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ABSTRACT. The iterated variational method is considered in the approximation of eigenvalues
and eigenfunctions for a class of two point boundary value problems. The implementation of
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illustrated.
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1. I NTRODUCTION

We consider the following class of eigenvalue problems of the form

(1.1) [p(x)y′(x)]
′
+ αq(x)y(x) = g(x),

on (0, 1) with some specified boundary conditions, whereq(x), p(x) > 0 with q(x) andp(x)
are smooth functions. This problem is regular with the analogous singular problem having the
form given in (1.1) subject to boundary conditions of the form

(1.2) ay(0) + by′(0) = 0, cy(1) + d y′(1) = 0,

where againq(x), p(x) ≥ 0, 1
p
∈ Lloc(0, 1], 1

p
6∈ L1(0, 1), anda, b, c, d are constants. Un-

der these conditions, (1.1) is termed a singular eigenvalue problem. Such linear and nonlinear
boundary value problems have been the subject of numerical investigation of many recent pa-
pers. General existence and uniqueness results for solutions of the singular problem were given
in Fink et al. [5] and Baxley [3] while for the eigenvalue problem was considered by Nassif [6],
Elder [4] and Baileyet al. [2].
Now since the application of these problems to applied sciences and engineering is so impor-
tant, enough work was done to investigate them. A well-known example of those problems is
the analysis of the behavior of magneto-electro-elastic material which has the ability of convert-
ing the magnetic, electric, and mechanical energies from one to another. It is worth noting that
this engineering problem is a promising candidate in designing and manufacturing intelligent
and smart systems and structures. The mathematical modeling of characteristics of such mate-
rial, see Wang and Zong [7] , is a very active area of research and investigations. Therefore,
the solution of such model represents a challenge since it involves solving a particular singular
boundary value problem.
The numerical treatment of such regular and singular boundary value problems has always been
far from trivial. For that reason several authors have been extensively involved in the solution
of such class of problems and numerous innovative methods and approach have enriched the
scientific literature; each with its particular merits and advantages. Attili [1] used the homo-
topy perturpation method and Adomian decomposition method to solve this type of problem.
We will treat the regular and the singular problem given by (1.1) using the iterated variation
method. The method is proved to be efficient and the details will be given in the coming sec-
tions. It is worth mentioning that it is a promising method for solving (1.1). Not much was done
using this method in terms of numerical approximation to eigenvalue problems, making it the
subject of interest of further investigation.

The rest of the paper is organized as follows. We will present the iterated variational method in
the next section while the numerical results and comparisons will be done in the last section.

2. M ETHODOLOGY

Rewrite the Sturm-Liouville problem (1.1) of the form or

(2.1) y′′(x) +
p′(x)

p(x)
y′(x) + α

q(x)

p(x)
y(x) =

g(x)

p(x)
, x ∈ (0, 1).

The present analytical technique based on dividing the problem (2.1) into two parts as follows

(2.2) D2[y] + D1[y] =
g(x)

p(x)
, x ∈ [0, 1].
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whereD1 andD2 are linear operators defined as

D2[y] = y′′(x), and D1[y] =
p′(x)

p(x)
y′(x) + α

q(x)

p(x)
y(x), x ∈ [0, 1].

By defining a correction functional through the following iteration form as follows

(2.3) yn+1(x) = yn(x) +

∫ x

0

λ(ξ)

(
D2[yn(ξ)] + D1[ỹn(ξ)]− g(ξ)

p(ξ)

)
dξ,

whereλ is the Lagrange multiplier which should be obtained by a variational theory andỹn is a
restricted variation with the propertyδỹn = 0. It should be noted that the initial choice ofy0 can
be chosen as the solution of equationD2[y] = 0. In order to determine the Lagrange multiplier
we could first rewrite equation (2.3) in the form

(2.4) yn+1(x) = {1− λ′(x)} yn(x) + λ(x)y′n(x) +

∫ x

0

{λ′′(ξ)yn(ξ) + D1[ỹn(ξ)]} dξ.

Making the above functional given in (2.4) stationary, we obtain

(2.5) δyn+1(x) = {1− λ′(x)} δyn(x) + λ(x)δy′n(x) +

∫ x

0

{λ′′(ξ)δyn(ξ) + D1[δỹn(ξ)]} dξ,

and consequently, we obtain the following stationary conditions

λ′′(ξ) = 0

λ(ξ)|ξ=x
= 0

1− λ′(ξ)|ξ=x
= 0.

It can be easily shown that the Lagrange multiplierλ = ξ − x satisfies all the above stationary
conditions. Furthermore, the first initial condition (1.2) will be used to find the first constant in
y0 whereas the second condition will be used in the calculations of the eigenvaluesα in each
iteration step.

3. NUMERICAL RESULTS

Herein, we apply the variational iteration technique presented in the previous section to solve
some eigenvalue problems. Numerical results will be presented in this section.

Example 3.1.Consider the eigenvalue problem

(3.1) y′′(x) + αy(x) = 0, x ∈ (0, 1)

subject to

(3.2) y′(0) = 0, y(1) = 0.

It should be noted that the analytical eigenvalues and the corresponding eigenfunctions are
known for this example and given by

(3.3) αn =

(
2k + 1

2
π

)2

, yn(x) = cos

(
2k + 1

2
πx

)
wherek = 0, 1, · · · .

