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ABSTRACT. In this paper, we consider some features of almost invariant subspace notion. At
first, we restate the notion of almost invariant subspace and obtain some results. Then we try
to achieve an invariant subspace completely close to an almost invariant subspace. Also, we
introduce the notion of “almost equivalent subspaces ” to simply the subject related to almost
invariant subspaces and apply it.
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1. INTRODUCTION

Invariant subspace problem is a longstanding problem in functional analysis which has been
solved for some classical Banach spaces but still remained open for reflexive Banach spaces,
as well as, for Hilbert spaces. A moderate approach in this context which has been introduced
by Androulakis, Popov, Tcaciuc and Troitsky [1], and followed by Marcoux and Radjavi [2], is
called almost invariant subspace.

For a Banach spaceX and a bounded linear operatorT on X, a closed subspaceY of X is
called almost invariant underT , if there exists a finite-dimensional subspaceM of X such that
TY ⊆ Y + M . Furthermore,M can be chosen with minimum dimension. In this situation,
M and dY,T = dim M are respectively called error anddefectof Y underT . It is simply
seen that every finite-dimensional or finite-codimensional subspace ofX is always an almost
invariant under every operator onX. So, it is reasonable that the study of almost invariant
subspaces restricted only tohalf-spaces, which are subspaces with both infinite dimension and
infinite codimension inX. In contrast to the invariant subspace problem, the existence of almost
invariant half-space has been proven for all bounded operators on reflexive Banach spaces [4],
and also for most important classes of operators on Banach spaces, such as compact operators,
conjugated operators, and quasinilpotent operators [5]; however, it is open in general setting.
As a last effort, it has been shown that the set of all operators which have at least one almost
invariant half-space withdefect ≤ 1 is norm-dense in the algebra of all of bounded operators
[6].

In section 2, we propose an equivalent statement for almost invariant subspace. In section 3,
we search some conditions for finding an invariant subspace different from an almost invariant
subspace by a finite-dimensional subspace.

Throughout the paper,X is a complex Banach space and byB(X), we denote the set of all
bounded linear operators onX. By a “subspace” of Banach space, we always mean a closed
subspace. Also by an “operator” on a Banach space, we always mean a bounded linear operator.

2. AN EQUIVALENT RESTATEMENT FOR ALMOST INVARIANT SUBSPACE
AND SOME RESULTS

The following result of Androulakis, Popov, et al [1] gives an equivalent statement for almost
invariant subspace which relates this notion to invariant subspace of a finite rank perturbation
of underlying operator.

Proposition 2.1. Let T ∈ B(X) and Y be a subspace ofX. ThenY is an almost invariant
subspace underT if and only ifY is invariant underT + F for some finite rank operatorF .

The finite rank operatorF is not unique, and can be chosen asrankF = dY,T . Even, there
exists a finite rank projectionP such thatF = PT . In fact, whereTY ⊆ Y +M anddim M =
dY,T , P is a projection with rangeM and kernel includingY .

Let Y be an almost invariant subspace underT . There exists a finite dimensional subspace
M of X such thatTY ⊆ Y + M . ThusT ∗(Y + M)⊥ ⊆ Y ⊥. Since(Y + M)⊥ = Y ⊥ ∩M⊥,
we conclude thatT ∗(Y ⊥ ∩ M⊥) ⊆ Y ⊥ whereM⊥ is a finite-codimensional subspace ofX∗.
This inspires us to look at almost invariant subspace from a new point of view.

Proposition 2.2. Let T ∈ B(X) and Y be a subspace ofX. ThenY is an almost invariant
subspace underT if and only if there exists a finite-codimentional subspaceN of X such that
T (Y ∩ N) ⊆ Y . Moreover, ifN is a subspace of the minimum codimension thencodimN =
dY,T .
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Proof. GivenY an almost invariant subspace underT . Let M be a subspace of the minimum
dimension such thatTY ⊆ Y + M . For the quotient mapq : X −→ X/Y , q(M) is a finite-
dimensional subspace ofX/Y . So there exists a subspaceL′ ⊆ X/Y such thatL′ ⊕ q(M) =
X/Y . SinceY ∩M = {0}, by settingL = q−1(L′), we haveM ⊕ L = X andL ⊇ Y .

