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1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Hilbert spaceH andS : C → C be a
nonlinear mapping. The Fixed Point Problem (FPP) is to a find pointx ∈ C such that

(1.1) Sx = x, ∀ x ∈ C.

The fixed point set of the mappingS is denoted byFix(S). The fixed point theory finds its
application in the prove of existence of solution of many nonlinear problems arising in many
real life situations. From the existence of solution of differential equation to integral equations
and evolutionary equations. The fixed point of many linear and nonlinear operators have been
considered in the literature (see [16, 17, 18, 25]).

Let H1 andH2 be two real Hilbert spaces,S : H1 → H1 andT : H2 → H2 be nonlinear
mappings. LetA : H1 → H2 be a bounded linear operator with its adjointA∗, then, the
following Split Common Fixed Point Problem (SCFPP) is to find:

(1.2) Findingx ∈ Fix(S) such thatAx ∈ Fix(T ).

The SCFPP (1.2) initially introduced and studied by Censor and Segal [13], is a generalization
of the Split Feasibility Problem (SFP) arising from signal processing and image restoration (see
[12, 35]). Note that solving (1.2) can be translated to solving the following fixed point equation
(see [1, 2, 3, 4, 5, 19]).

x∗ = S(x∗ − τA∗(I − T )Ax∗), τ ≥ 0.

Recently, Censor and Segal [13] proposed the following algorithm to solve SCFP (1.2):

Algorithm 1.1. : Initialization: Let x∗ ∈ H1 := Rn be arbitrary . Iterative step: let

xn+1 = S(xn − τA∗(I − T )Axn), n ≥ 0

whereS : Rn → Rn andT : Rm → Rm are two directed mappings andτ ∈ (0, 2
λ
) with λ being

the spectral radius of the operatorA∗A. There has been growing interest in the (SCFPP) due
to its various applications, (see for example,[11, 36]).

In 2019, Chenet al. [14] introduced the following self-adaptive algorithm for solving SCFPP
for demimetric mappings in real Hilbert spaces as follows

Algorithm 1.2. Initialization: Letx0 ∈ H1 be arbitrary. Forn ≥ 0, assume the current iterate
xn has been constructed. If

‖xn − Sxn + A∗(I − T )Axn‖ = 0,

then stop (in this casexn solves problem(1.2)). Otherwise, calculate the next iteratexn+1 by
the following formula

(1.3)

{
yn = xn − Sxn + A∗(I − T )Axn,

xn+1 = xn − ατnyn, ∀ n ≥ 0,

whereα ∈ (0, min{1− β, 1− µ}) is a positive constant andτn is chosen self adaptively as

τn =
‖xn − Sxn‖2 + ‖(I − T )Axn‖2

‖yn‖2
.
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They assumed the sequence{xn} generated by (1.3) is infinite and prove a weak convergence
theorem for approximating the solution of the SCFPP.

In 1994, Blum and Oettli [10] introduced the notion of Equilibrium Problem (EP) as a gen-
eralization of certain optimization and variational inequality problems. It has received much
attention from many researchers since its establishment due to its application to many problems
arising from finance, physics, economics and so on. For this reason, several authors have intro-
duced various generalizations of EP and numerous iterative algorithms have been developed, to
solve these problems. The EP consists of finding a pointx ∈ C such

(1.4) F (x, y) ≥ 0, ∀ y ∈ C,

whereF : C × C → R is a bifunction.
The Mixed Equilibrium Problem (MEP) which is a generalization of the EP (1.3) is known

to include fixed point problem, optimization problem, variational inequality problem,and Nash
equilibrium problem as special cases; (see [10, 20]). Some methods have been proposed to
solve the MEP, see, for example, [20, 22]. The Mixed Equilibrium Problem (MEP) is to find
x∗ ∈ C such that

(1.5) F (x∗, x) + φ(x)− φ(x∗) ≥ 0 for all x ∈ C.

If in (1.5) φ = 0, then the MEP (1.5) reduces to the EP (1.4).
In 2017, Wang [34] introduced the following new iterative algorithm for the SCFPP of di-

rected mappings

Algorithm 1.3. choose an arbitrary initial guessx0. Assumexn has been constructed. If

‖xn − Sxn + A∗(I − T )Axn‖ = 0,

then stop; otherwise, continue and constructxn+1 via the formula;

xn+1 = xn − τn{‖xn − Sxn + A∗(I − T )Axn‖}, ∀ n ≥ 0,

whereτn is choose self-adaptively as

τn =
‖xn − Sxn‖2 + ‖(I − T )Axn‖2

‖xn − Sxn + A∗(I − T )Axn‖2

Algorithm 1.4. Letu ∈ H and start an initial guessx0 ∈ H, assumexn has been constructed.
If

