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ABSTRACT. The purpose of this paper is to introduce an iterative algorithm for approximat-

ing an element in the solution set of the common split feasibility problem for fixed points of
demimetric mappings and equilibrium problem for monotone mapping in real Hilbert spaces.
Motivated by self-adaptive step size method, we incorporate the inertial technique to acceler-
ate the convergence of the proposed method and establish a strong convergence of the sequence
generated by the proposed algorithm. Finally, we present a numerical example to illustrate the
significant performance of our method. Our results extend and improve some existing results in
the literature.
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1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Hilbert spaeedsS : C' — C be a
nonlinear mapping. The Fixed Point Problem (FPP) is to a find poiéiC' such that

(1.2) Sx=x,Vxel

The fixed point set of the mapping is denoted byFixz(.S). The fixed point theory finds its
application in the prove of existence of solution of many nonlinear problems arising in many
real life situations. From the existence of solution of differential equation to integral equations
and evolutionary equations. The fixed point of many linear and nonlinear operators have been
considered in the literature (see [16] 17,18, 25]).

Let H, and H, be two real Hilbert spaces, : H; — H, andT : H, — H, be nonlinear
mappings. LetAd : H; — H, be a bounded linear operator with its adjoit, then, the
following Split Common Fixed Point Problem (SCFPP) is to find:

1.2) Findingz € Fiz(S) such thatdz € Fix(T).

The SCFPH (1]2) initially introduced and studied by Censor and Segal [13], is a generalization
of the Split Feasibility Problem (SFP) arising from signal processing and image restoration (see
[12,/35]). Note that solvind (1]2) can be translated to solving the following fixed point equation
(seel1l2,B3,4,15, 19]).

* =8 —1A([ —-T)Ax"), 7 > 0.
Recently, Censor and Segal [13] proposed the following algorithm to solve $CEFP (1.2):

Algorithm 1.1. : Initialization: Letx* € H, := R,, be arbitrary . Iterative step: let
Tpi1 = S(xy —TA([ —T)Ax,), n >0

whereS : R, — R, andT : R,, — R,, are two directed mappings ande (0, #) with A being
the spectral radius of the operatot* A. There has been growing interest in the (SCFPP) due
to its various applications, (see for exam(&l,[36).

In 2019, Cheret al. [14] introduced the following self-adaptive algorithm for solving SCFPP
for demimetric mappings in real Hilbert spaces as follows

Algorithm 1.2. Initialization: Letxzy € H; be arbitrary. Forn > 0, assume the current iterate
x,, has been constructed. If

|en — Sxp, + A*(I — T)Ax,|| =0,

then stop (in this case,, solves problenf1.2)). Otherwise, calculate the next iteratg,; by
the following formula

(1.3) {yn:xn—an+A (I —T)Az,,

Tpil = Tp — ATpYp, V1 >0,
wherea € (0,min{1 — 3,1 — u}) is a positive constant and, is chosen self adaptively as

. Hxn - SInH2 + H(I - T)AanQ
[y |I?

Tn
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They assumed the sequereg, } generated by (1] 3) is infinite and prove a weak convergence
theorem for approximating the solution of the SCFPP.

In 1994, Blum and Oettli [10] introduced the notion of Equilibrium Problem (EP) as a gen-
eralization of certain optimization and variational inequality problems. It has received much
attention from many researchers since its establishment due to its application to many problems
arising from finance, physics, economics and so on. For this reason, several authors have intro-
duced various generalizations of EP and numerous iterative algorithms have been developed, to
solve these problems. The EP consists of finding a pomtC' such

(1.4) F(z,y) >0, VyeC,

whereF' : C' x C' — Ris a bifunction.

The Mixed Equilibrium Problem (MEP) which is a generalization of the [EF (1.3) is known
to include fixed point problem, optimization problem, variational inequality problem,and Nash
equilibrium problem as special cases; (se€ [10, 20]). Some methods have been proposed to
solve the MEP, see, for example, [20] 22]. The Mixed Equilibrium Problem (MEP) is to find
x* € C such that

(1.5) F(z*,2) + ¢(z) — ¢(z*) > Oforallz € C.

