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ABSTRACT. We present a continuous function par, 7] whose Fourier series diverges and it
cannot be rearranged to converge by-permutation.
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2 A. CASTILLO AND J. CHAVEZ AND H. KIM

1.1. Fourier series. The Fourier series associated with a continuous funcfion [—, 7| is
defined by

f(0) ~ i ane™,

where
a, = i/Tr f(0)e=™adp
S S '

Herea,’s are called the Fourier coefficients ffand we denote by the Fourier series associ-
ated withf.

In the eighteenth century mathematicians experimentally showed that for some functions
(such as differentiable ones) pointwise convergence holds, i.e.,

n

(1.2) Z are™ — f(0) asn — oo .

Fourier claimed that this should always hold and Dirichlet rigorously formulated this conver-
gence under some general conditions. Dirichlet’s proof left an open question; whether the
Fourier series of every Riemann integrable function (or at least every continuous function) con-
verges back to the function. Dirichlet and many other mathematicians believed that the answer
was affirmative. However Du Bois—Reymond surprisingly introduced a counterexample in 1876
[1], showing that the Fourier series of a continuous function may diverge.

After this and more elaborate counterexamples the following question raised naturally. If
the Fourier series of a function diverges, is there anyway to fix this divergence, in other words
is it possible to reconstruct from the sequence of Fourier coefficients? One of the classic
approaches to accomplish this is by the us€e$aro meansrhe Cesaro means of a sequence
{z,} is the sequencéy,, } defined by

1 1+ T2 Z;‘lﬂxj
Y1 = y Yo = yeeey Yn = .
1 2 n

Note that if{z,,} converges to some numbér then so doegy, } to the same number. But

there are instances whefre, } diverges but the Cesaro medng } converges, e.gr,, = (—1)".

When this process of Cesaro means is applied to the sequence of partial sums of a Fourier series
of a continuous function, we guarantee the pointwise convergence to the associated function,
see[5, page 97]. One drawback of this approach is the computational efficiency. Indeed adding
SO0 many terms together is not always the most efficient approach in computational problems.

1.2. \-permutations. An alternative way of fixing divergent Fourier series isopermutations.
The notions of convergence-preserving rearrangements\gramutations were introduced
first in the context of real series, se€él[3, 6] and references therein. It was later noticed that these
permutations can be applied to divergent Fourier series [4].
A \-permutation (see [3] for examples) is defined to be a permutatwithe natural num-
bers with the following two properties:

(@) If > a, converges ther)  a,,, converges.
n=1 n=1
(b) Thereis) a, that diverges bud  a,(,) converges.
n=1 n=1

In other wordsg is a A\-permutation if it is convergence-preserving and if there is at least one
divergent series that it renders convergent. We denote the set of all such permutathioria by
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[6], Velleman furthered the discussion ®fpermutations with the notion of the block number
and obtained a characterization for convergence-preserving permutations.

First, we define a block as a set of consecutive integed;, = {x € Z : ¢ < x < d}. Then
for a permutatiorr and a positive integer, we can write

{O'(].),CT(Q), e ,O'(TL)} = [Cladl]Z U [CQ,dQ]Z U---u [Cbn,dbn}z

as a union of disjoint blocks of consecutive integers. Herkeeps track of number of disjoint
blocks and{b,, }°°, is called the block number sequencerof

Theorem 1.1 (Velleman 2006) The following statements concerning a permutatoaf the
natural numbers are equivalent:

(a) o is convergence-preserving.
(b) The block number sequencecois bounded.
(c) o is sum-preserving.

With this characterization, a permutatierns a\-permutation if and only if the block number
sequence of is bounded but the block number sequence ofis unbounded.