‖xn − Sxn + A∗(I − T )Axn‖ = 0,

then stop; otherwise, continue and constructxn+1 via the formula;

xn+1 = αnu + (1− αn){xn − Sxn + A∗(I − T )Axn}, ∀ n ≥ 0,

where stepsize sequenceτn is choose self-adaptively as

τn =
‖xn − Sxn‖2 + ‖(I − T )Axn‖2

‖xn − Sxn + A∗(I − T )Axn‖2

Wang obtained a weak and a strong convergence of Algorithms 1.3 and 1.4, respectively.
Wang’s results in [34] from the directed mappings to the demicontractive mappings. Further,
they construct the following two self-adaptive algorithms for solving the split common fixed
point problem (1.2).
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Algorithm 1.5. . Initialization: Let x0 ∈ H1 be arbitrary . Forn ≥ 0 , assume the current
iteratexn has been constructed. If

‖xn − Sxn + A∗(I − T )Axn‖ = 0,

then stop; otherwise , calculate the next iteratexn+1 by the following formula{
yn = xn − Sxn + A∗(I − T )Axn,

zn = xn − αnτnyn, ∀ n ≥ 0,

whereα ∈ (0, min{1− β, 1− µ}) is a positive constant andτn is chosen self-adaptively as

τn =
‖xn − Sxn‖2 + ‖(I − T )Axn‖2

‖yn‖2

Algorithm 1.6. Initialization: let u ∈ H1 be a fixed point and letx0 ∈ H be arbitrary. Iterative
step: forn ≥ 0 , assume the current iteratexn has been constructed . If

‖xn − Sxn + A∗(I − T )Axn‖ = 0,

then stop; otherwise , calculate the next iteratexn+1 by the following formula{
yn = xn − Sxn + A∗(I − T )Axn,

xn+1 = αnu + (1− αn)(xn − ατnyn), ∀ n ≥ 0,

whereα ∈ (0, min{1− β, 1− µ}) is a positive constant andτn is chosen self-adaptively as

τn =
‖xn − Sxn‖2 + ‖(I − T )Axn‖2

‖yn‖2

They also obtained a weak and a strong convergence result of Algorithms 1.5 and 1.6, re-
spectively. They present two self-adaptive algorithms for solving the split common fixed point
problem (1.2).

Recently, Shehu introduced a hybrid method for finding a common fixed point of infinite fam-
ily of k-strictly pseudocontractive mappings, the set of common solutions to a system of gen-
eralized mixed equilibrium problem, and the set of solutions to variational inequality problem
in Hilbert space. Starting with an arbitraryx0 ∈ C, C1,i = C, C1 = ∩∞i=1C1,i, andx1 = PC1x0

define sequence{xn}, {wn}, {un}, {zn}, and{yn,i} as follows:

(1.6)



zn = T
F1,φ1
rn (xn − rnAxn),

yn = T
F2,φ2
rn (zn − λnBxn),

wn = PC(un − snDun),

yn,i = αni
wn + (1− αni

)Tiwn, n ≥ 1,

Cn+1,i = {z ∈ Cn,i : ‖yn,i − z‖ ≤ ‖xn − z‖}, n ≥ 1,

Cn+1 = ∩∞i=1Cn+1,

xn+1 = PCn+1 , x0, n ≥ 1,

whereTi is a ki-strictly pseudocontrative mapping and for some0 ≤ ki < 1, A,B is α, β-
inverse- strongly monotone mapping ofC intoH. He proved that if the sequence{αni

}, {rn}, {sn}
and{λn} of parameters satisfies appropriate conditions, then{xn} generated by (1.6)

Moudafi [24] recently studied the convergence properties of a relaxed algorithm for SCFP
for a class of quasi-nonexpansive operatorsT such thatI − T is demiclosed at zero. He also
proved a weak convergence theorem as shown below.
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Theorem 1.1. Given a bounded linear operatorA : H1 → H2, let U : H1 → H1and T :
H2 → H2 be two quasi-nonexpansive operators with nonempty sets Fix(U) = C and Fix(T) =
Q. Assume thatI −U andI −T are demiclosed at zero. SupposeΓ := {x ∈ C : Ax ∈ Q} 6= ∅
and define an iterative sequencexn by

(1.7)


x0 ∈ H1,

un = xn + αβA∗(T − I)Axn,

xn+1 = (1− αn)un + αnU(un).

