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2 A. CASTILLO AND J. CHAVEZ AND H. K IM

1.1. Fourier series. The Fourier series associated with a continuous functionf on [−π, π] is
defined by

f̃(θ) ∼
∞∑

n=−∞

ane
inθ,

where

an =
1

2π

∫ π

−π

f(θ)e−inθdθ .

Herean’s are called the Fourier coefficients off and we denote bỹf the Fourier series associ-
ated withf .

In the eighteenth century mathematicians experimentally showed that for some functions
(such as differentiable ones) pointwise convergence holds, i.e.,

(1.1)
n∑

k=−n

ake
ikθ → f(θ) asn →∞ .

Fourier claimed that this should always hold and Dirichlet rigorously formulated this conver-
gence under some general conditions. Dirichlet’s proof left an open question; whether the
Fourier series of every Riemann integrable function (or at least every continuous function) con-
verges back to the function. Dirichlet and many other mathematicians believed that the answer
was affirmative. However Du Bois–Reymond surprisingly introduced a counterexample in 1876
[1], showing that the Fourier series of a continuous function may diverge.

After this and more elaborate counterexamples the following question raised naturally. If
the Fourier series of a function diverges, is there anyway to fix this divergence, in other words
is it possible to reconstructf from the sequence of Fourier coefficients? One of the classic
approaches to accomplish this is by the use ofCesàro means. The Cesàro means of a sequence
{xn} is the sequence{yn} defined by

y1 =
x1

1
, y2 =

x1 + x2

2
, . . . , yn =

∑n
j=1 xj

n
.

Note that if{xn} converges to some numberL, then so does{yn} to the same number. But
there are instances where{xn} diverges but the Cesàro means{yn} converges, e.g.xn = (−1)n.
When this process of Cesàro means is applied to the sequence of partial sums of a Fourier series
of a continuous function, we guarantee the pointwise convergence to the associated function,
see [5, page 97]. One drawback of this approach is the computational efficiency. Indeed adding
so many terms together is not always the most efficient approach in computational problems.

1.2. λ-permutations. An alternative way of fixing divergent Fourier series is byλ-permutations.
The notions of convergence-preserving rearrangements andλ-permutations were introduced
first in the context of real series, see [3, 6] and references therein. It was later noticed that these
permutations can be applied to divergent Fourier series [4].

A λ-permutation (see [3] for examples) is defined to be a permutationσ of the natural num-
bers with the following two properties:

(a) If
∞∑

n=1

an converges then
∞∑

n=1

aσ(n) converges.

(b) There is
∞∑

n=1

an that diverges but
∞∑

n=1

aσ(n) converges.

In other words,σ is aλ-permutation if it is convergence-preserving and if there is at least one
divergent series that it renders convergent. We denote the set of all such permutations byΛ. In
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REARRANGEMENT OFDIVERGENT FOURIER SERIES 3

[6], Velleman furthered the discussion ofλ-permutations with the notion of the block number
and obtained a characterization for convergence-preserving permutations.

First, we define a block as a set of consecutive integers[c, d]Z = {x ∈ Z : c ≤ x ≤ d}. Then
for a permutationσ and a positive integern, we can write

{σ(1), σ(2), . . . , σ(n)} = [c1, d1]Z ∪ [c2, d2]Z ∪ · · · ∪ [cbn , dbn ]Z

as a union of disjoint blocks of consecutive integers. Herebn keeps track of number of disjoint
blocks and{bn}∞n=1 is called the block number sequence ofσ.

Theorem 1.1(Velleman 2006). The following statements concerning a permutationσ of the
natural numbers are equivalent:

(a) σ is convergence-preserving.
(b) The block number sequence ofσ is bounded.
(c) σ is sum-preserving.

With this characterization, a permutationσ is aλ-permutation if and only if the block number
sequence ofσ is bounded but the block number sequence ofσ−1 is unbounded.

1.3. Fixing Fourier series by λ-permutations. In the early 1900s, Fejér constructed a func-
tion F (x) that is continuous on[−π, π] but whose Fourier series diverges atx = 0. We present
the following rendition ofF (x) that turns out to be computationally more efficient. For details
of the claims (for a similar example) we refer to [7, page 298].

Let αk = (k(log(k))2.1)−1 andNk =
⌈
(1.1)k(log(k))2.1

⌉
, for k ∈ Z. The key properties ofαk

andNk are:

(1)
∑

αk < ∞,
(2) Nk+1 > 3Nk if k ≥ 1,
(3) limk→∞ αk log Nk = ∞.

Now for anyNk ∈ N, let

QNk
(x) = e2iNkx

Nk∑
j=−Nk

j 6=0

eijx

j
.

Then one can show thatQNk
(x) is uniformly bounded on[−π, π], see also Lemma 2.3 below.

