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ABSTRACT. Motivated by the recent work of Deshmukh et al. 1[20], in this paper we show
that Tangent, Binormal, and Principal Normal indicatrices do not form non-trivial differential
equations. Finally, we obtain the 4th-order differential equations for spacelike and timelike
curves.
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1. INTRODUCTION

In differential geometry, the curve is among one of the fascinating topics. Helices, spherical
curves, and rectifying curves are a few important types of curves that appear in many important
applications. For example, helical structures arise in seashells, vines, carbon nanotubes, DNA
double, and nano-springs, etc. Though many authors [2,/3,/7, 12, 113,]16,/ 19]) 23, 15] studied
curves from the last several decades nevertheless curves are still a relevant and significant area
of the research. In the study of curves, the notion of associated curves is pretty exciting. If
there exist a mathematical relation between two or more curves, then the curves are known as
associated curves.

Izumiya et al. [[21] introduced some special curves which are known as a slant helix and
conical geodesic curves in Euclideaspace. Besides, Izumiya and Takeuchi gave some clas-
sifications of the special developable surfaces and obtained an example of a slant helix. In [11],
Kula et al. studied the spherical images of the tangent indicatrix and binormal indicatrix of a
slant helix. Moreover, they obtained that the spherical images of the slant helices are spherical
helices and a curve of constant precession is a slant helix.

In [1], Ali obtained the position vector of a general helix/x = m) associated with Frenet
frame and represented the general helix in terms of curvaturand torsion(7) through a
standard frame of Euclidea®space, wheren is a constant given byn = cos[¢], here¢
denotes the angle between the axis of a general helix and the tangent of the curve. In [2],
Ali et al. extended the concept of a slant helix to Euclidean space of dimensiand gave
the necessary and sufficient conditions for a curve in Euclideapace to be a slant helix.
Moreover, Ali also gave an example of a slant helix in Euclideapace.

Recently, Sahiner [3] defined the associated curves as integral curves of a vector field pro-
duced by Frenet vectors of the tangent indicatrix of a curve in Euclidespace and obtained
some relations between curvatures and Frenet vectors. Besides, he gave a few techniques to
obtain helices and slant helices from special spherical curves and constructed some examples
of it. In [4], B. Y. Chen investigated the characterization and classification of the rectifying
curves. On the other hand in [5], B. Y. Chen studied via rectifying curves that all geodesics on
an arbitrary cone in Euclidean space of dimensipare not necessarily a circular cone.

In [6], Yilmaz et al. used the system of linear ordinary differential equations to construct the
slant helices. Also, using integration in Minkowski 3-space, they obtained the position vectors
for slant helices. In[7], Camci et al. studied and obtained a spherical slant helix and gave some
examples of the spherical slant helices in Euclidean 3-spack! In [8], Arroyo et al. investigated
the unit speed curves contained in a real space form of arbitrary dimensibtoreover, they
gave a classification of semi-Riemannian Hopf cylinder#/¢f—1) and Hopf cylinders of5®
with proper mean curvature function.

In [9], Choi et al. introduced the concept of the principal-direction curve and principal-donor
curve of a Frenet curve in Euclidedrspace. Moreover, Choi et al. constructed a canonical
method for associated curves and characterized some associated curves in EQelipacs
Kula et al. [10] obtained a relationship between a slant helix and a general helix. Furthermore,
Kula et al. deduced some differential equations by characterizing of a slant helix and gave a
few examples of slant helices in Euclide@space.

In [17], Lucas et al. studied a weaker version of the classic slant helices in Minkowski 3-space
and Euclidean 3-space which are known as general slant helices. Furthermore, Lucas showed
that the classic slant helix is a general helix but the converse is not true. Also, he obtained
equations that involve the torsion and curvature.

In [19], Deshmukh et al. investigated the rectifying curves via the dilation of the unit speed
curve onS? (unit sphere) in Euclideattspace and obtained a necessary and sufficient condition
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for centrode of a unit speed curve in Euclidgaspace. Moreover, Deshmukh and Chen proved
that if a unit speed curve is neither a helix nor a planar curve, then its dilated centrode is always a
rectifying curve. Deshmukh et al. [20] shown that for every Frenet curve in Euclitlspace,

the distance function satisfies a 4th-order differential equation and using this they derived a new
characterization of helices. 1h [22], Ozdemir et al. introduced the notion of 3yglant helix
according to the parallel transport frame in Euclidésspace.

Motivated by Deshmukh et all_[20] in this paper, we investigate the distance function. We
show that Tangent, Binormal, and Principal Normal indicatrices do not form non-trivial dif-
ferential equations, and obtain the 4th-order differential equations for spacelike and timelike
curves.