Polyak [26] first proposed an inertial extrapolation as an acceleration process to solve the
smooth convex minimization problem. The inertial algorithm is a two-step iteration where the
next iterate is defined by making use of the previous two iterates. Recently, several researchers
have constructed some fast iterative algorithms by using inertial extrapolation (see, e.g., [6, 7]

Motivated by the above results and the current research interest in this direction,in this ar-
ticle, we propose a new iterative scheme for approximating an element in the solution set of
the common split feasibility problem for fixed points of demimetric mappings and equilibrium
problem for monotone mapping in a real Hilbert space. We incorporate self-adaptive step size
method and inertial technique to accelerate the convergence of the proposed method, we estab-
lish the strong convergence of the sequence generated by the proposed algorithm. We finally,
establish some applications and numerical examples to illustrate the significant performance of
our method.

Subsequent sections of this work are organized as follows: In Section 2, we recall some basic
definitions and Lemmas that are relevant in establishing our main results. In Section 3, we state
some Lemmas that are useful in establishing the strong convergence of our proposed algorithm
and also prove the strong convergence theorem for the algorithm.

2. PRELIMINARIES

In this paper, letH be a real Hilbert space with inner product〈·, ·〉 and the norm given by‖ ·‖
respectively. We denote the weak and strong convergence of a sequencexn to a pointx ∈ H by
xn ⇀ x andxn → x respectively.

Definition 2.1. A mappingA : H → H is said to be:

(i) monotone if:
〈Ax− Ay, x− y〉 ≥ 0, ∀ x, y ∈ H;

(ii) λ-inverse strongly monotone (co-coercive) if there existsλ > 0 such that:

(Ax− Ay, x− y) ≥ λ‖Ax− Ay‖2, ∀ x, y ∈ H;

(iii) nonexpansive if:

‖Ax− Ay‖ ≤ ‖x− y‖, ∀ x, y ∈ H;

(iv) firmly nonexpansive if:

〈Ax− Ay, x− y〉 ≥ ‖Ax− Ay‖2, ∀ x, y ∈ H.

Forx ∈ H, there exists the unique nearest pointPCx in K such that

‖x− y‖ ≤ ‖x− PCx‖, ∀y ∈ C.

PC is called metric projection ofH ontoC. It is known thatPC is nonexpansive.

AJMAA, Vol. 21 (2024), No. 1, Art. 16, 16 pp. AJMAA

https://ajmaa.org


6 M. A. OLONA , A. MAHARAJ AND O. K. NARAIN

Lemma 2.1. [15] LetC be a closed and convex subset in a real Hilbert spaceH, for anyx ∈ H
andz ∈ C, we have

z = PCx ⇔ 〈x− z, z − y〉 ≥ 0, ∀ y ∈ C.

Lemma 2.2. [15] LetC be a closed and convex subset in a real Hilbert spaceH and letx ∈ H,
then we have the following

(i) ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉 ∀ y ∈ H.
(ii) ‖PCx− y‖2 ≤ ‖x− y‖2 − ‖x− PCx‖2 ∀ y ∈ C.

For more properties of the metric projection, refer [15, Section 3].
We need the following assumptions to solve a mixed equilibrium problem for a bifunction

F : C × C → R and a mappingφ : C → R.

(A1) F (x, x) = 0, ∀ x ∈ C,
(A2) F is monotone, i.e.,F (x, y) + F (y, x) ≤ 0 ∀ x, y ∈ C,
(A3) lim

α→∞
F (αz + (1− α)x, y) ≤ F (x, y) ∀ x, y, z ∈ C,

(A4) ∀ x ∈ C, y 7→ F1(x, y) is convex and lower semicontinuous,
(A5) for eachx ∈ C, α ∈ (0, 1], andr > 0, there exist a bounded subsetD ⊆ C andy ∈ C

such that for anyz ∈ C/D,

F (z, y) + φ(y)− φ(z) +
1

r
〈y − z, z − x〉 < 0.

(A6) C is a bounded set.

Lemma 2.3. [28] LetC be a nonempty closed convex subset of a Hilbert spaceH1 andφ : C →
R ∪ {+∞} a proper lower semicontinuous and convex mapping such thatC ∩ domφ = ∅.
Suppose that bifunctionF : C × C → R and a mappingφ satisfy Conditions(A1)(A6). For
r > 0 andx ∈ H, let T F,φ

r : H → C be a mapping defined by

T F,φ
r (x) = {z ∈ C : F (z, y) + φ(y)− φ(z) +

1

r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ C}.(2.1)

Assume that either (A5) or (A6) holds. Then:

(i) for eachx ∈ H, T F,φ
r x 6= ∅,

(ii) T F,φ
r is single valued,

(iii) T F,φ
r is firmly nonexpansive,

(iv) Fix(T F,φ
r ) = MEP (F, φ) and it is closed and convex.