Now, consider the operator̃T : X/T−1L −→ X/L by T̃ (x + T−1L) = Tx + L. SinceT̃ is
one-to-one,codimT−1L = dimX/T−1L ≤ dimX/L < ∞. PutN = T−1L. So

T (Y ∩N) = T (Y ∩ T−1L) ⊆ TY ∩ L ⊆ (Y + M) ∩ L = Y.

Conversely, givenN a finite-codimensional subspace ofX such thatT (Y ∩N) ⊆ Y . Let N
be a subspace of the smallest codimension.

Y + N = X; because, ifY + N 6= X, then there existsx ∈ X \ (Y + N). By set-
ting N ′ = N + span{x}, we haveY ∩ N ′ = Y ∩ N and soT (Y ∩ N ′) ⊆ Y . However
codimN ′ < codimN .

SinceY + N = X, we can find a finite-dimensional subspaceM1 of X thatM1 ⊆ Y and
M1 ⊕N = X. Now

TY ⊆ T ((Y ∩N) + M1) ⊆ T (Y ∩N) + TM1 ⊆ Y + TM1.

For the second part of the proposition, we choose the subspaceN of minimum codimension
such thatN ⊇ T−1L, then

dY,T ≤ dimTM1 ≤ dimM1 = codimN ≤ codimT−1L ≤ codimL

= dimM = dY,T .

Hence,codimN = dY,T .

The following proposition which is similar to lemma 2.1 in [3] is expressed according to new
restatement of almost invariant subspace.

Proposition 2.3. LetY be a subspace ofX, C a collection of bounded operators onX, andN
a finite-codimensional subspace ofX of minimum codimension such thatT (Y ∩ N) ⊆ Y , for
all T ∈ C. Then

(i) Y + N = X;
(ii) There exists a projectionP with kernelN such that(T − TP )Y ⊆ Y for all T ∈ C;

(iii) For the projectionP in (ii), ∩T∈C(TP )−1Y = N ;
(iv) If C consists of a single operatorT thenN can be chosen such thatN ⊇ T−1Y ; and
(v) If C is an algebra of operators, andY a half-space, thenC admits an invariant half-

space included inY .

Proof. (i) It can be shown as in proposition 2.2, for a single operator.
(ii) SinceY + N = X, there exists a finite-dimensional subspaceM of X with M ⊆ Y and

M ⊕N = X. Consider the projectionP onX with kernelN and rangeM . For anyy ∈ Y , we
havey = yM + yN for someyM ∈ M andyN ∈ N . yN ∈ Y , becauseyM ∈ M ⊆ Y and so

(T − TP )y = T (I − P )y = TyN ∈ T (Y ∩N) ⊆ Y

for all T ∈ C.
(iii) Obviously, N ⊆ (TP )−1(0) ⊆ (TP )−1(Y ) for all T ∈ C. Conversely, letx /∈ N .

x = xM + xN , for somexM ∈ M andxN ∈ N . SetN ′ = N + span{xM}. SinceN ′ ) N ,
there existsT ∈ C such thatT (Y ∩N ′) * Y . Choosey ∈ Y ∩N ′ with Ty /∈ Y . y = z + αxM

for somez ∈ N and scalarα. Alsoz ∈ Y becausexM ∈ M ⊆ Y . NowTy = Tz+αTxM . But
Ty /∈ Y , andTz ∈ T (Y ∩N) ⊆ Y . Hence,TPx = TxM /∈ Y which meansx /∈ (TP )−1Y .
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(iv) By subspaceM introduced in (ii),Y = (Y ∩N) + M , and

TY ⊆ T (Y ∩N) + TM ⊆ Y + TM.

Y ∩ TM = {0}, becausedimTM ≤ dimM = dY,T . As we saw in proof of proposition 2.2,
there exists a finite-codimensional subspaceN1 of X with N1 ⊕ TM = X, andN1 ⊇ Y . Now,
T (Y ∩ T−1N1) ⊆ Y andT−1N1 ⊇ T−1Y .

(v) Here, we show thatY ∩N is invariant underC.
DenoteZ = Y ∩(∩T∈CT

−1Y ). SinceC is an algebra of operators, the subspaceZ is invariant
underC. If P is the projection introduced in (ii), then by (iii),P−1(∩T∈CT

−1Y ) = N . Hence,

Y ∩N = Y ∩ P−1(∩T∈CT
−1Y ) = Y ∩ (∩T∈CT

−1Y ) = Z.

SinceY is a half-space andN of finite codimension,Y ∩ N is an invariant half-space under
C.