Now we defineF (x) as,

F (x) =
∞∑

k=2

αkQNk
(x)

=
∞∑

k=2

(k(log(k))2.1)−1

e2iNkx

Nk∑
j=−Nk

j 6=0

eijx

j

 ,

the series uniformly converges and thereforeF (x) is a continuous function. LetS2Nk
F (x)

denote the first2Nk partial sums of the Fourier series ofF (x). We have that

S2Nk
F (x) =

2Nk∑
m=2

(m(log(m))2.1)−1 ·
2Nm−1∑
j=Nm

eijx

j − 2Nm

.

From this, one can deduce that
lim
k→∞

S2Nk
F (0) = ∞.
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4 A. CASTILLO AND J. CHAVEZ AND H. K IM

A less rigorous (but quicker) way of seeing the divergence of the Fourier series ofF (x) is an
implementation of these functions in MATLABc©. Figure 1 below shows that even at an early
stage of the functions, it is clear thatS2Nk

F (x) does not behave very well atx = 0. With only
five terms, we see thatS2N5F (x) does not closely approximateF (x).

Figure 1: [Color online] Graph ofF (x) (blue) and its partial Fourier series (red) whenk = 5.

It was noted in [4] that using aλ-permutation one can then fix the divergence of the Fourier
series ofF (x). More precisely, there exists aλ-permutationσ such that the rearranged Fourier
series byσ, denoted bySσ

NF (x), converges pointwise toF (x).
This result leads to the following natural question. Is it possible to fix any divergent Fourier

series by aλ-permutation? The answer would give a good comparison between fixing divergent
series by Cesàro means and byλ-permutations. Below we answer the question in negative.

Theorem 1.2.There exists a continuous functionF (x) on [−π, π] with the following properties:

(1) limN→∞ SNF (0) does not exist,
(2) limN→∞ Sσ

NF (0) does not exist for anyσ ∈ Λ,
(3) limN→∞ Sρ

NF (0) does exist for someρ 6∈ Λ.

2. PROOF

Our construction of the desired functionF (x) is a composition of Fejer’s idea (see [2]), and
ideas in [4, 6]. We start with an explicit example of a conditionally convergent series that cannot
be rearranged to converge by aλ-permutation. The similar example in [6] does not lead to a
functionF (x) with the desired properties so we modify this example carefully. The rest of the
construction is similar to the example in [4].

2.1. The hopping sequence.The following permutation of integers is an essential piece in our
construction. For anyN ∈ N, permute the integers{1, 2, · · · , 2N} as

(2.1) {2N, 1, 2N − 1, 2, 2N − 2, 3, · · · , N + 2, N − 1, N + 1, N}.
We label this permutation byη.
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Let βk = 1
k2 andNk = 2k3

and consider the following infinite sum

Σ1 =
β1

1
+

β1

2
+ · · ·+ β1

N1

− β1

1
− β1

2
− · · · − β1

N1

+ · · ·

+
βk

1
+

βk

2
+ · · ·+ βk

Nk

− βk

1
− βk

2
− · · · − βk

Nk

+ · · ·
Lemma 2.1. Σ1 is divergent. However, there exists aλ-permutation that rearrangesΣ1 into a
convergent series.

Proof. We see the divergence by showing that the sequence of partial sums ofΣ1 is not Cauchy.
Indeed, the stretch of terms

βk

1
+

βk

2
+ · · ·+ βk

Nk

can be estimated from below. For anyk ≥ 1,

βk

1
+

βk

2
+ · · ·+ βk

Nk

≥ 1

k2
ln Nk+1

=
1

k2
(k + 1)3 ln 2 > k ln 2.

On the other hand, we can rearrange the terms ofΣ1 so that a nice cancellation happens. Indeed,
the rearranged series

β1

1
− β1

1
+

β1

2
− β1

2
+ · · ·+ β1

N1

− β1

N1

+ · · ·

+
βk

1
− βk

1
+

βk

2
− βk

2
+ · · ·+ βk

Nk

− βk

Nk

+ · · ·
is an alternating series with general term approaching0. Furthermore, this simple rearrangement
has a bounded block number sequence, actually it is bounded by2. Hence this permutation is
convergence-preserving. Additionally, it fixesΣ1 therefore it is indeed aλ-permutation.

Next, we consider the following series,

Σ2 =
β1

1
+

β1

2
+ · · ·+ β1

N1

− β1

η(1)
− β1

η(2)
− · · · − β1

η(N1)

+ · · ·

+
βk

1
+

βk

2
+ · · ·+ βk

Nk

− βk

η(1)
− βk

η(2)
− · · · − βk

η(Nk)

+ · · ·
Lemma 2.2. Σ2 is divergent. However, noλ-permutation rearrangesΣ2 into a convergent
series.

