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1. I NTRODUCTION

In differential geometry, the curve is among one of the fascinating topics. Helices, spherical
curves, and rectifying curves are a few important types of curves that appear in many important
applications. For example, helical structures arise in seashells, vines, carbon nanotubes, DNA
double, and nano-springs, etc. Though many authors [2, 3, 7, 12, 13, 16, 19, 23, 15] studied
curves from the last several decades nevertheless curves are still a relevant and significant area
of the research. In the study of curves, the notion of associated curves is pretty exciting. If
there exist a mathematical relation between two or more curves, then the curves are known as
associated curves.

Izumiya et al. [21] introduced some special curves which are known as a slant helix and
conical geodesic curves in Euclidean3-space. Besides, Izumiya and Takeuchi gave some clas-
sifications of the special developable surfaces and obtained an example of a slant helix. In [11],
Kula et al. studied the spherical images of the tangent indicatrix and binormal indicatrix of a
slant helix. Moreover, they obtained that the spherical images of the slant helices are spherical
helices and a curve of constant precession is a slant helix.

In [1], Ali obtained the position vector of a general helix(τ/κ = m) associated with Frenet
frame and represented the general helix in terms of curvature(κ) and torsion(τ) through a
standard frame of Euclidean3-space, wherem is a constant given bym = cos[φ], hereφ
denotes the angle between the axis of a general helix and the tangent of the curve. In [2],
Ali et al. extended the concept of a slant helix to Euclidean space of dimensionn, and gave
the necessary and sufficient conditions for a curve in Euclideann-space to be a slant helix.
Moreover, Ali also gave an example of a slant helix in Euclidean5-space.

Recently, Sahiner [3] defined the associated curves as integral curves of a vector field pro-
duced by Frenet vectors of the tangent indicatrix of a curve in Euclidean3-space and obtained
some relations between curvatures and Frenet vectors. Besides, he gave a few techniques to
obtain helices and slant helices from special spherical curves and constructed some examples
of it. In [4], B. Y. Chen investigated the characterization and classification of the rectifying
curves. On the other hand in [5], B. Y. Chen studied via rectifying curves that all geodesics on
an arbitrary cone in Euclidean space of dimension3, are not necessarily a circular cone.

In [6], Yilmaz et al. used the system of linear ordinary differential equations to construct the
slant helices. Also, using integration in Minkowski 3-space, they obtained the position vectors
for slant helices. In [7], Camci et al. studied and obtained a spherical slant helix and gave some
examples of the spherical slant helices in Euclidean 3-space. In [8], Arroyo et al. investigated
the unit speed curves contained in a real space form of arbitrary dimensionm. Moreover, they
gave a classification of semi-Riemannian Hopf cylinders ofH3

1 (−1) and Hopf cylinders ofS3

with proper mean curvature function.
In [9], Choi et al. introduced the concept of the principal-direction curve and principal-donor

curve of a Frenet curve in Euclidean3-space. Moreover, Choi et al. constructed a canonical
method for associated curves and characterized some associated curves in Euclidean3-space.
Kula et al. [10] obtained a relationship between a slant helix and a general helix. Furthermore,
Kula et al. deduced some differential equations by characterizing of a slant helix and gave a
few examples of slant helices in Euclidean3-space.

In [17], Lucas et al. studied a weaker version of the classic slant helices in Minkowski 3-space
and Euclidean 3-space which are known as general slant helices. Furthermore, Lucas showed
that the classic slant helix is a general helix but the converse is not true. Also, he obtained
equations that involve the torsion and curvature.

In [19], Deshmukh et al. investigated the rectifying curves via the dilation of the unit speed
curve onS2 (unit sphere) in Euclidean3-space and obtained a necessary and sufficient condition
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for centrode of a unit speed curve in Euclidean3-space. Moreover, Deshmukh and Chen proved
that if a unit speed curve is neither a helix nor a planar curve, then its dilated centrode is always a
rectifying curve. Deshmukh et al. [20] shown that for every Frenet curve in Euclidean3-space,
the distance function satisfies a 4th-order differential equation and using this they derived a new
characterization of helices. In [22], Ozdemir et al. introduced the notion of type-3 slant helix
according to the parallel transport frame in Euclidean4-space.

