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ABSTRACT. In this paper, we consider some features of almost invariant subspace notion. At
first, we restate the notion of almost invariant subspace and obtain some results. Then we try
to achieve an invariant subspace completely close to an almost invariant subspace. Also, we

introduce the notion of “almost equivalent subspaces ” to simply the subject related to almost
invariant subspaces and apply it.
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1. INTRODUCTION

Invariant subspace problem is a longstanding problem in functional analysis which has been
solved for some classical Banach spaces but still remained open for reflexive Banach spaces,
as well as, for Hilbert spaces. A moderate approach in this context which has been introduced
by Androulakis, Popov, Tcaciuc and Troitsky [1], and followed by Marcoux and Radjavi [2], is
called almost invariant subspace.

For a Banach spac¥ and a bounded linear operattron X, a closed subspadeé of X is
called almost invariant undér, if there exists a finite-dimensional subspadeof X such that
TY C Y + M. FurthermoreM can be chosen with minimum dimension. In this situation,

M anddyr = dim M are respectively called error amtfectof Y underT. It is simply

seen that every finite-dimensional or finite-codimensional subspadeisfalways an almost
invariant under every operator oXi. So, it is reasonable that the study of almost invariant
subspaces restricted only half-spaceswhich are subspaces with both infinite dimension and
infinite codimension inX .. In contrast to the invariant subspace problem, the existence of almost
invariant half-space has been proven for all bounded operators on reflexive Banach|spaces [4],
and also for most important classes of operators on Banach spaces, such as compact operators,
conjugated operators, and quasinilpotent operators [5]; however, it is open in general setting.
As a last effort, it has been shown that the set of all operators which have at least one almost
invariant half-space witle fect < 1 is norm-dense in the algebra of all of bounded operators
[6].

In section 2, we propose an equivalent statement for almost invariant subspace. In section 3,
we search some conditions for finding an invariant subspace different from an almost invariant
subspace by a finite-dimensional subspace.

Throughout the papef is a complex Banach space andBgX ), we denote the set of all
bounded linear operators oXi. By a “subspace” of Banach space, we always mean a closed
subspace. Also by an “operator” on a Banach space, we always mean a bounded linear operator.

2. AN EQUIVALENT RESTATEMENT FOR ALMOST INVARIANT SUBSPACE
AND SOME RESULTS

The following result of Androulakis, Popov, et al [1] gives an equivalent statement for almost
invariant subspace which relates this notion to invariant subspace of a finite rank perturbation
of underlying operator.

Proposition 2.1. Let T € B(X) andY be a subspace of. ThenY is an almost invariant
subspace undéf if and only ifY" is invariant under?’ + F' for some finite rank operataf’.

The finite rank operatoF’ is not unique, and can be chosenaskF = dy . Even, there
exists a finite rank projectioR such thatt’ = PT. In fact, wherel'Y C Y + M anddim M =
dyr, P is a projection with rang@/ and kernel including’.

Let Y be an almost invariant subspace underThere exists a finite dimensional subspace
M of X such thatl'’y C Y + M. ThusT*(Y + M)+ C Y*. Since(Y + M)+ =Y+nM*,
we conclude that™(Y+ N M*) C Y+ where M is a finite-codimensional subspace %f.
This inspires us to look at almost invariant subspace from a new point of view.

Proposition 2.2. LetT € B(X) andY be a subspace ok. ThenY is an almost invariant
subspace undér if and only if there exists a finite-codimentional subspatef X such that
T(Y N N) C Y. Moreover, if N is a subspace of the minimum codimension thetim N =

dy .
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Proof. GivenY an almost invariant subspace undeéerLet M be a subspace of the minimum
dimension such thaf’Y” C Y + M. For the quotient map : X — X/Y, ¢(M) is a finite-
dimensional subspace 6f/Y. So there exists a subspateC X /Y such thatl’ & q(M) =
X/Y. SinceY N M = {0}, by settingL = ¢~*(L), we haveM & L = X andL D Y.

Now, consider the operatdr : X/T-'L — X/L by T(xz + T 'L) = Tz + L. SinceT is
one-to-onegodimT 'L = dimX /T 'L < dimX/L < oco. PutN =T-'L. So

T(YNN)=T(YNT'L)CTYNLC(Y+M)NL=Y.