If the subspaceY is almost invariant underT , thenY ⊥ is also almost invariant underT ∗.
In fact, there is a finite-rank operatorF with rankF = dY,T such that(T + F )Y ⊆ Y . So,
(T ∗ + F ∗)Y ⊥ ⊆ Y ⊥ andT ∗Y ⊥ ⊆ Y ⊥ + F ∗Y ⊥. This follows thatY ⊥ is almost invariant under
T ∗ anddY ⊥,T ∗ ≤ rankF ∗ = rankF = dY,T . Now, we show thatdY ⊥,T ∗ = dY,T .

Proposition 2.4. LetT ∈ B(X), andY be a subspace ofX. If Y is almost invariant underT ,
thenY ⊥ is almost invariant underT ∗. Moreover,dY ⊥,T ∗ = dY,T .

Proof. According to above argument, it is sufficient to show thatdY ⊥,T ∗ ≥ dY,T . Let M be a
finite-dimensionsl subspace such thatTY ⊆ Y + M , anddimM = dY,T . At first, we show that
Y ⊥ + M⊥ = X∗.

SinceY ∩M = {0}, as we saw in the proof of proposition 2.2, there is a finite-codimension
N such thatN ⊇ Y andM ⊕N = X. LetP be the projection with rangeM and kernelN . P ∗

is also a projection,

M⊥ = (PX)⊥ = ker P ∗,

and

N⊥ = (ker P )⊥ = P ∗X = P ∗X.

This meansM⊥ ⊕N⊥ = X∗. Therefore:

Y ⊥ + M⊥ ⊇ N⊥ + M⊥ = X∗.

SinceTY ⊆ Y + M , we haveT ∗(Y ⊥ ∩ M⊥) ⊆ Y ⊥. Let N ) M⊥ be a subspace ofX∗

such thatT ∗(Y ⊥ ∩ N) ⊆ Y ⊥. Choosex∗ ∈ N \ M⊥ andm ∈ M with x∗(m) 6= 0. Since
Y ⊥+M⊥ = X∗, x∗ = y∗+m∗ for somey∗ ∈ Y ⊥ andm∗ ∈ M⊥, and also fromdY,T = dim M ,
there existy, y1 ∈ Y such thatTy = y1 + m. We have

(T ∗y∗)y = y∗(Ty) = y∗(y1 + m) = y∗(m) = x∗(m) 6= 0.

Therefore,Ty∗ /∈ Y ⊥. But y∗ = x∗ −m∗ ∈ Y ⊥ ∩N , that is a contradiction. It results thatM⊥

is the subspace of minimum codimension such thatT ∗(Y ⊥ ∩M⊥) ⊆ Y ⊥. By proposition 2.2,

dY ⊥,T ∗ = codimM⊥ = dim M = dY,T .
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3. INVARIANT SUBSPACES ALMOST EQUIVALENT TO ALMOST
INVARIANT SUBSPACES

For a subspaceY of X, and an operatorT onX, the subspace

V := cl(∪∞n=1(Y + TY + ... + T nY ))

is invariant underT . In the caseY is invariant underT , V is equal toY . But in the caseY
is almost invariant underT , V enlarges, and will be the smallest invariant subspace including
Y . In fact, if Z is an invariant subspace includingY , thenT nY ⊆ T nZ ⊆ Z, for all n, and so
V ⊆ Z. In other words,T has a nontrivial invariant subspace includingY if and only if

cl(∪∞n=1(Y + TY + ... + T nY ) 6= .X

Now, letM be a finite-dimensional subspace with minimum dimension such thatTY ⊆ Y +M .
By lemma 2.1 (iii) in [3],M can be chosen such thatM ⊆ TY and so

cl(∪∞n=1(Y + TY + ... + T nY )) = cl(∪∞n=1(Y + M + ... + T n−1M)).

Also
Y ⊆ Y + M ⊆ Y + M + TM ⊆ ...

is an ascending chain of almost invariant subspaces. If this chain eventually stops, i.e.T n+1M ⊆
Y + M + ... + T nM , for some integern, then

cl(∪∞n=1(Y + TY + ... + T nY )) = Y + M + TM + ... + T nM

is the smallest invariant subspace underT including Y which differs from Y by a finite-
dimensional subspace.

Similarly, by the new restatement of almost invariant subspace, we can construct the largest
invariant subspace included in an almost invariant subspace.

