. Then there
is a unique quadratic mapping T : X → Y such that

‖f(2x)− 16f(x)− T (x)‖ ≤ 1

|4| − |4|L
max{|4|ϕ(x, x), ϕ(2x, x)}
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for all x ∈ X .

Hence we obtain the following results.

Theorem 7.13. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ L

|2|
ϕ (2x, 2y)

for all x, y ∈ X . Let f : X → Y be a mapping satisfying f(0) = 0 and (7.1). Then there
exist an additive mapping A : X → Y , a quadratic mapping T : X → Y , a cubic mapping
C : X → Y and a quartic mapping Q : X → Y such that∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥
≤ max

{
L

|6| · |2|(1− L)
,

L

|12| · |4|(1− L)
,

L

|6| · |8|(1− L)
,

L

|12| · |16|(1− L)

}
× 1

|2|
max{|4|ϕ(x, x), ϕ(2x, x), |4|ϕ(−x,−x), ϕ(−2x,−x)}

≤ L

|12| · |16| · |2|(1− L)

×max{|4|ϕ(x, x), ϕ(2x, x), |4|ϕ(−x,−x), ϕ(−2x,−x)}

for all x ∈ X .

Corollary 7.14. Let θ and p be positive real numbers with p < 1. Let f : X → Y be a mapping
satisfying f(0) = 0 and (7.8). Then there exist an additive mapping A : X → Y , a quadratic
mapping T : X → Y , a cubic mapping C : X → Y and a quartic mapping Q : X → Y such
that ∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥
≤ max{2 · |4|, |2|p + 1} · θ

|12|(|2|p − |2|)
‖x‖p

for all x ∈ X .

Theorem 7.15. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ(x, y) ≤ |16|Lϕ
(x

2
,
y

2

)
for all x, y ∈ X . Let f : X → Y be a mapping satisfying f(0) = 0 and (7.1). Then there
exist an additive mapping A : X → Y , a quadratic mapping T : X → Y , a cubic mapping
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C : X → Y and a quartic mapping Q : X → Y such that∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥
≤ max

{
1

|6| · |2|(1− L)
,

1

|12| · |4|(1− L)
,

1

|6| · |8|(1− L)
,

1

|12| · |16|(1− L)

}
× 1

|2|
max{|4|ϕ(x, x), ϕ(2x, x), |4|ϕ(−x,−x), ϕ(−2x,−x)}

≤ 1

|12| · |16| · |2|(1− L)

×max{|4|ϕ(x, x), ϕ(2x, x), |4|ϕ(−x,−x), ϕ(−2x,−x)}

for all x ∈ X .
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