Motivated by Deshmukh et al. [20] in this paper, we investigate the distance function. We
show that Tangent, Binormal, and Principal Normal indicatrices do not form non-trivial dif-
ferential equations, and obtain the 4th-order differential equations for spacelike and timelike
curves.

2. PRELIMINARIES

In this section, we recall some basic concepts of the curves and indicatrices in the Euclidean
3-space. Letβ : I → R3 represents the unit speed curve in the Euclidean3-space andT ′, N ′, B′

be the three orthonormal vectors of the Frenet frame{T, N, B}, given by

T =
dβ

ds
, N =

T
′

κ
, B = T ×N

whereT , N , B represent the unit tangent vector field, unit principal normal vector field and unit
binormal vector field, respectively.

The Serret-Frenet formulae are given by

(2.1)


T ′ (s) = κ (s) N(s)

N ′ (s) = −κ (s) T (s) + τ (s) B(s)

B′ (s) = −τ (s) N(s)

whereκ(s) = ‖T ′(s)‖ denote the curvature andτ(s) = −〈B′(s), N(s)〉 denote the torsion of
the curveβ. Here the curveβ is parameterized in terms of the arc-length parameters [18].

If the position vector of the curveβ lies in the rectifying plane then the curve is known as
a rectifying curve. The distance functiond(s) = ‖β(s)‖ of a rectifying curveβ satisfies the
following equation

d(s) =
√

s2 + c1s + c2

herec1 andc2 denote the arbitrary constants.
Furthermore, it can be shown that the unit speed curveβ is also a rectifying curve if and only

if the ratio of torsionτ and curvatureκ verifies
τ

κ
= as + b

wherea 6= 0 andb are constants [4].

Choi and Kim investigated the relationship between curvature and torsion of the principal-
direction curve and principal-donor curve in [9].

Theorem 2.1. [9] Let β be a Frenet curve in Euclidean3-space with the curvatureκ and the
torsion τ and β be the principal-direction curve of the curveβ. Then the curvatureκ and
torsionτ of the principal-direction curveβ are given by

κ =
√

κ2 + τ 2 and τ =
κ2

κ2 + τ 2

(τ

κ

)′
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Theorem 2.2. [9] Let β be a principal-donor curve of the curveβ in Euclidean3-space with
the curvatureκ and torsionτ . Then the curvatureκ and torsionτ of the principal-donor curve
β are given by

κ = κ |cos

(∫
τds

)
| and τ = κ sin

(∫
τds

)
A curve β is said to be general helix if unit tangentT (s) makes a constant angle with a

fixed straight line. Likewise, if unit principal normalN(s) makes a constant angle with a fixed
straight line then a curveβ is said to be slant helix.

Let β be a unit speed curve in Euclidean space with Frenet vectorsT , N andB. The unit
tangent vectors along the curveβ generate a curveβt on the unit sphere centered at the origin,
called the tangent indicatrix of curveβ. Similarly, we have the binormal indicatrixβb and prin-
cipal normal indicatrixβn [10].

Deshmukh and B. Y. Chen shown that for every Frenet curve in Euclidean3-space, the dis-
tance function satisfies a general differential equation. We recall the following proposition from
[20].

Proposition 2.3. If β be a unit speed curve then every unit speed Frenet curve satisfies the
following equation:

(2.2) ρσh′′′ + (ρσ′ + 2ρ′σ)h′′ +

{
(σρ′)′ +

ρ

σ
+

σ

ρ

}
h′ +

(
σ

ρ

)′

h = (σρ′)
′
+

ρ

σ
,

whereρ = κ−1, σ = τ−1, h(s) = d(s)d′(s).

The Minkowski 3-spaceE3
1 is the Euclidean 3-space provided with the standard flat metric

given by
g = −dx2

1 + dx2
2 + dx2

3,

where(x1, x2, x3) is a rectangular coordinate system ofE3
1.

Sinceg is an indefinite metric, recall that a vectorv ∈ E3
1 can have one of the three causal

characters; it can be spacelike ifg(v, v) > 0 or v = 0, timelike if g(v, v) < 0 and lightlike
(null) if g(v, v) = 0 andv 6= 0. Analogously, an arbitrary curveβ = β(s) in E3

1 can locally
be spacelike, timelike or lightlike (null), if all of its velocity vectorsβ′(s) are respectively
spacelike, timelike or lightlike. The norm of a vectorv is given by‖v‖ =

√
|g(v, v)| and the

spacelike or (timelike) curveβ(s) is said to be of unit speed ifg(β′(s), β′(s)) = ±1 [14].