Ifin (L.5) ¢ = 0, then the MEP[(1]5) reduces to the EP|1.4).
In 2017, Wang([34] introduced the following new iterative algorithm for the SCFPP of di-
rected mappings

Algorithm 1.3. choose an arbitrary initial guessy. Assumer,, has been constructed. If
|zn — Sz, + A*(I — T)Az,| =0,
then stop; otherwise, continue and construgt; via the formula;
Tpt1 = Tp — To{||Tn — Sz + A (I — T)Az,||}, Y0 >0,
wherer,, is choose self-adaptively as
_ = Saa|? 4 I = T) Az |*
" N, — Szp + A*(I — T) Az, |2

Algorithm 1.4. Letu € H and start an initial guess, € H, assumer,, has been constructed.
If

|t — Sz, + A*(I — T)Ax,|| =0,
then stop; otherwise, continue and construgt; via the formula;
Tpt1 = apu+ (1 —ap){x, — Sz, + A*(I —T)Ax,}, Vn >0,
where stepsize sequencgis choose self-adaptively as
_ o = S@a|® 4+ |(1 = T) Azy|®
|@n — Sxp, + A*(I — T) Az,

Wang obtained a weak and a strong convergence of Algorifhms 1.8 and 1.4, respectively.
Wang'’s results in[[34] from the directed mappings to the demicontractive mappings. Further,
they construct the following two self-adaptive algorithms for solving the split common fixed

point problem[(1.R).

Tn
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Algorithm 1.5. . Initialization: Letz, € H, be arbitrary . Forn > 0, assume the current
iterate z,, has been constructed. If

|ty — Sz, + A*(I — T)Ax,|| =0,
then stop; otherwise , calculate the next iteratg; by the following formula
Yn = Tp — Sxy + A*([ —T) Az,
Zp = Tp — OnTplYn, vn > 07
wherea € (0,min{1 — 3,1 — u}) is a positive constant and, is chosen self-adaptively as
_ o = Swa|P + |1 — T) Az, |
! [yl

Algorithm 1.6. Initialization: letu € H, be a fixed point and let, € H be arbitrary. Iterative
step: forn > 0, assume the current iterate, has been constructed . If

\|xn, — Sxy, + A*(I — T)Ax,|| =0,

then stop; otherwise , calculate the next iteratg; by the following formula

Yn = Tn — S, + A*(I — T)AJ}”,
Tyl = Qpll + (1 - Oén)<.%'n - Cm—nyn)v Vn > Oa

wherea € (0,min{1 — 3,1 — u}) is a positive constant and, is chosen self-adaptively as
_ e = Szl + (1 = T) Az |*
1412

They also obtained a weak and a strong convergence result of Algofithims 1[5 and 1.6, re-
spectively. They present two self-adaptive algorithms for solving the split common fixed point
problem [(1.2).

Recently, Shehu introduced a hybrid method for finding a common fixed point of infinite fam-
ily of k-strictly pseudocontractive mappings, the set of common solutions to a system of gen-
eralized mixed equilibrium problem, and the set of solutions to variational inequality problem
in Hilbert space. Starting with an arbitrary € C,C,; = C,Cy = N2, Cy,;, andzy = Pe,
define sequencgr,, }, {w,}, {u,}, {2}, and{y,;} as follows:

Tn

(2, = T,il’¢1(xn — r,Azy,),
Yn = T7527¢2 (20 — AnBzy),
Wy, = Po(u, — spDuy,),
(1.6) Un,i = Wy, + (1 — ap, ) Tiwy, n > 1,
Croyi =12 € Cnit [Yni — 2|l < |lon — 2[|},n > 1,
Cnt1 =021 Cn4a,
( Tng1 = Pc, 1 %o, n > 1,

whereT; is a k;-strictly pseudocontrative mapping and for somec k; < 1, A, B is a, (-
inverse- strongly monotone mapping@into /. He proved that if the sequen¢e,,, }, {r,.}, {sn}
and{\, } of parameters satisfies appropriate conditions, fhen generated by (116)