Lemma 2.4. [21] LetH be a real Hilbert space. Then, we have

‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉,
‖x + y‖2 ≤ ‖x‖+ 2〈y, x + y〉,

and
‖αx + (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2

for all x, y ∈ H andα ∈ [0, 1]. Also, if{xn} is a sequence inH weakly converging toz ∈ H,
then

lim sup
n→∞

‖xn − y‖2 = lim sup
n→∞

‖xn − z‖2 + ‖z − y‖2, ∀ y ∈ H.

Lemma 2.5. [29] Let{an} ⊂ R+, {bn} ⊂ R and{ξn} ⊂ (0, 1) be such that
∞∑

n=1

ξn = ∞ and

an+1 ≤ (1− ξn)an + ξnbn, ∀ n ∈ N.
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If lim sup
i→∞

bni
≤ 0 for every subsequenceani

of an satisfyinglim inf
i→∞

(ani+1 − ani
) ≥ 0, then

lim
n→∞

an = 0.

3. M AIN RESULT

We study the problem of finding a common solution of the split common fixed points problem
and mixed equilibrium problem(SCFPPMEP). We denote byΓ the solution set of the SCFPP-
MEP. That isΓ := {x ∈ C : x ∈ Fix(S) ∩MEP (F, φ) such thatAx ∈ Fix(T ). For solving
the SCFPPMEP, we make the following assumptions:

(B1) LetC andQ be nonempty, closed and convex subsets of real Hilbert spacesH1 andH2

respectively;
(B2) S : C → C andT : Q → Q are two demimetric mappings with constantsβ ∈ (−∞, 1)

andµ ∈ (−∞, 1), respectively;
(B3) A : H1 → H2 is bounded linear operator with its adjoint operatorA∗;
(B4) The bifunctionF : C × C → R andφ : C → R satisfy condition (A1) - (A6);
(B5) Γ is nonempty.

Next we proof the following self adaptive algorithm for solving the SCFPPMEP:

Algorithm 1. Inertial Algorithm for SCFPPMEP

Initialization: Choosex0, x1 ∈ C, θ ∈ (0, 1), β, µ ∈ (0, 1), {rn} a sequence of nonnegative
real numbers andαn, βn ⊂ (0, 1) satisfying

(C1) lim
n→∞

αn = 0 and
∞∑

n=1

αn = ∞;

(C2) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(C3) 0 < lim inf
n→∞

rn;

(C4) lim
n→∞

εn

αn
= 0, whereεn is a sequence of nonnegative real numbers.

Step 1: Compute the inertial step

θ̄n =

{
min{θ, εn

‖xn−xn−1‖}, if xn 6= xn−1

θ, otherwise.
(3.1)

wn = xn + θn(xn − xn−1).

Step 2: Compute 
yn = βnwn + (1− βn)T F,φ

rn
wn,

zn = yn − Syn + A∗(Ayn − TAyn),

xn+1 = αnf(xn) + (1− αn)(yn − ατnzn),

(3.2)

whereα ∈ (0, min{1− β, 1− µ}) is a positive constant andτn is chosen self-adaptively as

τn =
(‖yn − Syn‖2 + ‖Ayn − TAyn‖2)

‖zn‖2
.

Remark 1. We assume that the sequence{xn} generated by Algorithm 1 is infinite. In other
words, Algorithm 1 does not terminate in a finite number of iterations.

Lemma 3.1. If ‖yn − Syn + A∗(I − T )Ayn‖ = 0, then we arrive at the solution of the SCFPP.
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Proof: If yn solves split common fixed points problem, thenyn = Syn and(I − T )Ayn = 0,
Therefore, we have‖yn − Syn + A∗(I − T )Ayn‖ = 0. To see the converse , suppose that
‖yn − Syn + A∗(I − T )Ayn‖ = 0. Then we havey ∈ Ω such that

0 = ‖yn − Syn + A∗(I − T )Ayn‖‖yn − y‖
≥ 〈yn − Syn + A∗(I − T )Ayn, yn − y〉
≥ 〈yn − Syn, yn − y〉+ 〈A∗(I − T )Ayn, yn − y〉
≥ 〈yn − Syn, yn − y〉+ 〈(I − T )Ayn, Ayn − Ay〉.(3.3)

SinceS andT are demimetric, we have that

(3.4) 〈yn − Syn, yn − y〉 ≥ 1− β

2
‖yn − Syn‖2

and

(3.5) 〈(I − T )Ayn, Ayn − Ay〉 ≥ 1− µ

2
‖Ayn − TAyn‖2

we obtain the following by combining (3.3), (3.4) and (3.5),

(3.6) 0 ≥ 1− β

2
‖yn − Syn‖2 +

1− µ

2
‖Ayn − TAyn‖2

Sinceβ, µ ∈ (−∞, 1), we infer thatyn ∈ Fix(S) andAyn ∈ Fix(T ) by (3.6). Therefore,yn

solves problem of common fixed point problem. This completes the proof.