Conversely, givernV a finite-codimensional subspace¥fsuch that'(Y " N) C Y. Let N
be a subspace of the smallest codimension.

Y + N = X; because, it + N # X, then there exists € X \ (Y + N). By set-
ting N' = N + span{z}, we haveY N N’ = Y N N and soT(Y N N’) C Y. However
codimN' < codimN .

SinceY + N = X, we can find a finite-dimensional subspade of X thatM/; C Y and
M, ® N = X. Now

TY CT(YAN)+M)CTY NN)+TM, CY +TM,.

For the second part of the proposition, we choose the subspateninimum codimension
such thatv O T'L, then

dyr < dimT M, < dimM; = codimN < codimT 'L < codimL
= dimM = dny.

HencecodimN = dy r.
|

The following proposition which is similar to lemma 2.1 In [3] is expressed according to new
restatement of almost invariant subspace.

Proposition 2.3. LetY be a subspace of, C a collection of bounded operators on, and N
a finite-codimensional subspace_®fof minimum codimension such tH&tY N N) C Y, for
all T € C. Then

(i) Y+ N =X;

(i) There exists a projectio® with kernelN such that7" — T'P)Y C Y forall T' € C;

(iiiy For the projectionP in (ii), Npec(TP)™Y = N;

(iv) If C consists of a single operatdr then N can be chosen such that > 7-'Y; and

(v) If C is an algebra of operators, antl a half-space, thed admits an invariant half-

space included ify".

Proof. (i) It can be shown as in proposition 2.2, for a single operator.

(i) SinceY + N = X, there exists a finite-dimensional subspa¢ef X with M/ C Y and
M @& N = X. Consider the projectio on X with kernel N and rangeV/. For anyy € Y, we
havey = yy; + yn for somey,, € M andyy € N.yy € Y, because,, € M C Y and so

(T —-TP)yy=T(I—-Ply=TyyeT(YNN)CY
forall 7" e C.
(iii) Obviously, N C (T'P)~*(0) C (TP)"Y(Y) for all T € C. Conversely, letr ¢ N.
x = xp + xy, for somexy, € M andxy € N. SetN' = N + span{zy }. SinceN’ D N,
there exist§" € C suchthal'(Y N N') € Y. Choosey e YN N'withTy ¢ Y.y = z + axy

for somez € N and scalatr. Alsoz € Y because,; € M C Y. NowTy = Tz+aTx). But
Ty¢Y,andTz € T(Y NN) CY.Hencel Pz =Tz, ¢ Y whichmeans ¢ (TP)"'Y.
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(iv) By subspacé\/ introduced in (ii),Y = (Y N N) + M, and
TY CT(YNN)+TM CY +TM.

Y NTM = {0}, becauselimTM < dimM = dyr. As we saw in proof of proposition 2.2,
there exists a finite-codimensional subspagef X with Ny & TM = X, andN; O Y. Now,
TYNTIN,) CYandT !N, D T7Y.

(v) Here, we show that” N N is invariant undec.

DenoteZ = Y N(NrecT'Y). SinceC is an algebra of operators, the subsp&ds invariant
underC. If P is the projection introduced in (ii), then by (i~ (N7<cT~'Y) = N. Hence,

YNN=YNP  (NpeeTY) =Y N (NpeeT'Y) = 2.

SinceY is a half-space and/ of finite codimensionY N N is an invariant half-space under
C.n

If the subspacé” is almost invariant undef’, thenY * is also almost invariant undér-.
In fact, there is a finite-rank operatér with rankF = dyr such tha(7T" + F)Y C Y. So,
(T*+ F*)Y+t C Yt andT*Y+ C Y+ + F*YL. This follows thaty* is almost invariant under
T* anddy . p« < rankF* = rankF = dy. Now, we show thatly . 7. = dy 7.

Proposition 2.4. LetT € B(X), andY be a subspace of . If Y is almost invariant undet’,
thenY is almost invariant undef™. Moreoverdy . 7. = dy.r.