2. PRELIMINARIES

In this section, we recall some basic concepts of the curves and indicatrices in the Euclidean
3-space. LeB : I — R3 represents the unit speed curve in the Euclidkapace and”, N’, B’
be the three orthonormal vectors of the Frenet frdffigV, B}, given by
d
T = —6, N = Z,
ds K
whereT’, N, B represent the unit tangent vector field, unit principal normal vector field and unit
binormal vector field, respectively.
The Serret-Frenet formulae are given by

T (s) = k(s) N(s)
(2.1) N'(s) =—kr(s)T (s)+ 7 (s) B(s)
B'(s) = —71(s) N(s)

/

B=TxN

wherex(s) = ||T"(s)|| denote the curvature ands) = —(B’(s), N(s)) denote the torsion of
the curves. Here the curves is parameterized in terms of the arc-length paramef8].

If the position vector of the curvg lies in the rectifying plane then the curve is known as
a rectifying curve. The distance functiaits) = ||3(s)|| of a rectifying curves satisfies the

following equation
d(s) =vs?>+ 15+ co

herec; andc, denote the arbitrary constants.
Furthermore, it can be shown that the unit speed ctngsalso a rectifying curve if and only
if the ratio of torsionr and curvature: verifies

T_ as+b
K
wherea # 0 andb are constants [4].

Choi and Kim investigated the relationship between curvature and torsion of the principal-
direction curve and principal-donor curve in [9].

Theorem 2.1.[9] Let 5 be a Frenet curve in Euclideasrspace with the curvature and the
torsion 7 and 3 be the principal-direction curve of the curvé Then the curvatures and
torsion7 of the principal-direction curves are given by

2

/
R =VK2+ 712 and T = v (Z)

K2+ 712 \K
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Theorem 2.2.[9] Let 5 be a principal-donor curve of the curvein Euclidean3-space with
the curvaturex and torsion7. Then the curvature and torsionr of the principal-donor curve

[ are given by
K =TF |cos (/?ds) | and T =TFsin (/?ds)

A curve [ is said to be general helix if unit tangeifs) makes a constant angle with a
fixed straight line. Likewise, if unit principal normal'(s) makes a constant angle with a fixed
straight line then a curvg is said to be slant helix.

Let 5 be a unit speed curve in Euclidean space with Frenet vegtoré and B. The unit
tangent vectors along the cur@egenerate a curvg, on the unit sphere centered at the origin,
called the tangent indicatrix of curye Similarly, we have the binormal indicatri and prin-
cipal normal indicatrix3,, [10].

Deshmukh and B. Y. Chen shown that for every Frenet curve in Eucliglspace, the dis-
tance function satisfies a general differential equation. We recall the following proposition from
[20].

Proposition 2.3. If 3 be a unit speed curve then every unit speed Frenet curve satisfies the
following equation:

g

!
@2 pa+ (g’ + 2o+ { (o) + L b (D) h= (o) + 2,
wherep = k71, 0 = 771, h(s) = d(s)d'(s).

The Minkowski 3-spacé? is the Euclidean 3-space provided with the standard flat metric

given by
g = —dr} + dj + da3,

where(zy, x5, z3) is a rectangular coordinate systemijt

Sinceg is an indefinite metric, recall that a vectore E$ can have one of the three causal
characters; it can be spacelikegifv,v) > 0 or v = 0, timelike if g(v,v) < 0 and lightlike
(null) if g(v,v) = 0 andv # 0. Analogously, an arbitrary curvé = 3(s) in E? can locally
be spacelike, timelike or lightlike (null), if all of its velocity vector¥(s) are respectively
spacelike, timelike or lightlike. The norm of a vectois given by|jv|| = \/|g(v,v)| and the
spacelike or (timelike) curvg(s) is said to be of unit speed if 3'(s), 3'(s)) = +1 [14].

3. DERIVATION OF THE DIFFERENTIAL EQUATIONS

In this section, first we give some propositions for indicatrices, Serret-Frenet formulae, and a
few useful results for spacelike and timelike curves. Finally, we obtain the 4th-order differential
equations for spacelike and timelike curves.

Proposition 3.1. If 5 be a unit speed curve then tangent indicatsixof the curves does not
form a non-trivial differential equation.

Proof. Since the tangent indicatri®, has constant norm equal to one. By differentiating the
distance functior(s) = ||5,(s)|, we getd'(s) = 0.

Proposition 3.2. If 3 be a unit speed curve then binormal indicatrix of curve/ does not
form a non-trivial differential equation.

Proof. Since the binormal indicatri®, has constant norm equal to one. By differentiating the
distance functionl(s) = [|5,(s)]|, we getd'(s) = 0.
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Proposition 3.3. If 3 be a unit speed curve then principal normal indicatsixof curves does
not form a non-trivial differential equation.

Proof. Since the principal normal indicatri®, has constant norm equal to one. By differenti-
ating the distance functiad(s) = ||5,,(s)||, we getd'(s) = 0.

