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ABSTRACT. We discuss the dynamics of solutions of a nonlinear discrete time model that will
be useful in Dengue control. The proposed model may be utilized to analyze the dynamics of
three variables (mosquito population, habitats and consciousness) across different parameters.
Stochasticity has been introduced in realistic ways to highlight combinations of random para-
meters (on education and recollection) which limits the oscillatory recurrence of habitats and
awareness. We propose optimal methods for implementing potential intervention strategies and
offer interactive dashboards for vizualizing varied scenarios.
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2 M. BHADURI AND M. PREDESCU∗

1. I NTRODUCTION

Dengue fever is an urban disease transmitted to humans through the bite of infected Aedes
mosquitoes. The Aedes mosquito breeds in stagnant water (containers, old tires) which abound
around homes and residential premises. Public policies and educational campaigns to erradi-
cate and control mosquito breeding sites are of great importance. In addition to educating the
public, other interventions have been used to reduce the mosquito breeding sites, and these
interventions usually consists of indoor and outdoor spraying.

In this paper, we consider a nonlinear difference equation model that incorporates factors
such as spraying and educational level. We extend previous work by Awerbuch et al. ([3]).
The system consists of nonlinear equations, where the control by spraying, reduction of breed-
ing sites and habitat control are modeled by exponential terms. A larger moquito population,
prompts more awareness and this awareness will have an impact in the actions taken. A constant
education parameter is present in the third equation.

(1.1)

 Mn+1 = aMne
−γAn + b(1− e−sMn)Hn

Hn+1 = cHne
−pAn + de−qAn n = 0, 1, . . .

An+1 = rAn + fMn + g

The first term in the mosquito equation represents survival and elimination due to spraying,
and the second term represents the creation of a new generation. The expression(1 − e−sMn)
represents the number of mosquitoes that give birth to new offspring derived in ([1]).

Some parameter and variable definitions follow:(Mn) is the number of mosquitoes at weekn;
(Hn) is the number of habitats at weekn; (An) is the level of awareness at weekn; Parametera is
the survival rate of mosquitoes from week to week;b is the net reproductive rate of mosquitoes;
c represents the fraction of habitats that survive from one week to the next;d is the number
of new breeding sites;f is the coefficient of awareness prompted by mosquito population;r
is the survival rate of awareness from previous week;s ands = − ln(1−Pr) wherePr is the
probability that a female mosquito lays eggs in a breeding site. We also usep as a measures
how sensitive the change in breeding sites that survive is to community consciousness;q as
a measures how sensitive the change in breeding sites that are newly created is to individual
consciousness,γ as the coefficient of mosquito decay through awareness, andg as an education
parameter. The survival ratesa, c andr are such that0 < a < 1, 0 < c < 1, 0 < r < 1. The
parameterb, (the number of mosquitoes per female mosquito given that the female mosquito
finds a breeding site) is positive. Also,s, d and f are positive. The initial conditions are
considered non-negative. Parametersp andq andg are non-negative (γ ≥ 0, p ≥ 0, q ≥ 0,
g ≥ 0).

We will rescale some of the parameters by transforming the variables. First,Mn =
1

s
mn. The

first equation becomes
1

s
mn+1 = a

1

s
mne

−γAn +b(1−e−mn)Hn. Multiplying by s to both sides:

mn+1 = amne
−γAn + bs(1− e−mn)Hn

The second change,Hn = dhn ( d > 0) gives:

dhn+1 = cdhne
−pAn + de−qAn

Dividing by d to both sides, giveshn+1 = hne
−pAn + e−qAn.

Next, callAn =
f

s
an. Third equation becomes

f

s
an+1 =

rf

s
an + fMn + g. Multiplying by

s

f

to both sides (f 6= 0), givesan+1 = ran + mn + g̃, whereg̃ =
gs

f
.
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With this transformation the second original equation of the system changes into

hn+1 = chne
−pfan/s + e−qfan/s

Denotep̃ =
pf

s
and q̃ =

qf

s
. The previous equation becomeshn+1 = chne

−p̃an + e−q̃an .