Moudafi [24] recently studied the convergence properties of a relaxed algorithm for SCFP
for a class of quasi-nonexpansive operatbrsuch that/ — 7" is demiclosed at zero. He also
proved a weak convergence theorem as shown below.
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Theorem 1.1. Given a bounded linear operatot : H; — Hs, letU : Hy — HyandT :

H, — H, be two quasi-nonexpansive operators with nonempty sets Fix(U) = C and Fix(T) =
Q. Assume that — U and I — T are demiclosed at zero. Suppdse= {x € C': Az € Q} #

and define an iterative sequencgby

Xo € Hl,
@.7) Uy = Tp + afA*(T — I)Ax,,

Tni1 = (1 — ap)u, + a,U(uy).

Polyak [26] first proposed an inertial extrapolation as an acceleration process to solve the
smooth convex minimization problem. The inertial algorithm is a two-step iteration where the
next iterate is defined by making use of the previous two iterates. Recently, several researchers
have constructed some fast iterative algorithms by using inertial extrapolation (seé] &lg., [6, 7]

Motivated by the above results and the current research interest in this direction,in this ar-
ticle, we propose a new iterative scheme for approximating an element in the solution set of
the common split feasibility problem for fixed points of demimetric mappings and equilibrium
problem for monotone mapping in a real Hilbert space. We incorporate self-adaptive step size
method and inertial technique to accelerate the convergence of the proposed method, we estab-
lish the strong convergence of the sequence generated by the proposed algorithm. We finally,
establish some applications and numerical examples to illustrate the significant performance of
our method.

Subsequent sections of this work are organized as follows: In Sé¢tion 2, we recall some basic
definitions and Lemmas that are relevant in establishing our main results. In $ection 3, we state
some Lemmas that are useful in establishing the strong convergence of our proposed algorithm
and also prove the strong convergence theorem for the algorithm.

2. PRELIMINARIES

In this paper, lef{ be a real Hilbert space with inner prodyct-) and the norm given by ||
respectively. We denote the weak and strong convergence of a sequeonaepointz € H by
x, — x andzx, — x respectively.

Definition 2.1. A mappingA : H — H is said to be:
(i) monotone if:

(Ar — Ay,x —y) >0, Va,y € H;
(i) A-inverse strongly monotone (co-coercive) if there exists 0 such that:
(Ax — Ay, z —y) > M| Az — Ay|]*, Va,y € H;
(iif) nonexpansive if:
[Az — Ay[| < ||z — yl|, Va,y € H;
(iv) firmly nonexpansive if:
(Az — Ay, z —y) > ||[Az — Ay||*>, Vz,y € H.
Forx € H, there exists the unique nearest patate in K such that
|z —yll < ||z — Pexl], Vy € C.

P¢ is called metric projection off ontoC. It is known thatP. is nhonexpansive.
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Lemma 2.1. [15] LetC' be a closed and convex subset in a real Hilbert spdcéor anyz € H
andz € C, we have
z=Pox s (x—2z,2—y)>0,Vy €C.
Lemma 2.2.[15] LetC be a closed and convex subset in a real Hilbert spdcand letz € H,
then we have the following
() |[Pox = Peyl® < (Pea — Pey,x —y) Vy € H.
(i) [|Pex —yl* <z = ylI* = llo — Pex|*Vy € C.
For more properties of the metric projection, refer [15, Section 3].
We need the following assumptions to solve a mixed equilibrium problem for a bifunction
F:C xC — Randamapping : C — R.
(Al) F(z,z) =0,VxeC,
(A2) Fis monotone, i.ef(x,y) + F(y,z) <0V zx,y € C,
(A3) lim F(az+ (1 —a)x,y) < F(zx,y)Va,y,z € C,
(Ad) Vz € C,y — Fi(z,y) is convex and lower semicontinuous,