Theorem 3.2. Suppose assumption (B1)-(B5) hold. Then the sequence{xn} generated by Al-
gorithm 1 converges strongly to an elementp = PΓf(p) ∈ Γ.

Proof: Fix p ∈ Ω, then from (1), we have

〈zn, yn − p〉 = 〈yn − Syn + A∗(Ayn − TAyn), yn − p〉
= 〈yn − Syn, yn − p〉+ 〈A∗(Ayn − TAyn), yn − p〉

≥ 1− β

2
‖yn − Syn‖2 +

1− µ

2
‖Ayn − TAyn‖2

≥ 1

2
min{1− β, 1− µ}(‖yn − Syn‖2 + ‖Ayn − TAyn‖2).

Now letvn = yn − ατnzn − p, we get

‖vn − p‖2 = ‖yn − ατnzn − p‖2

= ‖yn − p‖2 − 2ατn〈zn, yn − p〉+ α2τ 2
n‖yn‖2

= ‖yn − p‖2 + α2 (‖yn − Syn‖2 + ‖Ayn − TAyn‖2)

‖zn‖2

− α min{1− β, 1− µ}(‖yn − Syn‖2 + ‖Ayn − TAyn‖2)

‖zn‖2

≤ ‖yn − p‖2 − α min{1− β, 1− µ}(‖yn − Syn‖2 + ‖Ayn − TAyn‖2)

‖zn‖2
(3.7)

≤ ‖yn − p‖2.

Thus, we obtain that

‖vn − p‖ ≤ ‖yn − p‖.
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Observe that

‖yn − p‖ = ‖βnwn + (1− βn)T F,φ
rn

wn − p‖
≤ βn‖wn − p‖+ (1− βn)‖T F,φ

rn
wn − p‖

≤ βn‖wn − p‖+ (1− βn)‖wn − p‖
= ‖wn − p‖.

Furthermore, we have

‖xn+1 − p‖ = ‖αnf(xn) + (1− αn)vn − p‖
≤ αn‖f(xn)− f(p)‖+ αn‖f(p)− p‖+ (1− αn)‖vn − p‖
≤ αnc‖xn − p‖+ αn‖f(p)− p‖+ (1− αn)‖vn − p‖
≤ {1− αn(1− c)}‖xn − p‖+ αn‖f(p)− p‖+ θn(1− αn)‖xn − xn−1‖

≤ {1− αn(1− c)}‖xn − p‖+ αn

(
θn

αn

‖xn − xn−1‖+ ‖f(p)− p‖
)

≤ max

{
‖xn − p‖,

θn

αn
‖xn − xn−1‖+ ‖f(p)− p‖

1− c

}
.

Therefore, we obtain by (3.1) and (C4), thatθn

αn
‖xn − xn−1‖ → 0 asn → ∞ and there exist

M > 0 such thatθn

αn
‖xn − xn−1‖ ≤ M for all n ∈ N. Hence,

‖xn+1 − p‖ ≤ max

{
‖xn − p‖, M + f(p)− p‖

1− c

}
≤ max

{
‖xn − p‖, M + f(p)− p‖

1− c

}
∀ n ∈ N.

Hence,{xn} is bounded. It is easy to see that operatorPΓf is a contraction. Thus by the
Banach contraction principle, there exists a unique pointp = PΓf(p). It follows from the
characterization ofPΓ that

(3.8) 〈f(p)− p, q − p〉 ≤ 0, ∀ q ∈ Γ.
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Using Lemma 2.4 and (3.7)

‖xn+1 − p‖2 ≤ ‖(1− αn)(vn − p) + αn(f(xn)− f(p)‖2 + 2αn〈f(p)− p, xn+1 − p〉
≤ (1− αn)‖vn − p‖2 + αn‖f(xn)− f(p)‖2 + 2αn〈f(p)− p, xn+1 − p〉

≤ (1− αn)‖yn − p‖2 − α(min{1− β, 1− µ})(‖yn − Syn‖2 + ‖Ayn − TAyn‖2)