The change of variablesHn = dhn and An =
f

s
an in the first equation yieldsmn+1 =

amne
−γfan/s + bsd(1− e−mn)hn. Renaming the parametersγ̃ =

γf

s
andb̃ = bsd, first equation

readsmn+1 = amne
−γ̃An + b̃(1−e−mn)hn. Note that with these transformations, the parameters

a, c andr stayed between 0 and 1, whilẽγ, p̃, q̃ andg̃ are non-negative.̃b is positive. Summa-
rizing, the change in variables allows us to work with a reduced parameter structure through the
remaining of the paper. The system that we now work with is:

(1.2)

 Mn+1 = aMne
−γAn + b(1− e−Mn)Hn

Hn+1 = cHne
−pAn + e−qAn n = 0, 1, . . .

An+1 = rAn + Mn + g

with 0 < a < 1, 0 < c < 1, 0 < r < 1 , b > 0 andp, q, g, γ ≥ 0.

2. EXISTENCE OF EQUILIBRIUM POINTS AND BOUNDEDNESS OFSOLUTIONS

The equilibrium verifies the following nonlinear system:

(2.1)

 M̄ = aM̄e−γĀ + b(1− eM̄)H̄

H̄ = cH̄e−pĀ + e−qĀ n = 0, 1, . . .
Ā = rĀ + M̄ + g

The third equation gives(1− r)Ā = M̄ +g. If M̄ = 0, the first equation holds true for any pos-
itive value ofH̄. Also,M̄ = 0 in the third equation gives̄A = g/(1− r), which replaced in the

second yields̄H(1− ce−pĀ) = e−qĀ. Solving forH̄, one gets:H̄ =
e−qĀ

1− ce−pĀ
. Thus, there is

a degenerate equilibrium (non-negative), with coordinatesE1

(
0,

e−qg/(1−r)

1− ce−pg/(1−r)
,

g

1− r

)
. Our

system also possesses a positive equilibrium,E2(M̄, H̄, Ā). Next we will show the existence of

this equilibrium. Third equation in system (2.1) givesH̄ =
e−q(g+M̄)/(1−r)

1− ce−p(g+M̄)/(1−r)
(denominator

is never zero since0 < c < 1). The first equation in (2.1) gives(1− ae−γĀ)M̄ = b(1− e−M̄)H̄
or

(1− ae−γ(g+M̄)/(1−r))M̄ = b(1− e−M̄)H̄

Solving forH̄, we obtain:H̄ =
(1− ae−γ(g+M̄)/(1−r))M̄

b(1− e−M̄)
.

Define functionsf , g: (0,∞) → (0,∞) such thatf(M) =
(1− ae−γ(g+M)/(1−r))

b(1− e−M)
andg(M) =

e−q(g+M)/(1−r)

1− ce−p(g+M)/(1−r)
. Some properties of functionf : (i) lim

M→∞
f(M) = ∞, (ii) lim

M→0
f(M) =

lim
M→0

1− ae−γ(g+M)/(1−r)

b
lim

M→0

M

1− e−M
=

1− ae−γg/(1−r)

b
(alsof(0+) > 0 since1−ae−γg/(1−r) >

1− a > 0 andb > 0) and (iii) f(x) is increasing.
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In addition, some useful properties of functiong are: (i) lim
M→∞

g(M) = 0, (ii) g(0) =
e−qg/(1−r)

1− ce−pg/(1−r)

and (iii) g(x) is decreasing. According to the properties above, we have:

(1) If f(0+) < g(0+) then the graphs intersect only once, and the system

(2.2)

{
H̄ = f(M̄)
H̄ = g(M̄)

has a unique solutionE2(M̄, H̄, Ā).
(2) If f(0+) ≥ g(0+), thenE1 is the only equilibrium point.

In summary, expressing the above in terms of parameters, gives the lemma:

Lemma 2.1. (1) Assumeb ≤ (1− ae−γg/(1−r)(1− ce−gp/(1−r))

e−gq/(1−r)
, thenE1 is the only equi-

librium.

(2) Assumeb >
(1− ae−γg/(1−r)(1− ce−gp/(1−r))

e−gq/(1−r)
, then there are two equilibria,E1 (de-

generate) andE2 (positive).

The following lemma on boundedness and invariant interval for the non-negative solutions,
it is given here for the convenience of the reader (the proof follows the same idea as in ([2]) and
it will be omitted.

Lemma 2.2. i) Let {Mn, Hn, An}n≥0 be a positive solution of system (1.2). Parameters
are such that0 < a < 1, 0 < c < 1 and0 < r < 1. Thenlim sup

n→∞
Mn ≤ b/(1−a)(1−c),

lim sup
n→∞

Hn ≤ 1/(1− c) andlim sup
n→∞

An ≤ (b/(1− a)(1− c)(1− r)) + (g/(1− r)).

ii) The closed set,[0, b/(1−a)(1−c)]×[0, 1/(1−c)]×[0, b/(1−a)(1−c)(1−r)+g/(1−r)]
is invariant inR3.