(A5) for eachr € C,« € (0,1}, andr > 0, there exist a bounded subdetC C' andy € C
such that for any € C'/D,

1
F(z,y) + é(y) = 6(2) + —{y — 2,2 —2) < 0.
(A6) C'is a bounded set.

Lemma 2.3.[28] LetC be a nonempty closed convex subset of a Hilbert spaand¢ : C' —
R U {+oc} a proper lower semicontinuous and convex mapping such@hat dom¢ = 0.
Suppose that bifunctiof’ : C' x C' — R and a mappingy satisfy ConditiongA1)(A6). For
r>0andx € H,letT"? : H — C be a mapping defined by

(2.1) TH(2) ={2 € C: F(z,y) + ¢(y) — ¢(2) —l—%(y—z,z—@ >0,VyeC}.

Assume that either (A5) or (A6) holds. Then:
(i) for eachz € H, T5%x +# (),

(i) 75 is single valued,

(i) TFis firmly nonexpansive,

(iv) Fiz(TF?) = MEP(F,¢)anditis closed and convex.
Lemma 2.4. [21] Let H be a real Hilbert space. Then, we have

lo = yll* = ll=ll* = llyll* — 2{z — v, ),
lz +yl* < llell +2{y, = + ),
and
laz + (1 = a)yl* = aflz]* + (1 = &)llyl|* — a(l - &)z — y|
forall z,y € H anda € [0, 1]. Also, if{z,} is a sequence i/ weakly converging te € H,

then
limsup ||z, — y[|* = limsup ||z, — z[|* + |2 = y|I*, Yy € H.

n—oo n—oo

Lemma 2.5.[29] Let{a,} C R4, {b,} C Rand{¢,} C (0,1) be such thati ¢, =ocand

n=1

i1 < (1—=¢,)an +&,bn, Vn e N.
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If limsup b,, < 0 for every subsequenes,, of a, satisfyingliminf(a,,+1 — a,,) > 0, then
lingzoz 0.

n—oo

3. MAIN RESuULT

We study the problem of finding a common solution of the split common fixed points problem
and mixed equilibrium problem(SCFPPMEP). We denotd lilie solution set of the SCFPP-
MEP. Thatisl' := {x € C' : z € Fiz(S) N MEP(F, ¢) such thatdz € Fiz(T). For solving
the SCFPPMEP, we make the following assumptions:

(B1) LetC and@ be nonempty, closed and convex subsets of real Hilbert sgacaad H,
respectively;

(B2) S:C — C andT : ) — @ are two demimetric mappings with constagts (—oo, 1)
andu € (—oo, 1), respectively;

(B3) A: H, — H, is bounded linear operator with its adjoint operatcr

(B4) The bifunctionf’ : C' x C — R and¢ : C' — R satisfy condition (A1) - (A6);

(B5) T" is nonempty.

Next we proof the following self adaptive algorithm for solving the SCFPPMEP:

Algorithm 1. Inertial Algorithm for SCFPPMEP

Initialization: Choosezy,z; € C, 0 € (0,1), 5,u € (0,1), {r,} a sequence of nonnegative
real numbers and.,,, (3, C (0, 1) satisfying

(C1) hm a, = 0and Z ay, = 00;

(C2) O < hmlnfﬁ < hmsupﬁ < 1;

(C3) 0 < hggf T e

(C4) lim = =0, wheree, is a sequence of nonnegative real numbers.

n—oo

Step 1: Compute the inertial step
3 _ {mm{@, T 1”} if 2, # 2,1

(3.1) .
0, otherwise

Wy, = Tp + Op (T — Tpq).
Step 2: Compute

Tn1 = O f(20) + (1 — an)(Yn — aTnzn),
wherea € (0, min{l — 5,1 — u}) is a positive constant and, is chosen self-adaptively as

_ (Hyn - Syn||2 + ”Ayn - TAynHQ)'
[

Remark 1. We assume that the sequerag } generated by Algorithih| 1 is infinite. In other
words, Algorithim [l does not terminate in a finite number of iterations.