Proof. According to above argument, it is sufficient to show ttiat . > dy,r. Let M be a
finite-dimensions| subspace such tiiat C Y + M, anddimM = dy . At first, we show that
Y+ + M= X"

SinceY N M = {0}, as we saw in the proof of proposition 2.2, there is a finite-codimension
N suchthatV O Y andM & N = X. Let P be the projection with rang® and kernelV. P*
is also a projection,

M+ = (PX)* = ker P,
and
N* = (ker P)* = P*X = P*X.
This means\/+ @& N+ = X*. Therefore:
Y+t 4+ MO N+ Mt =X

SinceTY C Y + M, we havel*(Y+ N M+) C Y+ Let N D M+ be a subspace of*
such thatr*(Y+ N N) C Y1, Chooser* € N\ M+ andm € M with z*(m) # 0. Since
Y+4+ M+ = X*, 2" = y*+m* for somey* € Y+ andm* € M+, and also fromly 7 = dim M,
there existy, y; € Y such thatl'y = y; + m. We have

(T*y*)y = y*(Ty) = y*(y1 +m) = y*(m) = z*(m) # 0.

ThereforeT'y* ¢ Y-+. Buty* = 2* —m* € Y- N N, that is a contradiction. It results thaf-
is the subspace of minimum codimension such g™+ N M+) C Y+, By proposition 2.2,

dyL7T* = codimML =dim M = dy,T.
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3. INVARIANT SUBSPACES ALMOST EQUIVALENT TO ALMOST
INVARIANT SUBSPACES

For a subspac¥ of X, and an operatdf’ on X, the subspace
Vi=cdUZ, (Y +TY +..+T"Y))
is invariant undefl’. In the cas&’ is invariant undefl’, V' is equal toY". But in the cas&”
is almost invariant under’, V' enlarges, and will be the smallest invariant subspace including

Y. Infact, if Z is an invariant subspace including thenT™Y C T"Z C Z, for all n, and so
V' C Z. In other words]" has a nontrivial invariant subspace includirigf and only if

AUy (Y +TY + .. +T"Y) # .X

Now, let M be a finite-dimensional subspace with minimum dimension suclthiat Y + M.
By lemma 2.1 (iii) in [3], M can be chosen such that C 7Y and so

AU (Y +TY 4+ ... +T"Y)) = (U (Y + M + ... + T ' M)).

Also

YCY+MCY+M+TMC ..
is an ascending chain of almost invariant subspaces. If this chain eventually stdps!t.&/ C
Y+ M+ ...+ T"M, for some integen, then

AU, Y +TY + ... +TY) =Y+ M+TM+ .. +T"M

is the smallest invariant subspace undeéincluding Y which differs fromY by a finite-
dimensional subspace.

Similarly, by the new restatement of almost invariant subspace, we can construct the largest
invariant subspace included in an almost invariant subspace.

For the subspac¥, and an operatdf’, the subspac®” := Y N (N2, 7 "Y) is invariant
under7'. If Y is invariant undefl’, thenl¥ = Y. But in the cas&” is almost invariant under
T, W will be the largest invariant subspace included'in Indeed, ifZ is invariant subspace
included inY’, thenz C T-"Z C T~"Y, for all n, and solW' O Z. In other words;" has a
nontrivial invariant subspace included¥hif and only if

YN, 77"Y) #0.
By proposition 2.2, there exists a finite-codimensional subspaeagth minimum codimen-

sion such that'(Y N N) C Y. Also, by proposition 2.3 (iv)/N can be chosen such that
N D T7'Y. Therefore

YN, T7"Y)=Y N (N2, T "N).
Since
TYNNN.NT"N)CYANN..nT- " VN
and7T "N is of finite codimension,
YDOYNNDOYNNNT'ND ..

is a descending chain of almost invariant subspaces includédAdso, if this chain eventually
stops, i.eT-"tUN DY NNN..NT "N, for somen, then
YNn(me, 7 "Y)=YNNNn..NT™"N

is the largest invariant subspace undeéiincluded inY which differs fromY by a finite-
dimensional subspace.

The above argument leads us to characterize the subspacevith respect to finite dimen-
sional subspaces.
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For the subspaces; andY;, we sayY; is almost equivalent td5 if there exist finite-
dimensional subspacéd, and M5, such that; + M; = Y5 + M,. This relationship is clearly
an equivalent relation.