1.3. Fixing Fourier series by A-permutations. In the early 1900s, Fejér constructed a func-
tion F'(x) that is continuous of-m, 7] but whose Fourier series divergesrat 0. \We present
the following rendition ofF’(x) that turns out to be computationally more efficient. For details
of the claims (for a similar example) we refer o [7, page 298].
Let a, = (k(log(k))?>)~t and N, = {(1 1)k(log(k))? W for k € Z. The key properties aof;,

and N, are:

(1) > ap < o0,

(2) Nk—‘rl > 3N, if k& > 1,

(3) limg_.o ay log N, = 00
Now for any N, € N, let

bin N i
Qn, () = ™" E —
j=—Ng J
Jj#0

Then one can show th&ly, () is uniformly bounded off—=, 7], see also Lemna 3.3 below.
Now we defineF'(z) as

[o@)
= aQw, (z)
k=2
o0 ‘ Ne - ije
E : IOg -1 621ka E ‘ ’
k=2 j=—Ng J
J#0

the series uniformly converges and thereféirer) is a continuous function. Le$,y, F'(z)
denote the firs2 NV, partial sums of the Fourier series Bfz). We have that

2Ny, 2Ny —1

S F(x) = 3 (mlogm)*) ™ 32—

ijx

m=2 j:Nm
From this, one can deduce that

khrn San, F'(0) = o0.
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4 A. CASTILLO AND J. CHAVEZ AND H. KIM

A less rigorous (but quicker) way of seeing the divergence of the Fourier serggdfs an
implementation of these functions in MATLAR Figure 1 below shows that even at an early
stage of the functions, it is clear théiy, /'(xz) does not behave very well at= 0. With only
five terms, we see that, . F'(z) does not closely approximaté(z).

Figure 1: [Color online] Graph ofF'(x) (blue) and its partial Fourier series (red) whén= 5.

It was noted in[[4] that using a-permutation one can then fix the divergence of the Fourier
series ofF’'(x). More precisely, there exists)apermutations such that the rearranged Fourier
series by, denoted by5¢, F'(x), converges pointwise tB(z).

This result leads to the following natural question. Is it possible to fix any divergent Fourier
series by a\-permutation? The answer would give a good comparison between fixing divergent
series by Cesaro means andspermutations. Below we answer the question in negative.

Theorem 1.2. There exists a continuous functiéiiz) on[—m, =] with the following properties:
(1) limy_, Sy F'(0) does not exist,

(2) limy_ S F(0) does not exist for any € A,
(3) limpy o SR F'(0) does exist for some ¢ A.

2. PROOF

Our construction of the desired functidf(z) is a composition of Fejer’s idea (see [2]), and
ideas inl[4] 6]. We start with an explicit example of a conditionally convergent series that cannot
be rearranged to converge by\gpermutation. The similar example inl [6] does not lead to a
function F'(x) with the desired properties so we modify this example carefully. The rest of the
construction is similar to the example in [4].

2.1. The hopping sequence.The following permutation of integers is an essential piece in our
construction. For any € N, permute the integerdsl, 2,--- ,2N} as

(2.1) {2N,1,2N —1,2,2N —2,3,--- ,N+2,N —1, N+ 1,N}.
We label this permutation by.
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Let 3, = 7~ and N, = 2"’ and consider the following infinite sum

By By By B By 5,
Y, =2 P NI S S ' S S
1=7 gt +N1 1 2 N,
_|_..

B . B B, Br B By,
Tttt +Nk 1 2 N,

Lemma 2.1. 3, is divergent. However, there exists\gpermutation that rearranges; into a
convergent series.

Proof. We see the divergence by showing that the sequence of partial stinssafiot Cauchy.
Indeed, the stretch of terms

Br | By B
p T T N,
can be estimated from below. For ahy> 1,
Be | B B o 1
T—F?—F""FMEEIHNICJA

1

TR
On the other hand, we can rearrange the term3 @fo that a nice cancellation happens. Indeed,
the rearranged series

(k+1)°In2 > kln2.