For the subspaceY , and an operatorT , the subspaceW := Y ∩ (∩∞n=1T
−nY ) is invariant

underT . If Y is invariant underT , thenW = Y . But in the caseY is almost invariant under
T , W will be the largest invariant subspace included inY . Indeed, ifZ is invariant subspace
included inY , thenZ ⊆ T−nZ ⊆ T−nY , for all n, and soW ⊇ Z. In other words,T has a
nontrivial invariant subspace included inY if and only if

Y ∩ (∩∞n=1T
−nY ) 6= 0.

By proposition 2.2, there exists a finite-codimensional subspaceN with minimum codimen-
sion such thatT (Y ∩ N) ⊆ Y . Also, by proposition 2.3 (iv),N can be chosen such that
N ⊇ T−1Y . Therefore

Y ∩ (∩∞n=1T
−nY ) = Y ∩ (∩∞n=0T

−nN).

Since
T (Y ∩N ∩ ... ∩ T−nN) ⊆ Y ∩N ∩ ... ∩ T−(n−1)N

andT−nN is of finite codimension,

Y ⊇ Y ∩N ⊇ Y ∩N ∩ T−1N ⊇ ...

is a descending chain of almost invariant subspaces included inY . Also, if this chain eventually
stops, i.e.T−(n+1)N ⊇ Y ∩N ∩ ... ∩ T−nN , for somen, then

Y ∩ (∩∞n=1T
−nY ) = Y ∩N ∩ ... ∩ T−nN

is the largest invariant subspace underT included inY which differs fromY by a finite-
dimensional subspace.

The above argument leads us to characterize the subspace ofX with respect to finite dimen-
sional subspaces.
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For the subspacesY1 and Y2, we sayY1 is almost equivalent toY2 if there exist finite-
dimensional subspacesM1 andM2, such thatY1 + M1 = Y2 + M2. This relationship is clearly
an equivalent relation.

Let Y be an almost invariant subspace underT andY1 be almost equivalent toY . If M and
M1 are two finite-dimensional subspaces such thatY + M = Y1 + M1, then

T nY1 ⊆ T n(Y + M) ⊆ T nY + T nM ⊆ Y + N + T nM ⊆ Y1 + M1 + N + T nM

wheredY,T n = dim N . So

dY1,T n ≤ dY,T n + dim M1 + dim M.

This shows thatY1 is also almost invariant underT . Similarly,

dY,T n ≤ dY1,T n + dim M1 + dim M

and this motivates the following lemma.

Lemma 3.1. Let Y1 andY2 be almost invariant subspaces under operatorT . If Y1 andY2 are
almost equivalent, then

sup
n
|dY1,T n − dY2,T n| < ∞

ForT ∈ B(X) andY as a subspace ofX, we denote:

DT (Y ) = Y ∩ T−1Y

UT (Y ) = Y + TY

By lemma 3.4 in [3], ifY is almost invariant underT thenDT (Y ) andUT (Y ) are also almost
invariant underT , anddY,T = dim Y/DT (Y ) = dim UT (Y )/Y .

Popov Show that ifY is a half-space ofX, almost invariant underT such thatdDk
T (Y ),T ≥

dY,T , anddUk
T (Y ),T ≥ dY,T for all k, thendY,T m ≥ m for all m [3].

We modify Popov’s proof to obtain the following proposition which is an extension of this
lemma having sufficient condition. In fact, IfY is an almost invariant subspace under operator
T , thendY,T n ≤ ndY,T , for all n. The next proposition states what happens ifdY,T n = ndY,T ,
for all n.

Proposition 3.2. Let Y be an almost invariant subspace under operatorT ∈ B(X). There
exists a subspaceZ almost equivalent toY with dZ,T < dY,T if and only ifdY,T n < ndY,T , for
somen.

Proof. Suppose thatZ is a subspace almost equivalent toY with dZ,T < dY,T . By lemma 3.1,
there is an integerk > 0 such that|dY,T n − dZ,T n| < k, for all n. So

dY,T n < dZ,T n + k ≤ ndZ,T + k.

SincedZ,T < dY,T , by settingn large enough, we havedY,T n < ndY,T .
Conversely, suppose that for every subspaceZ almost equivalent toY , we havedZ,T ≥ dY,T .