Lemma 3.1. If ||y,, — Sy, + A*(I — T) Ay, || = 0, then we arrive at the solution of the SCFPP.
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Proof: If y,, solves split common fixed points problem, then= Sy, and(/ — T')Ay,, = 0,
Therefore, we havdly, — Sy, + A*(I — T)Ay,|| = 0. To see the converse , suppose that
4 — Syn + A*(I — T)Ay,|| = 0. Then we have € Q such that
0=yn — Syn + A"(L = T)Ayn||[lyn — yll
> (Yo — Sy + AL = T) Ay, yn — )
> <yn - Syna Yn — y> + <A*<I - T)Ayna Yn — y>
(33) Z <yn - Syna Yn — y> + <([ - T)Aym Ayn - Ay>

SincesS andT are demimetric, we have that

1 —
(3.4) (Yn = SYn,Yn —y) = Tﬁ”yn — Syl
and
1—
(3.5) (I = T) Aya, Ay, = Ay) 2 —=]| Ay, = TAy, |
we obtain the following by combining (3.3), (3.4) and (3.5),
1- 1-

Sinces, u € (—o0, 1), we infer thaty,, € Fixz(S) and Ay, € Fiz(T) by (3.6). Thereforey,
solves problem of common fixed point problem. This completes the proof.

Theorem 3.2. Suppose assumption (B1)-(B5) hold. Then the sequngegenerated by Al-
gorithm[] converges strongly to an elemgnt Prf(p) € T

Proof: Fix p € Q, then from 1), we have

<vayn - p> = <yn — Syn + A*(Ayn - TAyn)a Yn — p>
= (Yn = SYn, Yn — p) + (A" (AYn — T AYn), Yn — p)

1-p 1—p
> THyn - Syn||2 + THAyn - TAyn”2

1 .
> Smin{l = 8,1 = p}(lyn — Synl® + | Ayn — T Ayn||).
Now letv,, = vy, — at,z, — p, we get
[on = plI* = llyn — aTnzn — p||?

= Hyn - p||2 - 2O‘Tn<zn7 Yn — p> + O‘2T$L||yn||2
(lyn = Syall® + | Ayn — T Ayal?)

= ||y — pl* + @?
Ak
’ 1202
_ 2 _ 2
(3.7) <l — plI? — amin{l — 5,1 — iy U =Sl + [ Ayn = TAyu[I")

122
< [lyn — pII*.
Thus, we obtain that
[on = pll < llyn — pll-
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Observe that

Y — pll = [|B,wn + (1 = B)T5%w, — p
< Bullwn = pll + (1 = BT %w, — p
< Bollwn = pll + (1 = B,)[Jw, — p|

= Hwn - p”

Furthermore, we have

|01 = pll =l f(zn) + (1 — an)v, = pl|
< ap||f(zn) = F@) 4 anll f(p) — pll + (1 — a)[Jv, — 1]
< apcllzn, — pll + anllf(p) = pll + (1 = an)[lv, — pl|
< {1 —an(1 = }Hzn = pll + anll f(p) = pll + 00 (1 — an)l|lzn — 2n]]

O
< = anlt = o = ol + an (22 = sl + 17 - )

O_ZHxn — Tyl + [ f(p) — Pl } ‘

3nmx®un—mua -

Therefore, we obtain by (3.1) and (C4), trgan{Ha:n — Zn—1|| — 0 @asn — oo and there exist
M > 0 such that’® ||z, — x, || < M forall n € N. Hence,

M+ f(p) —p
|Zns1 — || SmaX{Hxn—pH, 1(_)0 |
M _
Smax{‘|$n—l?|!7 +{@ p”} VneN.