Proof. Σ2 diverges for the same reason as in Lemma 2.1. Suppose that there is aλ-permutation
σ that fixesΣ2. Let’s denote the rearranged (convergent series) byΣ̃2 and it is partial sums by
(Σ̃2)l. Then there existsM such that for alll1 > l2 ≥ M ,

(2.2)
∣∣∣(Σ̃2)l1 − (Σ̃2)l2

∣∣∣ < 1.
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6 A. CASTILLO AND J. CHAVEZ AND H. K IM

Now let’s choose a sufficiently largek such that all the terms,

βk

1
,
βk

2
, · · · ,

βk

Nk

appear after the firstM terms ofΣ̃2. Let m1 + 1 be the first position where one of these terms
shows up andm2 be the last position where the last of these terms shows up inΣ̃2. In other
words, the difference

(Σ̃2)m2 − (Σ̃2)m1

contains all the terms
βk

1
,
βk

2
, · · · ,

βk

Nk

.

In the sum of all the termsβk

1
, βk

2
, · · · , βk

Nk
, we will have the smallest block number when the

difference(Σ̃2)m2 − (Σ̃2)m1 keeps the order of these termsβk

1
, βk

2
, · · · , βk

Nk
as follows:

(2.3)
βk

1
+

βk

2
+

βk

3
+ · · ·+ βk

Nk−1

+
βk

Nk

.

The block number keeps increasing whenever we switch the order of these termsβk

1
, βk

2
, · · · , βk

Nk
.

Now, let’s consider the best possible scenario for the finite block number which has the smallest
block number and note that this difference(Σ̃2)m2− (Σ̃2)m1 may contain some more of positive
terms but it should contain certain amount of negative terms, otherwise we get a contradiction
with (2.2). That is, the difference(Σ̃2)m2 − (Σ̃2)m1 looks like

βk

1
+

βk

2
+ · · ·+⊕ · · · 	+	+

βk

3
+	+ · · ·+⊕+	+

βk

Nk−1

+ · · ·+ βk

Nk

,

where⊕ is a positive term and	 is a negative term. Also, notice that these negative terms
should appear frequently often between the positive terms in (2.3), otherwise we can again find
a stretch of positive terms that would violate (2.2).

When the permutationσ inserts the negative terms ofΣ2 in between the positive terms in
(2.3), it has to insert at least two consecutive ones together. Otherwise, the hopping sequence
would increase the block number arbitrarily large. For example, if we insert a negative term one
by one to fix the sum

∑Nk

n=1 βk/n to be convergent, the permutationσ will be

σ =

(
1 2 3 4 5 6 · · ·
1 Nk + 2 2 Nk + 4 3 Nk + 6 · · ·

)
.

Then the block number of this permutation is unbounded because

{σ(1), · · · , σ(Nk)} =

[1,
Nk

2
] ∪ [Nk + 2, Nk + 2] ∪ [Nk + 4, Nk + 4] ∪ [Nk + 6, Nk + 6] ∪ · · · ,

whereNk is 2k3
.

Since the permutationσ inserts at least two consecutive negative terms in (2.3), the negative
terms can separateNk many positive terms at most intoNk/2 blocks. However, by pigeon-hole
principle there has to be a block of positive terms with sum greater than 1 because once we
use all negative terms to fix the sum (2.3), there will still be a block in where the sum of all
terms isO(k). This again contradicts with (2.2). To meet Cauchy’s criterion (2.2) we will have
infinitely many blocks, so we conclude that noλ-permutation can fixΣ2.
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REARRANGEMENT OFDIVERGENT FOURIER SERIES 7

Remark 2.1. Although noλ-permutation fixesΣ2, the rearrangement similar to the one in
Lemma 2.1 turnsΣ2 into a convergent series. Indeed, the rearranged series

β1

1
− β1

η(2)
+

β1

2
− β1

η(4)
+ · · ·+ β1

N1

− β1

η(1)

+ · · ·

+
βk

1
− βk

η(2)
+

βk

2
− βk

η(4)
+ · · ·+ βk

Nk

− βk

η(1)

+ · · ·

is an alternating series with general term approaching0. However, the permutation has an
unbounded block number sequence. Hence, it is not aλ-permutation.

2.2. Function. In this part, we construct the desired function in Theorem 1.2 by following
ideas in [2, page 8], [7, page 298] and [4].

For any even positive integerN , we define

QN(x) =

(
N∑

j=1

exp(i(2N − j)x)

j
−

N∑
j=1

exp(i(2N + j)x)

η(j)

)
.

Lemma 2.3. QN(x) is uniformly bounded on[−π, π].