2.1. Stability Analysis. In this section we discuss the local stability of equilibrium points of

system (1.2). At the degenerate equilibriumE1=

(
0,

e−qĀ

1− ce−pĀ
,

g

1− r

)
characteristic equa-

tion is: (ae−γg/(1−r) + bH̄ − λ)(ce−pg/(1−r) − λ)(r − λ) = 0. The first root of this equa-

tion is λ1 = ae−γg/(1−r) +
be−gq/(1−r)

1− ce−pg/(1−r)
< a +

b

1− ce−pg/(1−r)
< a +

b

1− c
. If b ≤

(1− ae−γg/(1−r)(1− ce−gp/(1−r))

e−gq/(1−r)
, then0 < λ1 < 1. For the other two roots:0 < λ2 =

ce−pg/(1−r) < 1 and0 < λ3 = r < 1 always. SoE1 is locally asymptotically stable.

When b >
(1− ae−γg/(1−r)(1− ce−gp/(1−r))

e−gq/(1−r)
the positive equilibriumE2 also appears. The

local asymptotic stability of the positive equilibriumE2(M̄, H̄, Ā) will follow from the con-
ditions imposed on the eigenvalues of the Jacobian evaluated at(M̄, H̄, Ā) to have modulus
less than 1. Due to the nonlinearity in this equation, numerical simulations will prove handy.
We created a Shinny dashboard for exploration of various combination of parameters and to
vizualize the behavior of solutions under parameter changes. The dashboard can be found
athttps://moinak.shinyapps.io/NonLinearDynamics/. As a side observation,
in some special cases, whenγ = g = 0 (no spraying or education level entered in the system),
the global attractiveness of solutions can be proved analytically. The global asymptotic stability
under the general case for whichg, γ > 0 is an open question.
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Theorem 2.3. Assume thatb < (1− a)(1− c) andγ = g = 0 thenE1 is the only equilibrium
point and it is a globally asymptotically stable.

Proof. Proof uses the same idea as in Theorem 3 in [2]. From the boundedness lemma, the
sequence{Mn, Hn, An}n≥0 is bounded thus all the limits below are finite. DenoteIM =
lim inf
n→∞

Mn andSM = lim sup
n→∞

Mn; IH = lim inf
n→∞

Hn andSH = lim sup
n→∞

Hn; IA = lim inf
n→∞

An

andSA = lim sup
n→∞

An. The proof goes by contradiction.

Let’s supposeSM > 0. From the second equation of our system, we getSH < cSH + 1 and
thereforeSH < 1

1−c
. The first equation givesMn+1 = aMn + b(1 − e−Mn)Hn < aMn + bHn

for n=0,1,. . . Passing to the limit, we obtain:SM < aSM + bSH < aSM +
b

1− c
. Thus,SM <

b

(1− a)(1− c)
< 1. Since1− e−Mn ≤ Mn for n = 0, 1 . . . we haveMn+1 ≤ aMn + bMnHn,

which givesSM ≤ aSM +
b

1− c
SM or (1 − a)SM ≤ b

1− c
SM . Dividing above bySM > 0,

yields(1− a) ≤ b

1− c
or (1− a)(1− c) ≤ b (which is a contradiction). Thus,SM = 0. Using

SM = 0 in third equation, we obtainSA = 0.
From second equation of system (1.2),IH ≥ cIHe−pSA + e−qSA ≥ cIH + 1.

Solving for IH , we obtainIH ≥ 1

1− c
. Of course,SH ≤ 1

1− c
≤ IH , and it follows that

SH = IH =
1

1− c
.

Based on the discussion in the Local Stability Section, whenb < (1− a)(1− c), the degenerate
equilibriumE1 is locally asymptotically stable. This is because whenb < (1 − a)(1 − c) then

λ1 < a +
b

1− c
< a +

(1− a)(1− c)

1− c
= 1. The other two rootsλ2 = ce−pg/(1−r) < 1 and

λ3 = r < 1 always. So whenb < (1−a)(1− c) all the roots of characteristic equation for equi-
librium E1 are between(0, 1), and thus,E1 is a locally asymptotically stable. This combined
with global attractivity result, implies thatE1 is globally asymptotically stable.