Hence,{z,} is bounded. It is easy to see that operalpy is a contraction. Thus by the
Banach contraction principle, there exists a unique ppirt P-f(p). It follows from the
characterization of- that

(3.8) (f(p) =p,a—p) <0,VqeTl.
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Using Lemma 24 and (3.7)
201 = pI* < 11 = o) (vn = p) + an(f(zn) = F)I* + 200 (f () = P, Tns1 — D)
< (1= an)llvn = plI* + el f(n) = FP)I* + 200 (f (P) = P, i1 — P)

< (1— an)llyn — ol — a(min{1 — 6,1 — ) U = Syal® ﬁ;”fﬁyn — T Ayn*)
+ aan(In) - f(p)H2 + 2an<f(p) — P, Tny1 — p>

. n_Sn2+ An—TAnQ

+anllf(zn) = F(P)I* + 200 (f (P) = P, Ts1 — )
S (1 - an)Hxn - sz + 29n<xn — D, Tpn — $n71> + eonn - 'Tn71||2

— 2 A —TA 2
_ a(min{l —8,1— M})(”y" SynH |_|Z”||2yn ynH )

+an| f(@n) = FP)? + 200 (f (p) = P, Zni1 — D)
< (lap(10)||zn — pl|* + an(1 — €)by,
(lyn = Synll* + [[Ayn — T Ayall*)

(39) —Oé(l’IllIl{l _ﬁ71 _:u}) ||Z ||2 )
where
1 62 5 0,
b= T QU @) =P 2w = p) 4 2 lon = 2|74 205 o = Pl = 2na]):

It follows that
(3.10)

_ 2 _ 2
a(oninf 15, 1oy 2 = Sul? + Ay, = Ty )

(e

< llzn=pl*~ll@ns1—pl*+an(1—c) M,
whereM’ = sup{b, : n € N}.

Now, seta,, = ||z, — p||? andn,, := a,(1 — ¢). From [3.9) we have the following inequality:
a1 < (1 —mn,)a, +n,bn,.

To apply Lemma 2.5, we have to show thah supb,, < 0 for every subsequencig,,, } of

{a,} satisfying o

(3.11) liminf(ay,+1 — an,) > 0.

71— 00

To do this, suppose thdt,,,} C {a,} is a subsequence satisfying (3.11). Therefore[ by [3.10)
and (Cii), we have

i — SUn||? + | Ayn, — T Ay, ||?
lim sup a(min{1 — 3,1 _M})<Hy i Yni |W|L | Ay, Yn, ||%)
< limsup(an, 41 — an,) + (1 — )M’ lim ay,
1—00 1—00

= —lim inf(CLerl - am)

1—00

Sou
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which implies

[lzn: 12

(3.12) = 0.

Taking into consideration that

(3.13) <
2max{1, [|A]*} (e

We deduce fron (3.12}hat

(3.14) lim |y, — Syn, || = lim [|[Ayn, — T Ay, [|* = 0.

Observe from[(3]2) and the nonexpansive property/of, that
lyn = plI* = 18w + (1 = B,) T 4w, — pl?
= Bullwa = pl* + (1 = BT wa = plI* = B, (1 = B,)lwn — T, %w,|?
< Bullwn = plI? + (1= B)llwn — Il = B, (1 = B,)llwn — TE2w, ||
(3.15) = Jfwn — pl* = Bo(1 = B,)llwn — T/ %w, |
Again, by using Lemmp 214, (3.7) arid (3.15), we have that
[z = plI* < 111 = ) (Vs = p) + an(f(@n) = FODI + 200 (f(p) = P, Tns1 — p)
< (1= an)llvn = plI* + anll f(2n) = F)I? + 200 f (D) = P, Tnr1 — D)
< (L= an)llyn = plI* + anll f(z0) = F(D)I* + 200 (f(p) = P, T0s1 — D)
< (1= an)(lwn = pl* = B, (1 = B)llwn = T wal?) + al f(2) = fF()II?
+ 200, (f(P) = P, T1 — D)
< (1= an)llzn = pl* + 200 (20 — ptp — @nor) + Onllzn — 20|
— Ba(1 = B)llwn = T wn* + anl f(z0) = FD)I? + 200 (f(p) — P, Tns1 — D)