3. DERIVATION OF THE DIFFERENTIAL EQUATIONS

In this section, first we give some propositions for indicatrices, Serret-Frenet formulae, and a
few useful results for spacelike and timelike curves. Finally, we obtain the 4th-order differential
equations for spacelike and timelike curves.

Proposition 3.1. If β be a unit speed curve then tangent indicatrixβt of the curveβ does not
form a non-trivial differential equation.

Proof. Since the tangent indicatrixβt has constant norm equal to one. By differentiating the
distance functiond(s) = ‖βt(s)‖, we getd′(s) = 0.

Proposition 3.2. If β be a unit speed curve then binormal indicatrixβb of curveβ does not
form a non-trivial differential equation.

Proof. Since the binormal indicatrixβb has constant norm equal to one. By differentiating the
distance functiond(s) = ‖βb(s)‖, we getd′(s) = 0.
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Proposition 3.3. If β be a unit speed curve then principal normal indicatrixβn of curveβ does
not form a non-trivial differential equation.

Proof. Since the principal normal indicatrixβn has constant norm equal to one. By differenti-
ating the distance functiond(s) = ‖βn(s)‖, we getd′(s) = 0.

Remark 3.1. Supposeβ denote a spacelike curve with a spacelike principal normalN andβ′

be the tangent vector field, then the Serret-Frenet formulae are given by

(3.1)


T ′ = κN

N ′ = −κT + τB

B′ = τN

where〈T, T 〉 = 1, 〈N, N〉 = 1, 〈B, B〉 = −1, 〈T,N〉 = 〈T,B〉 = 〈N, B〉 = 0.

From the above formula, we have the following

(3.2)


〈β, T 〉′ = 1 + κ 〈β, N〉
〈β, N〉′ = −κ 〈β, T 〉+ τ 〈β, B〉
〈β, B〉′ = τ 〈β, N〉

Theorem 3.4. Supposeβ denote a spacelike curve with a spacelike principal normalN , then
the functionf(s) = d(s)d′(s) satisfies the following differential equation

f ′′′

τκ
+

[
1

τ ′κ
+

2

τκ′

]
f ′′ +

[
1

τ ′κ′
+

1

τκ′′
+

κ

τ
− τ

κ

]
f ′ +

[
κ

τ ′
+

κ′

τ

]
f

=

[
1

τκ′

]′
− τ

κ
(3.3)

whered(s) = ‖β(s)‖ is the distance function ofβ.

Proof. Differentiatingd2(s) = 〈β(s), β(s)〉 and making use of equation(3.1), we get

(3.4) f = 〈β, T 〉

Now, differentiating above equation and using(3.2), we get

(3.5) f ′ − 1 = κ 〈β, N〉

Further, differentiating equation(3.5), yields

(3.6)
1

τκ
f ′′ +

1

τκ′
f ′ +

κ

τ
f − 1

τκ′
= 〈β, B〉

Now, differentiating equation (3.6) and using (3.2), (3.5), we get the desired result.

Remark 3.2. Supposeβ denote a spacelike curve with a timelike principal normalN andβ′ be
the tangent vector field, then the Serret-Frenet formulae are given by

(3.7)


T ′ = κN

N ′ = κT + τB

B′ = τN

where〈T, T 〉 = 1, 〈N, N〉 = −1, 〈B, B〉 = 1, 〈T,N〉 = 〈T,B〉 = 〈N, B〉 = 0.
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From the above equation, we get the following

(3.8)


〈β, T 〉′ = 1 + κ 〈β, N〉
〈β, N〉′ = κ 〈β, T 〉+ τ 〈β, B〉
〈β, B〉′ = τ 〈β, N〉

Theorem 3.5.Supposeβ denote a spacelike curve with a timelike principal normalN , then the
functionf(s) = d(s)d′(s) satisfies the following differential equation

f ′′′

τκ
+

[
1

τ ′κ
+

2

τκ′

]
f ′′ +

[
1

τ ′κ′
+

1

τκ′′
− κ

τ
− τ

κ

]
f ′ −

[
κ

τ ′
+

κ′

τ

]
f

=

[
1

τκ′

]′
− τ

κ
(3.9)

whered(s) = ‖β(s)‖ is the distance function ofβ.