ﬁl ﬁl ﬁl 61 ﬁl /61

1L 1 T2 2T T,
Br B, B B By By

L T T R A

is an alternating series with general term approacbirigurthermore, this simple rearrangement
has a bounded block number sequence, actually it is bounded Hgnce this permutation is
convergence-preserving. Additionally, it fix€s therefore it is indeed a-permutations

Next, we consider the following series,

By B 15 B B B
Be  Be B B B Bk
T TN T ) n(N)

Lemma 2.2. 3, is divergent. However, na-permutation rearrange&, into a convergent
series.

Proof. ¥, diverges for the same reason as in Lenjma 2.1. Suppose that thevgermutation
o that fixes¥,. Let's denote the rearranged (convergent series}bgnd it is partial sums by
(35);. Then there existd/ such that for all; > I, > M,

(22) (§2)ll — (iQ)lz < 1.
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Now let’'s choose a sufficiently largesuch that all the terms,
Oe Be - B
172 N,

appear after the first/ terms ofS,. Letm; + 1 be the first position where one of these terms
shows up andn, be the last position where the last of these terms shows dp.inn other
words, the difference

(22>m2 - (EQ)ml
contains all the terms

Be By . Pr
1727 N,
In the sum of all the term&t, 2%, ..., £, we will have the smallest block number when the
difference(Xs)m, — (X2)m, keeps the order of these terdis -, - -, 2= as follows:
B | B, B B | B
2.3 Poy Pe Py oy Py P
(2.3) 1+2+3+ +Nk—1+Nk

The block number keeps increasing whenever we switch the order of these%tel%qs R ]@—’Z.
Now, let’s consider the best possible scenario for the finite block number which has the smallest
block number and note that this differen(@),., — (X2).,, may contain some more of positive

terms but it should contain certain amount of negative terms, otherwise we get a contradiction

with (Z.2). That is, the differences),n, — (22)m, l0oks like

B | B B B B
TR A R b v R i i v

where@ is a positive term and is a negative term. Also, notice that these negative terms
should appear frequently often between the positive ternjs ih (2.3), otherwise we can again find
a stretch of positive terms that would violafe {2.2).

When the permutation inserts the negative terms &, in between the positive terms in
(2.9), it has to insert at least two consecutive ones together. Otherwise, the hopping sequence
would increase the block number arbitrarily large. For example, if we insert a negative term one

by one to fix the sum_™* 3, /n to be convergent, the permutatierwill be

B 1 2 3 4 5 6
7 1 Ny+2 2 Ny+4 3 Ny+6 - )
Then the block number of this permutation is unbounded because
{0<1)7 T 7U(Nk>} -

[1,%]U [Nk+2,Nk—|—2]U [Nk+4,Nk—|—4]U [Nk+6,Nk—|—6]U"' ,
whereN, is 2+*.

Since the permutation inserts at least two consecutive negative termg irj (2.3), the negative
terms can separaf€, many positive terms at most infg, /2 blocks. However, by pigeon-hole
principle there has to be a block of positive terms with sum greater than 1 because once we
use all negative terms to fix the sum (2.3), there will still be a block in where the sum of all
terms isO(k). This again contradicts with (2.2). To meet Cauchy’s criterion] (2.2) we will have
infinitely many blocks, so we conclude that Agpermutation can fix,. 1
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Remark 2.1. Although no A-permutation fixes,, the rearrangement similar to the one in
Lemmd 2.1 turngl; into a convergent series. Indeed, the rearranged series

G B BB B B

L n?2) 2 n4) Ny (1)
B _ Bu  Be_ Be . B B
1 ?7(2)+2 77(4)Jr N, n(1)

is an alternating series with general term approackiingHowever, the permutation has an
unbounded block number sequence. Hence, it is neparmutation.

2.2. Function. In this part, we construct the desired function in Theofem 1.2 by following
ideas in[[2, page 8]/ [7, page 298] and [4].
For any even positive integéy¥, we define

On() = (Z exp(i2N — j)v) S exp(i(2N + j)@) |

s j s n(j)

Lemma 2.3. Qx () is uniformly bounded of-, ].