Let Y be an almost invariant subspace und@ieaindY; be almost equivalent tg. If M and
M, are two finite-dimensional subspaces such hat M = Y; + M, then

"Y1 (Y+M)CTY+T"MCY+N+T"MCY1+My+N+T"M
wheredy ;» = dim N. So
dy, 7n < dyn + dim M; + dim M.
This shows that; is also almost invariant undér. Similarly,
dyn < dy, 7» + dim M; + dim M
and this motivates the following lemma.
Lemma 3.1. LetY; andY; be almost invariant subspaces under operaforif Y; andY; are

almost equivalent, then
sup |dy, rn — dy, | < 00
n

ForT € B(X) andY as a subspace of, we denote:
Dr(Y)=YNT'Y
Ur(Y)=Y +TY

By lemma 3.4 in[[3], ifY" is almost invariant undéf then D+ (Y) andUr(Y') are also almost
invariant undefl’, anddy.r = dimY/Dp(Y) = dim Up(Y) /Y.

Popov Show that it is a half-space of(', almost invariant undef’ such thatdp (v r >
dyr, anddU%(Y)yT > dyr for all k, thendy ; > m for all m [3].

We modify Popov’s proof to obtain the following proposition which is an extension of this
lemma having sufficient condition. In fact, ¥f is an almost invariant subspace under operator

T, thendy < ndyr, for all n. The next proposition states what happengif» = ndy r,
for all n.

Proposition 3.2. Let Y be an almost invariant subspace under operdior 5(X). There
exists a subspacg almost equivalent td” with dz < dyr if and only ifdy - < ndyr, for
somen.

Proof. Suppose that is a subspace almost equivalentfavith d; r < dyr. By lemma 3.1,
there is an integer > 0 such thatdy r» — dz | < k, for all n. So
deTn < dZ7Tn + k S ndZ/T + k.

Sincedz r < dyr, by settingn large enough, we havg - < ndy .

Conversely, suppose that for every subspaegmost equivalent td”, we haved, > dy.r.
Let dy.r = m and{e;}*, be linearly independent vectors such that C Y & span{e;} ;.
There exist linearly independent vectdkg }7*, C Y, and vectory?}™, C Y, thatTe! =
y? + e;. Itis clear thatD7(Y) N span{e}}™, = {0} anddim Y/Dr(Y) = dyr = m. So

T(Dr(Y)) €Y = Dr(Y) @ spanf{el },.
SinceDE(Y) is almost equivalent t& for all &, dD%(Y),T > dyr = m and for eaclk, we can
obtain linearly independent vectofs}, C Di~(Y), and vectorgyF~'}m, C DE(Y),
thatTel = 45! 4 ¥, Thus

Tke;C = Tk_lyf_1 o+ Ty + 942 + e
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So, for eachl < i < m andk > 1 there existg; , € Y such thatl™™e} =y, ;. + ¢;.
Now, we prove by induction

U (Y) =Y @ span{e )™, @ ... © span{T"e;} 7
It's obvious wherek = 0. Suppose this is true far > 1. DenoteM = span{e;},. We
e Ur'(Y) = Ur(UR(Y)) = UF(Y) + T(UR(Y))
=YOM®.0T" "M+ (TY +TM + ... + T"M)
=YOM®.oT'M+TM =UKNY)+TFM.
SinceU%(Y') is almost equivalent t&’, dys(v),r = dy,r = m. On the other hand,

TUE(Y)) CUEN(Y) = UE(Y) +T"M.

So,dim T*M = m, andU;™(Y) = UL(Y) @ T*M.
It means that the vectof§ *e;} 7, C UET (V') are linearly independent angan{T"%¢;}7,N
Uk(Y) = {0}, for all k.
Given integers: > 1 and1l < k£ < n, we have
T"ef — Tn—ka k — Tn_k(yik + 62) Tn k: Tn k

SinceT™ *y;, € Ur*(Y), the vectors{T"*e;} ™, C Ui~ ’““(Y) are Ilnearly independent,
andspan{T" %e;}, N UZ " (Y) = {0}, so the vectoriT” Mm  C URMH(Y) are linearly
independent, ansiuan{T" Mm nUR YY) ={0},for1 <k <n.

It follows that7™Y containsndy.r vectors{T"el, ..., T"ek }n_ which are linearly indepen-
dent andspan{T"ek, ..., T"e* }n_ NY = {0}. Thereforedy 7« > ndyr. 1

The following proposition gives a necessary and sufficient condition for existence of invariant
subspaces almost equivalent to almost invariant subspaces.