Proof. Differentiatingd2(s) = 〈β(s), β(s)〉 and making use of equation(3.7), we get

(3.10) f = 〈β, T 〉

Using(3.10) and(3.8), a simple computation gives

(3.11) f ′ − 1 = κ 〈β, N〉

Now, differentiating(3.11), we get

(3.12)
1

τκ
f ′′ +

1

τκ′
f ′ − κ

τ
f − 1

τκ′
= 〈β, B〉

Finally, differentiating equation(3.12) and using(3.8), (3.11), we get the desired result.

Remark 3.3. Supposeβ denote a spacelike curve with a lightlike principal normalN andβ′ be
the tangent vector field, then the Serret-Frenet formulae are given by

(3.13)


T ′ = κN

N ′ = τN

B′ = −κT − τB

where〈T, T 〉 = 1, 〈N, B〉 = 1, 〈N, N〉 = 〈B, B〉 = 〈T, N〉 = 〈T, B〉 = 0.

From the above formula, we have the following

(3.14)


〈β, T 〉′ = 1 + κ 〈β, N〉
〈β, N〉′ = τ 〈β, N〉
〈β, B〉′ = −κ 〈β, T 〉 − τ 〈β, B〉

Theorem 3.6. Supposeβ denote a spacelike curve with a lightlike principal normalN , then
the functionf(s) satisfies the following differential equation

f ′′′

τκ
+

[
1

τ ′κ
+

2

τκ′
− 1

κ

]
f ′′ +

[
1

τ ′κ′
+

1

τκ′′
− 1

κ′

]
f ′ =

[
1

τκ′

]′
− 1

κ′
(3.15)

wheref(s) = d(s)d′(s), andd(s) = ‖β(s)‖ is the distance function of the curveβ.
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Proof. Differentiatingd(s) = ‖β(s)‖ and using equation (3.13), we get

(3.16) f = 〈β, T 〉

From equations (3.16) and (3.14), we have

f ′ − 1 = κ 〈β, N〉(3.17)

Now, differentiating (3.17), yields

1

τκ
f ′′ +

1

τκ′
f ′ − 1

τκ′
= 〈β, N〉(3.18)

Differentiating equation (3.18) and using (3.16), we get the result.

Remark 3.4. Supposeβ denote a timelike curve andβ′ be the tangent vector field, then the
Serret-Frenet formulae are given by

(3.19)


T ′ = κN

N ′ = κT + τB

B′ = −τN

where〈T, T 〉 = −1, 〈N, N〉 = 1, 〈B, B〉 = 1, 〈T,N〉 = 〈T,B〉 = 〈N, B〉 = 0.

From the above formula, we have the following

(3.20)


〈β, T 〉′ = −1 + κ 〈β, N〉
〈β, N〉′ = κ 〈β, T 〉+ τ 〈β, B〉
〈β, B〉′ = −τ 〈β, N〉

Theorem 3.7. Supposeβ denote a timelike curve, then the functionf(s) = d(s)d′(s) satisfies
the following differential equation

f ′′′

τκ
+

[
1

τ ′κ
+

2

τκ′

]
f ′′ +

[
1

τ ′κ′
+

1

τκ′′
− κ

τ
+

τ

κ

]
f ′ −

[
κ

τ ′
+

κ′

τ

]
f

= −

[
1

τκ′

]′
− τ

κ
(3.21)

whered(s) = ‖β(s)‖ is the distance function ofβ.

Proof. Differentiatingd2(s) = 〈β(s), β(s)〉 and making use of equation(3.19), we get

(3.22) f = 〈β, T 〉

Now, differentiating above equation and using(3.20), we get

(3.23) f ′ + 1 = κ 〈β, N〉

Further, differentiating equation(3.23), yields

(3.24)
1

τκ
f ′′ +

1

τκ′
f ′ − κ

τ
f +

1

τκ′
= 〈β, B〉

Now, differentiating equation (3.24) and using (3.20), (3.23), the result follows.
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