‖zn‖2

+ αn‖f(xn)− f(p)‖2 + 2αn〈f(p)− p, xn+1 − p〉

≤ (1− αn)‖wn − p‖2 − α(min{1− β, 1− µ})(‖yn − Syn‖2 + ‖Ayn − TAyn‖2)

‖zn‖2

+ αn‖f(xn)− f(p)‖2 + 2αn〈f(p)− p, xn+1 − p〉
≤ (1− αn)‖xn − p‖2 + 2θn〈xn − p, xn − xn−1〉+ θn‖xn − xn−1‖2

− α(min{1− β, 1− µ})(‖yn − Syn‖2 + ‖Ayn − TAyn‖2)

‖zn‖2

+ αn‖f(xn)− f(p)‖2 + 2αn〈f(p)− p, xn+1 − p〉
≤ (1αn(1c)‖xn − p‖2 + αn(1− c)bn

− α(min{1− β, 1− µ})(‖yn − Syn‖2 + ‖Ayn − TAyn‖2)

‖zn‖2
,(3.9)

where

bn :=
1

1− c
(2〈f(p)− p, xn+1 − p〉+

θ2
n

αn

‖xn − xn−1‖2 + 2
θn

αn

‖xn − p‖‖xn − xn−1‖).

It follows that
(3.10)

α(min{1−β, 1−µ})(‖yn − Syn‖2 + ‖Ayn − TAyn‖2)

‖zn‖2
≤ ‖xn−p‖2−‖xn+1−p‖2+αn(1−c)M ′,

whereM ′ = sup{bn : n ∈ N}.

Now, setan = ‖xn − p‖2 andηn := αn(1− c). From (3.9) we have the following inequality:

an+1 ≤ (1− ηn)an + ηnbn.

To apply Lemma 2.5, we have to show thatlim sup
i→∞

bni
≤ 0 for every subsequence{ani

} of

{an} satisfying

(3.11) lim inf
i→∞

(ani+1 − ani
) ≥ 0.

To do this, suppose that{ani
} ⊆ {an} is a subsequence satisfying (3.11). Therefore, by (3.10)

and (Cii), we have

lim sup
i→∞

α(min{1− β, 1− µ})(‖yni
− Syni

‖2 + ‖Ayni
− TAyni

‖2)

‖zni
‖

≤ lim sup
i→∞

(ani+1 − ani
) + (1− c)M ′ lim

i→∞
αni

= − lim inf
i→∞

(ani+1 − ani
)

≤ 0,
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which implies

(3.12)
(‖yni

− Syni
‖2 + ‖Ayni

− TAyni
‖2)

‖zni
‖2

= 0.

Taking into consideration that

(3.13)
(‖yni

− Syni
‖2 + ‖Ayni

− TAyni
‖2)

2 max{1, ‖A‖2}
≤ (‖yni

− Syni
‖2 + ‖Ayni

− TAyni
‖2)

‖zni
‖2

.

We deduce from (3.12), that

(3.14) lim
i→∞

‖yni
− Syni

‖2 = lim
i→∞

‖Ayni
− TAyni

‖2 = 0.

Observe from (3.2) and the nonexpansive property ofT F,φ
rn

, that

‖yn − p‖2 = ‖βnwn + (1− βn)T F,φ
rn

wn − p‖2

= βn‖wn − p‖2 + (1− βn)‖T F,φ
rn

wn − p‖2 − βn(1− βn)‖wn − T F,φ
rn

wn‖2

≤ βn‖wn − p‖2 + (1− βn)‖wn − p‖2 − βn(1− βn)‖wn − T F,φ
rn

wn‖2

= ‖wn − p‖2 − βn(1− βn)‖wn − T F,φ
rn

wn‖2.(3.15)

Again, by using Lemma 2.4, (3.7) and (3.15), we have that

‖xn+1 − p‖2 ≤ ‖(1− αn)(vn − p) + αn(f(xn)− f(p))‖2 + 2αn〈f(p)− p, xn+1 − p〉
≤ (1− αn)‖vn − p‖2 + αn‖f(xn)− f(p)‖2 + 2αn〈f(p)− p, xn+1 − p〉
≤ (1− αn)‖yn − p‖2 + αn‖f(xn)− f(p)‖2 + 2αn〈f(p)− p, xn+1 − p〉
≤ (1− αn)(‖wn − p‖2 − βn(1− βn)‖wn − T F,φ

rn
wn‖2) + αn‖f(xn)− f(p)‖2

+ 2αn〈f(p)− p, xn+1 − p〉
≤ (1− αn)‖xn − p‖2 + 2θn〈xn − p, xn − xn−1〉+ θn‖xn − xn−1‖2

− βn(1− βn)‖wn − T F,φ
rn

wn‖2 + αn‖f(xn)− f(p)‖2 + 2αn〈f(p)− p, xn+1 − p〉
≤ [1− αn(1− c)]‖xn − p‖2 + αn(1− c)bn − βn(1− βn)‖wn − T F,φ

rn
wn‖2,(3.16)

where

bn :=
1

1− c
(2〈f(p)− p, xn+1 − p〉+

θ2
n

αn

‖xn − xn−1‖2 + 2
θn

αn

‖xn − p‖‖xn − xn−1‖).