Remark 3.1. Suppose3 denote a spacelike curve with a spacelike principal norwaind 3’
be the tangent vector field, then the Serret-Frenet formulae are given by

T =&kN
(3.1) N =—kT+ 7B
B =71N

where(T,T) =1,(N,N)=1,(B,B) = —1,(T,N) = (T, B) = (N, B) = 0.
From the above formula, we have the following

(B,T) =1+rK(B,N)
(3.2) (B.N)' = —&(B,T) + 7 (8, B)
(8,B)" =17(5,N)

Theorem 3.4. Suppose’ denote a spacelike curve with a spacelike principal noriathen
the functionf(s) = d(s)d'(s) satisfies the following differential equation

" 1 2
f_+[_+_

!/

1 1 K T K
ffr|l=—=+—+-———|f+|5+—=
K TR T K T

ety
TK 'k TK T!

/

3.3) _ [L

TK'

T
K

whered(s) = ||3(s)|| is the distance function of.

Proof. Differentiatingd?(s) = (3(s), 3(s)) and making use of equatidf.1]), we get

(3.4) f=1(8T)
Now, differentiating above equation and usifig2)), we get
(3.5) f'=1=x(B,N)
Further, differentiating equatiofs.5), yields
1., 1. & 1
(3.6) —f"+—=f+=f-—=(B)
TR TR T TR

Now, differentiating equation (3.6) and usirg (3.2), [3.5), we get the desired result.

Remark 3.2. Supposes denote a spacelike curve with a timelike principal noriNaand3’ be
the tangent vector field, then the Serret-Frenet formulae are given by

T = kN
(3.7) N =kT+ 1B
B'=71N

where(T, T) = 1, (N,N) = —1, (B, B) = 1, (T, N) = (T, B) = (N, B) = 0.
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From the above equation, we get the following

(8,T) =1+K(B,N)
(3.8) (8. N)' =x(8.T) +7(8,B)
(8,B) =17(3,N)

Theorem 3.5. Suppose’ denote a spacelike curve with a timelike principal normvalthen the
function f(s) = d(s)d'(s) satisfies the following differential equation

m 1 2 1 1 K T
f——i— —+—|f"+ + ————|f' -
TK 'k TK k' K" T K

(3.9) _IL

/ﬁ],

K
_/+_
T T

f

!/

whered(s) = ||3(s)|| is the distance function of.
Proof. Differentiatingd?(s) = (3(s), 3(s)) and making use of equatidf.7), we get
(3.10) f=1(5.1)
Using and(3.§), a simple computation gives
(3.11) ' —1=r(B,N)
Now, differentiating(3.11), we get

(3.12) Ly Ly mp L5
TR T

TR TR
Finally, differentiating equatiof3.12)) and using(3.8)), (3.11]), we get the desired result.

Remark 3.3. Suppose’ denote a spacelike curve with a lightlike principal normfvaand 3’ be
the tangent vector field, then the Serret-Frenet formulae are given by

T = kN
(3.13) N =1N
B =—xkT —-7B

where(T,T) =1,(N,B) = 1,(N,N) =(B,B) = (T,N) = (T, B) = 0.
From the above formula, we have the following

(B, T) =1+ k(B,N)
(3.14) (B, N) =7(B,N)
<ﬁaB>,: _K<67T> _T<ﬁ7B>

Theorem 3.6. Supposes denote a spacelike curve with a lightlike principal nornié) then
the functionf(s) satisfies the following differential equation

/
w1 21 111 1] 1
! T+—,——]f"+[,,+ ,,——,]f'ZI—,]——,
TR TR K TK TR K TR K

(3.15) —+
wheref(s) = d(s)d'(s), andd(s) = ||5(s)]| is the distance function of the curge
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Proof. Differentiatingd(s) = ||3(s)| and using equatiof (3.[L3), we get
(3.16) f=(6.T)

From equationg (3.16) and (3]14), we have
(3.17) f'=1=r(B,N)

Now, differentiating[(3.1]7), yields

(3.18) Lo Ly 1w
TK TR

TR

Differentiating equatior] (3.18) and usirig (3.16), we get the result.

Remark 3.4. Suppose3 denote a timelike curve and be the tangent vector field, then the
Serret-Frenet formulae are given by

T = kN
(3.19) N' =kT +71B
B = —-7tN

where(T,T) = -1, (N,N)=1,(B,B) =1,(T,N) = (T, B) = (N, B) = 0.
From the above formula, we have the following

(8,T) = —1+ K (B,N)
(3.20) (B,N) =& (8,T)+7(8,B)
<ﬁ>B>/ =-T <ﬁa N>

Theorem 3.7. Suppose’ denote a timelike curve, then the functipfs) = d(s)d'(s) satisfies
the following differential equation

m 1 2 1 1 K T Kk K
f—+ — 4+ — |+ + ——+ =5 +=|f
TK 'k  TK' k' K" T K 7! T
1 !
(3.21) _ [_/] _T
TK K

whered(s) = ||3(s)|| is the distance function of.

Proof. Differentiatingd?(s) = (3(s), 3(s)) and making use of equatidf.19), we get

(3.22) f=T)

Now, differentiating above equation and usifsg20]), we get
(3.23) f'+1=r(8,N)

Further, differentiating equatiofs.23)), yields
(3.24) %f” + %f’ ~2f+ % — (8, B)

Now, differentiating equation (3.24) and using (3.2D), (B.23), the result follows.
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