3. STOCHASTIC EXTENSIONS

There have been instances in the literature where controlled stochasticity have been explored
to model dengue epidemics. The type of control imposed implied certain restrictions that en-
abled the investigation of certain parts of the system under specific ways the transition. For
instance, D’Souza et al (2013) ([9]) assumed a Markovian dynamics channeled through SIS or
SIR agreements which (a) makes the evolution aware of only the latest state and no more, (b)
through assumptions like an individual can only either be susceptible or infected or recovered
and the transitions proceed in that specific way. Attention has not been paid, for instance, to
the randomness inherent in the habitat size or the level of awareness in the society. Cham-
pagne and Cazalles (2019)([10]) launched another brand of work that compared stochastic and
deterministic frameworks in dengue modeling with data from Cambodia, with general recom-
mendations that advocate for stochastic models to reflect parameters and process uncertain-
ties. They found in deterministic setups, the uncertainty of the parameter estimates typically
get underestimated. We are showing the process volatility, under our stochastic scenarios, for
instance, in Fig 2. Staying still within the general Markovian framework and the SIR para-
digm, Din et al. (2021)([11]) tracked expected evolutions by bringing in additional parameters
such as the birth and death rates of the human population. They discovered - under these as-
sumptions - a stochastic reproduction number for the mosquitoes - a threshold that will ensure
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6 M. BHADURI AND M. PREDESCU∗

the extinction or the persistence of the disease. Even if one is willing to ignore the assump-
tions temporarily, endogenous factors such as education and awareness were not considered,
either on their own, or even indirectly through how they could, in principle, influence the ac-
tive components in the dynamics. We remedy the above through incorporating randomness in

Figure 1: Phase portraits ofH(.) andA(.) under an interactedg(.)− r(.) system

the education parameterg and the recall parameterr in a more realistic way. These operate
in cycles (Keating (2001), ([12])). As effort is expended in educating the public, the recollect-
ing factor inflates. Beyond a point, the need for promoting awareness declines due to factors
such as an already elevated recollection level, or the drying up of public funds. This letup
eventually takes a toll on how much awareness people retain. And the cycle starts over. In
addition to this general cyclical tendency, there are unpredictable factors such as scarcity of
field workers which makes the imposing of a deterministic sinusoidal pattern unrealistic. To
examine how the deterministic flow compares with such a periodic random trigger, we offer an
interactive dashboardhttps://moinak.shinyapps.io/NonLinearDynamics/ We
consider the functional forms:

(3.1) r(t) = cos(
π

2
− tk − U(−π

2
,
π

2
))

(3.2) g(t) = cos(t + kU(−π

2
,
π

2
))

to reflect the random oscillations whereU(.) is a random variable with uniform probability of
the specified compact support,k is a stretch factor. We note under these conditions, there opens
up a possibility of limiting the rise of the number of mosquito habitats - the rise that would
have been predicted by the deterministic system. Beyond the five-week mark, the effect of the
deterministic pieces wither away and the random parameters take control. We recognize this
is illustrative, and there may be many ways to perturb several parameters, either in isolation,
or in conjunction (see the dashboard). Figure 1 showcases the phase portraits, that is the joint
dynamics of the awareness level and the number of habitats under the stochastic framework.
The non-red colours represent different simulations and the reds show theaverageinteraction
calculated through 5000 simulations. To reflect a possible unsureness about how long after
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Figure 2: Phase portraits ofH(.) andA(.) under a non-interactedg(.)− r(.) system

educating people, changes seem to be reflected in their recollections, we define a matched-
phase scenario (3.2 and 3.3 above represent the crossed-phase scenario) where the periods of the

oscillations coincide:r(t) = cos(t + kU(−π

2
,
π

2
)) andg(t) = cos(t + kU(−π

2
,
π

2
)) We notice

the inverse connection between the states is more clear when the amount of input volatility in the
g andr parameters reduces, while the stability of these states increases when those parameters
become uncertain. While these scenarios are documented under an interaction framework, i.e.,
when bothg(.) andr(.) vary (sinusoidally) simultaneously, in Figure 2, we document the non-
interacted case: when one of the parameters vary sinusoidally, while the other - to highlight its
impact - is held fixed at the values shown. We observe lower average values of habitat under
intense recollection or education, with the recollection parameter - at least, with this variety of
chosen randomness - exerting larger control in reducing the size of habitats overall.
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