Thus, we obtain

(3.17) βn(1− βn)‖wn − T F,φ
rn

wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn(1− c)M ′,

whereM ′ = sup{bn : n ∈ N}.

Again as before, letan = ‖xn − p‖2 andηn := αn(1− c). From (3.16), we have that

an+1 ≤ (1− ηn)an + ηnbn.

Therefore, by (C1) and (C2), we have

lim sup
i→∞

βni
(1− βni

)‖wni
− T F,φ

rni
wni

‖2

≤ lim sup
i→∞

(ani+1 − ani
) + (1− c)M ′ lim

i→∞
αni

= − lim inf
i→∞

(ani+1 − ani
)

≤ 0,
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which implies

(3.18) lim
i→∞

‖wni
− T F,φ

rni
wni

‖ = 0.

Now,

‖wn − xn‖ = ‖xn + θn(xn − xn−1)− xn‖
≤ θn‖xn − xn−1‖

= θn.
αn

θn

‖xn − xn−1‖ → 0 asn →∞,

hence,

(3.19) lim
i→∞

‖wni
− xni

‖ = 0.

From (3.2) and (3.18), we have

‖yn − wn‖ = ‖βnwn + (1− βn)T F,φ
rn

wn − wn‖
≤ (1− βn)‖T F,φ

rn
wn − wn‖ → 0 asn →∞,

that is

(3.20) lim
i→∞

‖yni
− wni

‖ = 0.

It is easy to see from (3.19) and (3.20), that

(3.21) ‖yni
− xni

‖ ≤ ‖yni
− wni

‖+ ‖wni
− xni

‖ → 0 asi →∞.

Again from (3.2), we have

‖vni
− yni

‖ ≤ ατn‖zn‖

= α
(‖yn − Syn‖2 + ‖Ayn − TAyn‖2)

‖zn‖
,

thus by (3.12), we get
‖vni

− yni
‖ → 0 asi →∞.

It follows from this and (3.19), that

(3.22) lim
i→∞

‖vni
− wni

‖ = 0.

By using (C1), (3.2) and (3.12), we derive

‖xni+1 − xni
‖ ≤ αni

‖xni
− f(xni

)‖+ (1− αni
)ατni

‖zni
‖

≤ αni
‖xni

− f(xni
)‖+ (1− αni

)α
(‖yni

− Syni
‖2 + ‖Ayni

− TAyni
‖2)

‖zni
‖2

,

which shows

(3.23) lim
i→∞

‖xni+1 − xni
‖ = 0.

We now show thatlim sup
i→∞

bni
≤ 0. Indeed, it suffices to show that

lim sup
i→∞

〈f(p)− p, xni+1 − p〉 ≤ 0.

Let {xnij
} be a sequence of{xni

} such that

lim
j→∞

〈f(p)− p, xnij
− p〉 = lim sup

i→∞
〈f(p)− p, xni

− p〉

Since{xni
} is bounded, there exists a subsequence{xnij

} of {xni
} such thatxnij

⇀ q ∈ C.
Without loss of generality, we may assume thatxni

⇀ q, we obtain by (3.19), thatwni
⇀ q. We

AJMAA, Vol. 21 (2024), No. 1, Art. 16, 16 pp. AJMAA

https://ajmaa.org


INERTIAL ALGORITHM 13

also have by (3.21) and (3.22) thatyni
andvni

both converge weakly to q. Hence, by (3.14) and
demiclosedness principle we have thatq ∈ Fix(S). Also, sinceA is a bounded linear operator
we have thatAyni

⇀ Aq, thus by (3.14) again we obtain thatAq ∈ Fix(T ). Finally, we show
thatq ∈ MEP (F, φ). Let un = T F

rn
wn, we have by Lemma 2.3, that

F (un, y) + φ(y)− φ(un) +
1

rn

〈y − un, un − wn〉 ≥ 0,∀ y ∈ H1.