Let dY,T = m and{ei}m
i=1 be linearly independent vectors such thatTY ⊆ Y ⊕ span{ei}m

i=1.
There exist linearly independent vectors{e1

i }m
i=1 ⊆ Y , and vectors{y0

i }m
i=1 ⊆ Y , thatTe1

i =
y0

i + ei. It is clear thatDT (Y ) ∩ span{e1
i }m

i=1 = {0} anddim Y/DT (Y ) = dY,T = m. So

T (DT (Y )) ⊆ Y = DT (Y )⊕ span{e1
i }m

i=1.

SinceDk
T (Y ) is almost equivalent toY for all k, dDk

T (Y ),T ≥ dY,T = m and for eachk, we can

obtain linearly independent vectors{ek
i }m

i=1 ⊆ Dk−1
T (Y ), and vectors{yk−1

i }m
i=1 ⊆ Dk−1

T (Y ),
thatTek

i = yk−1
i + ek−1

i . Thus

T kek
i = T k−1yk−1

i + ... + Ty1
i + y0

i + ei.
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So, for each1 ≤ i ≤ m andk ≥ 1 there existsyi,k ∈ Y such thatT kek
i = yi,k + ei.

Now, we prove by induction

Uk+1
T (Y ) = Y ⊕ span{ei}m

i=1 ⊕ ...⊕ span{T kei}m
i=1.

It’s obvious wherek = 0. Suppose this is true fork ≥ 1. DenoteM = span{ei}m
i=1. We

have
Uk+1

T (Y ) = UT (Uk
T (Y )) = Uk

T (Y ) + T (Uk
T (Y ))

= Y ⊕M ⊕ ...⊕ T k−1M + (TY + TM + ... + T kM)

= Y ⊕M ⊕ ...⊕ T k−1M + T kM = Uk
T (Y ) + T kM.

SinceUk
T (Y ) is almost equivalent toY , dUk

T (Y ),T ≥ dY,T = m. On the other hand,

T (Uk
T (Y )) ⊆ Uk+1

T (Y ) = Uk
T (Y ) + T kM.

So,dim T kM = m, andUk+1
T (Y ) = Uk

T (Y )⊕ T kM .
It means that the vectors{T kei}m

i=1 ⊆ Uk+1
T (Y ) are linearly independent andspan{T kei}m

i=1∩
Uk

T (Y ) = {0}, for all k.
Given integersn ≥ 1 and1 ≤ k ≤ n, we have

T nek
i = T n−kT kek

i = T n−k(yi,k + ei) = T n−kyi,k + T n−kei.

SinceT n−kyi,k ∈ Un−k
T (Y ), the vectors{T n−kei}m

i=1 ⊆ Un−k+1
T (Y ) are linearly independent,

andspan{T n−kei}m
i=1 ∩ Un−k

T (Y ) = {0}, so the vectors{T nek
i }m

i=1 ⊆ Un−k+1
T (Y ) are linearly

independent, andspan{T nek
i }m

i=1 ∩ Un−k
T (Y ) = {0}, for 1 ≤ k ≤ n.

It follows thatT nY containsndY,T vectors{T nek
1, ..., T

nek
m}n

k=1 which are linearly indepen-
dent andspan{T nek

1, ..., T
nek

m}n
k=1 ∩ Y = {0}. Therefore,dY,T n ≥ ndY,T .

The following proposition gives a necessary and sufficient condition for existence of invariant
subspaces almost equivalent to almost invariant subspaces.

Proposition 3.3.LetT ∈ B(X) andY be a subspace ofX. T has an invariant subspace almost
equivalent toY if and only if

sup
m

dY,T m < ∞.

Proof. GivenZ as an invariant subspace underT , almost equivalent toY . Let M1 andM2 be
two finite-dimensional subspaces such thatY + M1 = Z + M2. We have

TmY ⊆ Tm(Z + M2) = TmZ + TmM2 ⊆ Z + TmM2 ⊆ Y + M1 + TmM2

So,dY,T m ≤ dim M1 + dim M2, for all m.
Conversely, suppose thatsupm dY,T m < ∞. ThendY,T n < ndY,T for somen. By proposition

3.2, there exists a subspaceY1 almost equivalent toY such thatdY1,T < dY,T < ∞, and by
lemma 3.1,supm dY1,T m < ∞. By replacingY1 with Y , we get a subspaceY2 almost equivalent
to Y1 such thatdY2,T < dY1,T < dY,T < ∞, andsupm dY2,T m < ∞. Finally, after the finite steps,
we obtain the subspaceZ almost equivalent toY such thatdZ,T = 0, andZ is invariant under
T .