(316) < [1—ay(1—0llen —plP +an(l = )by — Bu(1 = B, Jwn = T Pw, P,
where
by = — 2(f(p) = P, Tpy1 — p) +%Hw - 71\!2+29—"Hx = pllllzn — zn-l).
1—c o a, " a, " o
Thus, we obtain
(3.17) B, (1= B wn = T Pwn|® <z = plI* = 2041 = plI* + an(l — )M,

whereM’ = sup{b, : n € N}.

Again as before, let,, = ||z, — p||? andn,, := a,(1 — ¢). From [3:16), we have that

An41 S (1 - nn)an + nnbn
Therefore, by (C1) and (C2), we have

< lim Sup(anﬂrl - ani) + (1 - C)M/ lim a,

1—00 1— 00

= —lim inf(amH - ani)

i—00
<0,

2
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which implies

(3.18) Zlir(r}o || wn, — Tan’fwni =0.
Now,
[wn = @] = |20 + On(2n — 2n1) — 20|
<4, Ha:n — Ty
= 0,. 0 Nz — zn1|| — 0 @SN — 00,
hence, '
(3.19) ZILI?O |wn, — xn,|| = 0.

From (3.2) and[(3.18), we have
9 — whl| = [|B,wn + (1 — 6n)Tan’¢wn — wh|

< (1= B,) T, — w,l| — 0 asn — oo,

that is
(3.20) Bim [lyn, = wa,|| = 0
It is easy to see fronj (3.119) arid (3] 20), that
(3.21) |Yn: — o || < [Yn; — Wiy || + [Jwn, — 20, || — 0 @Si — 0.
Again from [3.2), we have
[0n; = Ynill < @l 2n]]
(lyn = Syall* + | Ayn — T Ayn|?)

)

”ZnH

thus by [3.1R), we get

|Un, — Yn,|| — 0 @Si — 0.

It follows from this and[(3.19), that

(3.22) Zlirono |Un, — wp, || = 0.
By using (C1),[(3.R) and (3.12), we derive
Tn, 11 — Tuy |l < anl|n, — fzn)|| + (1 — an,)ary, || 2n,
< an||tm — flan)|| + (1 - ani)a(Hyni - SymHQHt ||z|?2yni - TAyni||2)7
which shows :
(3.23) Zlg& | Zn, 41 — Tn;|| = 0.

We now show thalim sup b,,, < 0. Indeed, it suffices to show that

1—00

lim sup(f(p) = p, Tn,41 —p) < 0.

1—00

Let {xmj} be a sequence dfr,,, } such that
L (f(p) = p, 2n,, — p) = limsup{f(p) — p, zn, = p)

Since{z,,} is bounded, there exists a subseque{me } of {z,,} such that,, — ¢ € C.
Without loss of generality, we may assume that— ¢, we obtain by[(3.19), thab — q. We
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also have by[(3.21) anf (3]22) that andv,,, both converge weakly to g. Hence, by (3.14) and
demiclosedness principle we have that Fiz(S). Also, sinceA is a bounded linear operator
we have thatdy,, — Ag, thus by [[3.I4) again we obtain tha € Fiz(T'). Finally, we show
thatq € MEP(F, ¢). Letu, = T w,, we have by Lemmp 2,3, that

Flun,9) + 0(y) = 0lut) + y — g~ wn) 2 0,y € Hy.

n

Now, sinceF' is a monotone mapping, we obtaify) —¢(un)+%<y—un, Up—wp) > F(y,uy)
and hence(y) — ¢(un,) + = (Y — Un,, Un, — Wy, > F(y,u,,) forally € H,. It follows from

Tn,

(3.18), thatu,,, — q. We obtain by (C3),[(3.18) and the proper lower semicontinuity tfat
(3.24) F(y,q) + ¢(q) —o(y) <0, Vy € H.