Now, sinceF is a monotone mapping, we obtainφ(y)−φ(un)+ 1
rn
〈y−un, un−wn〉 ≥ F (y, un)

and henceφ(y)− φ(uni
) + 1

rni
〈y − uni

, uni
−wni

〉 ≥ F (y, uni
) for all y ∈ H1. It follows from

(3.18), thatuni
⇀ q. We obtain by (C3), (3.18) and the proper lower semicontinuity ofφ that

(3.24) F (y, q) + φ(q)− φ(y) ≤ 0, ∀ y ∈ H1.

Let yt = ty + (1− t)q, for all 0 ≤ t ≤ 1 andy ∈ H1. It is easy to see thatyt ∈ H1, thus (3.24)
hold fory = yt. that is

(3.25) F (yt, q) + φ(q)− φ(yt) ≤ 0.

From assumption (A1-A6) and (3.25), we have

0 = F (yt, y) + φ(yt)− φ(t)

≤ tF (yt, y) + (1− t)F (yt, q) + tφ(y) + (1− t)φ(q)− tφ(yt)− (1− t)φ(yt)

= t[F (yt, y) + φ(y)− φ(yt)] + (1− t)[F (yt, q) + φ(q)− φ(yt)]

≤ t[F (yt, y) + φ(y)− φ(yt)].

Therefore, we obtain

(3.26) t[f(yt, y) + φ(y)− φ(yt)] ≥ 0, ∀ y ∈ H1.

Letting t → 0 in (3.26), obtainf(q, y) + φ(y) − φ(q) ≥ 0, ∀ y ∈ H1, thus we haveq ∈
MEP (F, φ). Henceq ∈ Γ.
From (3.8) and (3.23), we have

lim sup
i→∞

〈f(p)− p, xni+1 − p〉 ≤ lim sup
i→∞

〈f(p)− p, xni+1 − xni
〉

+ lim sup
i→∞

〈f(p)− p, xni
− p〉

= lim sup
j→∞

〈f(p)− p, xnj
− p〉

= 〈f(p)− p, q − p〉
≤ 0.

We conclude by Lemma 2.5 that{xn} converges strongly to a pointp ∈ Γ, wherep = PΓf(p),
The proof is complete.

4. NUMERICAL EXAMPLE

In this section, we provide some numerical examples to illustrate the efficiency of Algorithm 1
and we compare the accelerated and non accelerated method for the SCFPPMEP.

Example 4.1. Let C = H1 = R = H2 and define the bounded linear operatorA : H1 → H2

byAx = 2x for all x ∈ R. Define the bifunctionF : C ×C → R byF (x, y) = 3x2 + xy + 2y2
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andφ : C → R byφ(x) = 0. Now, we computeu = T F,φ
r (x). That is, we findu ∈ C such that

for all z ∈ C

0 ≥ F1(u, z) + φ(u) +
1

rn

〈z − u, u− x〉

= −3u2 + uz + 2z2 +
1

rn

〈z − u, u− x〉

that is

0 ≥ −3rnu
2 + rnuz + 2rnz

2 + 〈z − u, u− x〉
= −3rnu

2 + rnuz + 2rnz
2 + uz − xz − u2 + ux

= 2rnz
2 + (rnu + u + z)z + (−3rnu− u2 + ux).

Leth(z) = 2rnz
2 + (rnu + u− x)z + (−3rnu

2 − u2 + ux). Thenh(z) is a quadratic function
of z with coefficientsa = 2rn, b = rnu + u− x, andc = −3rnu

2 − u2 + ux. We determine the
discriminant∆ of h(z) as follows:

∆ = (rnu + u + u)2 − 4(2rn)(−3rnu
2 − u2 + ux),

= 25r2
nu

2 + 10rnu
2 + u2 − 10rnux− 2ux + x2,

= ((5rn + 1)u− x)2.(4.1)

By Lemma 2.3,T F,φ
rn

is single-valued. Hence, it follows thath(z) has at most one solution inR.
Therefore, from(4.1)we have thatu = x

5rn+1
. This impliesT F,φ

rn
(x) = x

5rn+1
for all x ∈ H1.

Define the mappingsS : R → R and T : R → R by S(x) = −2x and T (x) = −3x,
respectively. We setf(x) = x

4
, βn = 1

2n+1
, αn = 1

n+1
, εn = 1

3
, θ = 1

3
, rn = n+1

2n
in Algorithm 1

for eachn ∈ N. It can easily be verified that all the condition of Theorem(3.2) are satisfied.
We choose different initial values as follows:

Case 1x0 = 1.78, x1 = 1.5;
Case 2x0 = 0.5, x1 = 0.15;
Case 3x0 = 0.05, x1 = 0.95.
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