Proposition 3.4. For T ∈ B(X) and subspaceY of X, we have

dY,T 2 ≥ dDT (Y ),T + dUT (Y ),T

Proof. Let dY,T = n, and {ei}n
i=1 be linearly independent vectors such thatTY ⊆ Y +

span{ei}n
i=1. As in the proof of proposition 3.2, there are linearly independent vectors{zi}n

i=1 ⊆
Y , and vectors{yi}n

i=1 ⊆ Y such thatTzi = yi + ei, for 1 ≤ i ≤ n, and

Y = DT (Y )⊕ span{zi}n
i=1.
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Suppose thatdDT (Y ),T = k. We can find linearly independent vectorsw1, ..., wk ∈ span{zi}n
i=1

such that

T (DT (Y )) ⊆ DT (Y )⊕ span{wi}k
i=1.

We can also choose linearly independent vectors{w1
i }k

i=1 ⊆ DT (Y ), and vectors{y1
i }k

i=1 ⊆
DT (Y ) such thatTw1

i = y1
i + wi, for 1 ≤ i ≤ k. So

T 2w1
i = Ty1

i + Twi ∈ Y + span{ei}n
i=1

for 1 ≤ i ≤ k. It is easily seen that the vectors{T 2w1
i }k

i=1 ⊆ UT (Y ) are linearly independent,
andspan{T 2w1

i }k
i=1 ∩ Y = {0}.

On the other hand,

T (UT (Y )) ⊆ UT (Y ) + span{Tei}n
i=1.

Suppose thatdUT (Y ),T = l, and{ui}l
i=1 ⊆ span{Tei}n

i=1 are linearly independent vectors such
that

T (UT (Y )) ⊆ UT (Y )⊕ span{ui}l
i=1.

Here, we can choose linearly independent vectors{vi}l
i=1 ⊆ UT (Y ), and vectors{y′i}l

i=1 ⊆
UT (Y ) such thatTvi = y′i + ui, for 1 ≤ i ≤ l. Sincevi ∈ UT (Y ), there existv1

i , y
′′
i ∈ Y such

thatTv1
i = y′′i + vi, for 1 ≤ i ≤ l. Also

T 2v1
i = Ty′′i + Tvi = Ty′′i + y′i + ui ∈ UT (Y ) + span{Tei}n

i=1

for 1 ≤ i ≤ l. It is clear that the vectors{T 2v1
i }l

i=1 are linearly independent andspan{T 2v1
i }l

i=1∩
UT (Y ) = {0}.

This follows thatT 2Y containsk+ l linearly independent vectors{T 2w1
i }k

i=1, and{T 2v1
i }l

i=1

such that no non-zero linear combination of these vectors belongs toY . Hence,dY,T 2 ≥ k+ l =
dDT (Y ),T + dUT (Y ),T .

Continuing the inequality of the previous proposition, the following inequalities are obtained.

dY,T 4 ≥ dDT D2
T (Y ),T + dUT D2

T (Y ),T + dDT U2
T (Y ),T + dUT U2

T (Y ),T

and in general

(3.1) dY,T 2n ≥
∑

S(0),...,S(n−1)∈{D,U}

d
S

(0)
T S

(1)

T2 S
(2)

T4 ...S
(n−1)

T2n−1 (Y ),T

This inequality motivates the next corollary.

Corollary 3.5. Let T ∈ B(X) andY be a half-space ofX. If dY,T k < k, for somek, thenT
has an invariant subspace almost equivalent toY . In this case,supm dY,T m < ∞.

Proof. Let dY,T = m anddY,T k ≤ k− 1, for an integerk > 0. We choose an integern > 0 such
that2n > k2m. Denoter = [2

n

k
] andq = 2n − rk. It is clear thatr ≥ km and0 ≤ q < k. Since

dY,TS ≤ dY,T + dY,S, we have

dY,T 2n = dY,T q(T k)r ≤ dY,T q + dY,(T k)r ≤ qm + r(k − 1) = qm + 2n − q − r

≤ qm + 2n − r < km + 2n − r ≤ 2n

Therefore,dY,T 2n < 2n and by the inequality (3.1),T admits an invariant subspace almost
equivalent toY . Also, by proposition 3.3,supm dY,T m < ∞.
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