Lety, =ty + (1 —t)g,forall0 <t < 1landy € H,. Itis easy to see that ¢ H,, thus [3.24)
hold fory = ;. that is

(3.25) F(ye, q) + ¢(a) — ¢(ye) < 0.
From assumption (A1-A6) and (3]25), we have

0= F(y,y) + ¢(y:) — ¢(t)

<tF(yy) + (1 =) F (v, q) +to(y) + (1 = 1)d(q) — to(ye) — (1 — ) (ye)
= t[F(y1,y) + ¢(y) — d(y)] + (1 = )[F (v, 0) + ¢(a) — d(ye)]

< tF(y, y) + d(y) — ¢(ve)]-

Therefore, we obtain

(3.26) tf (e, y) +o(y) — o(y)] >0, Vy € Hy.

Letting ¢t — 0 in (3.28), obtainf(q,y) + ¢(y) — ¢(q) > 0, Yy € H,, thus we have; €
MEP(F,¢). Henceg € T".
From (3.8) and[(3.23), we have

limsup(f(p) — p, Tn,41 — p) < limsup(f(p) — p, Tn,41 — Tn,)

+ limsup(f(p) — p, Tn; — p)
= limsup(f(p) — p,zn, — p)
j—o00
=(f(p) —p,q—p)
0.

IN

We conclude by Lemna 2.5 thét,, } converges strongly to a poipte I', wherep = Pr f(p),
The proof is complete.

4. NUMERICAL EXAMPLE

In this section, we provide some numerical examples to illustrate the efficiency of Alggiiithm 1
and we compare the accelerated and non accelerated method for the SCFPPMEP.

Example 4.1.LetC = H, = R = H, and define the bounded linear operatér: H, — H,
by Az = 2z for all x € R. Define the bifunctiod” : C' x C' — R by F(x,y) = 32° + xy + 2y°

AJMAA Vol. 21(2024), No. 1, Art. 16, 16 pp. AIMAA


https://ajmaa.org

14 M. A. OLONA, A. MAHARAJ AND O. K. NARAIN

and¢ : C — R by ¢(x) = 0. Now, we compute = T/?(x). That is, we find: € C such that
forall z € C

0> Fi(u, z) + ¢(u) +i<z—u,u—x>

n

1
= —3u® tuz+22°+ —(z—uu—u1)
T'n

that is
0> —3ru® + rpuz + 2r,22 + (2 — u,u — )
= —3r,u 4+ rouz + 2r,2% +uz — xz — ut + ux
= 2r,2° + (rpu +u + 2)z + (—=3r,u — u? + ur).

Leth(z) = 2r,2% + (rpu+u — )z + (—3r,u* — u? + uz). Thenh(z) is a quadratic function
of z with coefficients = 2r,,,b = r,u + v — z, andc = —3r,u? — u® + uz. We determine the
discriminantA of i(z) as follows:

A = (rpu+u+u)? —4(2r,)(=3r,u® — u® + uw),
= 25riu2 + 10r,u® + u? — 10r,ux — 2ux + xQ,
4.1) = ((57 + Du — z)*.

By Lemm3T,§v¢ is single-valued. Hence, it follows thatz) has at most one solution R.
Therefore, fron{@.1) we have that, = —~—. This impliesI’’**(z) = -~ forall z € H;.

5rp+1° 5rp+1
Define the mappings§ : R — Rand7 : R — R by S(z) = —2z andT(x) = —3uz,
respectively. We sgt(z) = %,03, = 515, 0 = 75,60 = 5.0 = 3,7 = 522N AIgorithmB

for eachn € N. It can easily be verified that all the condition of Theoré8) are satisfied.
We choose different initial values as follows:

Case 1lzg = 1.78, 1 = 1.5;
Case 2xy = 0.5, 1 = 0.15;
Case 3zy = 0.05, z1 = 0.95.
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