Proof. Let’s setN = 2n. Then, we have

QN(x) =

(
N∑

j=1

exp(i(2N − j)x)

j
−

N∑
j=1

exp(i(2N + j)x)

η(j)

)

= ei4nx

(
e−ix

1
+

e−2ix

2
+ · · ·+ e−2nix

2n

)
− ei4nx

(
eix

2n
+

e2ix

1
+

e3ix

2n− 1
+ · · ·+ e(2n−1)ix

n + 1
+

e2nix

n

)
= ei4nx

(
e−ix

1
+

e−2ix

2
+ · · ·+ e−2nix

2n

)
− ei4nx

(
e2ix

1
+

e4ix

2
+ · · ·+ e2nix

n

)
− ei4nx

(
eix

2n
+

e3ix

2n− 1
+ · · ·+ e(2n−1)ix

n + 1

)
= ei4nx

(
e−ix

1
+

e−2ix

2
+ · · ·+ e−2nix

2n

)
− ei4nx

(
e2ix

1
+

e4ix

2
+ · · ·+ e2nix

n

)
− ei6nx

(
e−ix

n + 1
+

e−3ix

n + 2
+ · · ·+ e−(2n−1)ix

2n

)
.

Each piece of the three expressions inside parentheses are uniformly bounded by [7, page 299,
Equation 1.7]. ThereforeQN(x) is a uniformly bounded exponential polynomial.
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8 A. CASTILLO AND J. CHAVEZ AND H. K IM

Again, letβk = 1
k2 andNk = 2k3

, now we defineF (x) as

F (x) =
∞∑

k=1

βkQNk
(x).

By Lemma 2.3 and WeierstrassM -test, it is clear thatF (x) is continuous on[−π, π]. Next, we
verify three claims in Theorem 1.2. We start by computing the Fourier series ofF (x), which is
immediate sinceF (x) is sum of exponential terms:

F̃ (x) ∼
∞∑

m=1

βm

(
Nm∑
j=1

exp (i (2Nm − j) x)

j
−

Nm∑
j=1

exp (i (2Nm + j) x)

η(j)

)
.

Here, it is not difficult to check3N(k−1) ≤ Nk − 1 for k ≥ 2 and

S2Nk
F (x) =

k−1∑
m=1

βm

(
Nm∑
j=1

exp (i (2Nm − j) x)

j
−

Nm∑
j=1

exp (i (2Nm + j) x)

η(j)

)

+βk

(
exp(iNkx)

1
+

exp(i(Nk + 1)x)

2
+ · · ·+ exp(i(2Nk − 1)x)

Nk

)
,

SNk−1F (x) =
k−1∑
m=1

βm

(
Nm∑
j=1

exp (i (2Nm − j) x)

j
−

Nm∑
j=1

exp (i (2Nm + j) x)

η(j)

)
.

Thus, we observe, fork ≥ 2,

S2Nk
F (x)− SNk−1F (x) = βk

(
exp(ix)

1
+

exp(i2x)

2
+ · · ·+ exp(iNkx)

Nk

)
× ei(Nk−1)x.

When we plug inx = 0, we get

S2Nk
F (0)− SNk−1F (0) = βk

(
1

1
+

1

2
+ · · ·+ 1

Nk

)
≥ 1

k2
ln(Nk+1) ≥ k ln(2).

This shows thatlimN→∞ SNF (0) does not exist.
For the second claim, we look at the Fourier series ofF atx = 0. We note thatSNF (0) is ex-

actly the partial sums of the seriesΣ2 in Lemma 2.2. Therefore, we conclude thatlimN→∞ Sσ
NF (0)

does not exist for anyσ ∈ Λ.
Finally by the Remark 2.1, we conclude thatlimN→∞ Sρ

NF (0) does exist for someρ 6∈ Λ.
This completes the proof of Theorem 1.2.

3. FURTHER DIRECTIONS

After this curious relation between divergent Fourier series andλ-permutations some natural
questions arise. Here we list a few of them.

• One can investigate the computational efficiency of fixing divergent Fourier series by
Cesàro means and byλ-permutations. In our calculations with the Fejér’s example
above the summation step was generally quite clumsy. However, the rearrangement
approach performed faster. The study of numerical efficiency is an interesting direction
to pursue.
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• Here we presented two different functions, both with divergent Fourier series but one
can be fixed byλ-permutations whereas the other cannot. Hence it is a natural question
to search for necessary and/or sufficient conditions for functions whose Fourier series
behave well underλ-permutations.

• Pointwise convergence is not the only mode of convergence and the other modes of
convergence for Fourier series have been investigated in quite details. What is the effect
of λ-permutations on other modes of convergence? In particular, canλ-permutations be
used to produce more uniformly convergent Fourier series?
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