Proof. Let's setN = 2n. Then, we have

O = (Z Xp(2N — j)r) _ g expli(N + j)x))

j = n(j)
B €i4nx e—ix + e—2ia: + o + 6—2m'a;
- 1 2 on

iz 2ix 3ix (2n—1)iz 2nix
_ itna <e e e e e )

j=1

o T T T T o T

- ei4mv efix N 6721'1 N N 672mz
B 1 2 2n

idne 6211‘ 647,x 62717,1’
—etr

1 2 n

" el edix 6(2n—1)i:c
— ¢ (%+2n—1+”'+ n+1 )

B 6i4nw efia: N 6721'1 N N 672m'x
B 1 2 2n

B ez’4nx er N 641':13 N N eZnix
1 2

n

B eian e—ia: N e—3ix N N e—(?n—l)ix
n+1 n+2 2n '

Each piece of the three expressions inside parentheses are uniformly bounded by [7, page 299,
Equation 1.7]. Therefor@ (z) is a uniformly bounded exponential polynomigl.
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Again, let3,, = - and N, = 2¥°, now we define?(z) as

F(z) =) 8,Qn.(x).

By Lemmd 2.8 and Weierstrads-test, it is clear thaf’(x) is continuous ori—, 7]. Next, we
verify three claims in Theorefn J.2. We start by computing the Fourier serig¢0f which is
immediate sincé’(x) is sum of exponential terms:

Nm

~ > exp (i (2N,, — j) x NmeXiZNm ) x
PWNE%@:M(_JH_ZPHWﬁﬁv'

j=1 J j=1

Here, it is not difficult to checBN ;1) < N, — 1 for k > 2 and

k—1 Nm, . . Nm, . .
S F(p) — oxp (i (2Nm —j) ) ™ exp (0 2Nm + ) 7)
on, () 2 B (; ; ; )
8, (exp(ika) N exp(i(Ny + 1)x) S exp(i(2Ny — 1)91:)) |
1 2 Ny,
Sy F(z) = Sﬁ %exp(i(?]\fm—j)x) _%exp(i(ﬂ\fm—i-j)x)
et =\ & j j= n(j) '
Thus, we observe, for > 2,

exp(iz) N exp(i2x) P exp(iNpw) % iNe=Dz_
1 2 N,

SQNkF(l’) — SNkle(.CE) = ﬁk (

When we plug inc = 0, we get

1 1 1
S2NkF(O) - SNkle(O) = ﬁk (I —+ 5 + e+ m)
> L (Vo) > kIn(2).

= 12
This shows thalim .., Sy F(0) does not exist.

For the second claim, we look at the Fourier serieB @tz = 0. We note thaty F'(0) is ex-
actly the partial sums of the seriEs in Lemmd 2.2. Therefore, we conclude thaty_... S F(0)
does not exist for any € A.

Finally by the Remarl, we conclude thahy .., S§ F'(0) does exist for somg ¢ A.
This completes the proof of Theor¢m]1.2.

3. FURTHER DIRECTIONS

After this curious relation between divergent Fourier series)apdrmutations some natural
guestions arise. Here we list a few of them.

e One can investigate the computational efficiency of fixing divergent Fourier series by
Cesaro means and bypermutations. In our calculations with the Fejér's example
above the summation step was generally quite clumsy. However, the rearrangement
approach performed faster. The study of numerical efficiency is an interesting direction
to pursue.
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e Here we presented two different functions, both with divergent Fourier series but one
can be fixed by\-permutations whereas the other cannot. Hence it is a natural question
to search for necessary and/or sufficient conditions for functions whose Fourier series
behave well undek-permutations.

e Pointwise convergence is not the only mode of convergence and the other modes of
convergence for Fourier series have been investigated in quite details. What is the effect
of A-permutations on other modes of convergence? In particular\,-geEmmutations be
used to produce more uniformly convergent Fourier series?
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