Proposition 3.3. Let7T € B(X) andY be a subspace of. 7" has an invariant subspace almost
equivalent toY” if and only if

sup dy,pm < 00.
Proof. Given Z as an invariant subspace undéralmost equivalent td". Let M; and M, be
two finite-dimensional subspaces such tHat M; = Z + M,. We have

TY CT™Z+My) =T"Z+T"My CZ+T"My CY + My +T™ M,

So,dy rm < dim M; 4 dim M, for all m.

Conversely, suppose thatp,, dy,r= < co. Thendy < ndyr for somen. By proposition
3.2, there exists a subspate almost equivalent td” such thatdy, » < dyr < oo, and by
lemma 3.1sup,, dy, 7= < oco. By replacingY; with Y, we get a subspade almost equivalent
to Y7 such thatly, v < dy, r < dy,r < oo, andsup,, dy, r» < oo. Finally, after the finite steps,
we obtain the subspace almost equivalent td” such thatl; = 0, andZ is invariant under
T. 1

Proposition 3.4. For T' € B(X) and subspac#” of X, we have
dyr2 2 dp(v)r + duy(v),r

Proof. Let dyr = n, and{e;}!", be linearly independent vectors such that C Y +
span{e; }',. Asin the proof of proposition 3.2, there are linearly independent vetefs | C
Y, and vectors{yZ 1 €Y suchthatl'z; = y; +e;, for1 <i <n,and

Y = Dp(Y) @ span{z;}1,

AJMAA Vol. 15, No. 2, Art. 4, pp. 1-9, 2018 AJMAA


http://ajmaa.org

8 M. A. FARZANEH AND A. ASSADI AND H. M. MOHAMMADINEJAD

Suppose thalp,. vy = k. We can find linearly independent vectars, ..., w;, € span{z;}i_,
such that

T(Dr(Y)) € Dr(Y) @ span{w;}i,.
We can also choose linearly independent vectars}* , C Dr(Y), and vectorgy!}¥ , C
D7(Y) such thaftw; =y} + w;, for1 <i < k. So
T?w; = Ty; +Tw; €Y + spanfe; }1_,

for 1 <i < k. Itis easily seen that the vectof$?w} }¥_, C Ur(Y) are linearly independent,
andspan{T?w}}*_, NY = {0}.
On the other hand,

T(Ur(Y)) CUr(Y) + span{Te; }I;.

Suppose thady, vy r = [, and{u;}\_,; C span{Te;}I, are linearly independent vectors such
that

T(Ur(Y)) CUp(Y) @ span{u;}i_,.

Here, we can choose linearly independent vecfer$!_, C Ur(Y), and vectors[y/}._, C
Ur(Y) such thatl'v; = y. + u;, for 1 < i <. Sincev; € Up(Y), there exist;, y! € Y such
thatTw} =y +v;, for1 <i <. Also

T?v} = Ty! +Tv; = Ty +y, +u; € Up(Y) + span{Te;} !,

for 1 <i <. Itis clear thatthe vectorsI?v} }._, are linearly independent argan{T?v}}!_,N
UT(Y) = {O}

This follows thatI™?Y containsk + [ linearly independent vectof§?w} }*_,, and{T?v}}!_,
such that no non-zero linear combination of these vectors beloigstencedy - > k+1 =
dprvyr + dugp(vyr- B

Continuing the inequality of the previous proposition, the following inequalities are obtained.

dyrs 2 dpp2v)r + duppzovyr + dpvzovyr + duvzy).r
and in general
3.1 dy pan > d n—
(3.0) ZEE DY SOSWSE.. 50D, ()1
SO, StV e(DU}

This inequality motivates the next corollary.

Corollary 3.5. LetT € B(X) andY be a half-space oK. If dy,+ < k, for somek, thenT
has an invariant subspace almost equivalent'tdn this casesup,, dy,rm < oco.

Proof. Letdy,r = m anddy ,+ < k — 1, for an integek > 0. We choose an integer> 0 such
that2" > k*m. Denoter = [2-] andg = 2" — rk. Itis clear that- > km and0 < ¢ < k. Since
dnyS < dy,T + dy’g, we have

dy,ror = dyraerry < dyro +dy iy < gm+r(k—1) =gm +2" —q—r
<gm+2"—r<km+2"—r <2"

Therefore,dy -~ < 2" and by the inequality (3.1)]" admits an invariant subspace almost
equivalent toY". Also, by proposition 3.3up,, dyrm < 0. 1
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