According to the analysis presented in the previous section, we can easily see that

y0 = B,
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where the first condition of (3.2) has been applied. HereB is a nonzero constant. Consequently,
the functional iteration (2.3) is ready to construct a convergent sequence to the solutiony(x). Ta-
ble (3.1) lists the approximations to the first eigenvalueα1 = 2.467401101 using the functional
iteration (2.3). The results illustrate the rapid convergence of this method. The approximated

n α∗
1 |α∗

1 − α1|
1 2.000000 0.467401
2 2.535898 0.068497
3 2.464604 0.002797
4 2.467479 0.000078

Table 3.1: The approximations to the first eigenvalue

solution after thirteen iterates is given by

y13(x) = B(1− 0.5 α x2 + 0.041667 α2x4 − 0.0013889 α3x6 + 0.000024802 α4x8

− 0.00000027557 α5x10 + 0.0000000020877 α6x12 − 1.1471× 10−11 α7x14

+ 4.7795× 10−14 α8x16 − 1.5619× 10−16 α9x18 + 4.1103× 10−19 α10x20

− 8.8968× 10−22 α11x22 + 1.6117× 10−24 α12x24 − 2.4796× 10−27 α13x26).

Satisfying the second boundary condition in the approximated solution,y13, and then solving
the resulted equation forα we obtain those eigenvalues

α∗
1 = 2.4674011, α∗

2 = 22.2066099, α∗
3 = 61.6844723,

which are in excellent agreement with the exact results. At the end of the discussion of this
example, it is worthy mentioning here that the results of this example are in a good agreement
with the results of Attili [1] who uses the homotopy perturpation method and Adomain Decom-
position method.

Example 3.2.Consider the eigenvalue problem

(3.4) y′′(x) + (3 + α)y(x) = 0, x ∈ [0, π]

subject to

(3.5) y′(0) = 0, y′(π) = 0.

It is well-known that the analytical eigenvalues and the corresponding eigenfunctions of this
equation are given by

(3.6) αk = k2 − 3, yk(x) = cos kx.

wherek = 0, 1, · · · . Those values will be used for comparison purposes.

Similar to the solution steps discussed in the previous example, we apply the first condition
on the solution ofy′′(x) = 0 to obtain an initial solution,y0 = B, which is required for start-
ing the functional iteration (2.3). The first eigenvalue,α1 = −3, is found exactly by the first
iteration,n = 1. The results of the first five iterates, summarized in table (3.2), show excellent
approximations forα2 = −2 whenn ≥ 4.
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n α∗
2 |α∗

2 − α2|
1 — —
2 — —
3 — —
4 -2.039673859 0.039673859
5 -1.995476483 0.004523517
6 -2.000282816 0.000282816
7 -1.999986473 0.000013527
8 -2.000000443 0.000000443
9 -1.999999918 0.000000082
10 -1.999999932 0.000000068

Table 3.2: The Approximations forα2

The approximated solution after thirteen iterates is given by

y13(x) = B(1− 0.5 (3 + α) x2 − 0.08333 (3 + α) (−1.5− 0.5 α) x4

+ 0.002778 (3 + α)2 (−1.5− 0.5 α) x6 − 0.00004960 (3 + α)3

× (−1.5− 0.5 α) x8 + 0.0000005511 (3 + α)4 (−1.5− 0.5 α) x10

− 0.000000004175 (3 + α)5 (−1.5− 0.5 α) x12 + 2.294× 10−11

× (3 + α)6 (−1.5− 0.5 α) x14 − 9.559× 10−14 (3 + α)7 (−1.5− 0.5 α) x16

+ 3.124× 10−16 (3 + α)8 (−1.5− 0.5 α) x18 − 8.221× 10−19 (3 + α)9

× (−1.5− 0.5 α) x20 + 1.779× 10−21 (3 + α)10 (−1.5− 0.5 α) x22

− 3.223× 10−24 (3 + α)11 (−1.5− 0.5 α) x24 + 4.959× 10−27 (3 + α)12

× (−1.5− 0.5 α) x26).

Satisfying the second boundary condition in the approximated solution,y13, and then solving
the resulted equation forα we obtain the third and fourth approximated eigenvalues,α∗

3 =
.9999995921 andα∗

4 = 6.033557406, which are in excellent agreement with the corresponding
exact resultsα3 = 1 andα4 = 6, respectively.

Example 3.3.Consider the eigenvalue problem

(3.7) y′′(x) + y′(x) + αy(x) = 0, x ∈ [0, 1]

subject to

(3.8) y(0) = 0, y(1) = 0.

The exact eigenvalues and the corresponding eigenfunctions of this equation are found theo-
retically and given by

(3.9) αk = (kπ)2 +
1

4
, yk(x) = e−x/2 sin(kπx).

wherek = 0, 1, · · · .

The initial solution,y0, is found to be

y0(x) = Ax,

whereA is a nonzero constant. The implementation of the variational iteration (2.3) gives the
following approximated values for the first eigenvalue,α1 = 10.11960440, as reported in table
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(3.3). It is clearly seen that the speed of convergence is slower than that in Examples 3.1 and

n α∗
1 |α∗

1 − α1|
1 — —
2 — —
3 — —
4 — —
5 9.712272286 0.407332114
6 10.20571352 0.08610912
7 10.10723513 0.01236927
8 10.12121726 0.00161286
9 10.11941996 0.00018444
10 10.11962329 0.00001889

Table 3.3: The approximated values of the first eigenvalue

3.2. The thirteens iterates,y13(x), gives a good estimation,α∗
2 = 39.72882695 , for the second

eigenvalue,α2 = 39.72841762.

Example 3.4.Consider the eigenvalue problem

(3.10) y′′(x) + (
1

x
+ α)y(x) = 0, x ∈ (0, 1)

subject to

(3.11) y(0) = 0, y(1) = 0.

The available results obtained by different numerical schemes are summarized in table (3.4).
It can be seen that present method is in an excellent comparison with ADM until the fifth
eigenvalue,α∗

5. However, the discrepancies between both methods seems to be increasing after
α∗

5. Extra comparisons are done with the ADM by tracking some corresponding eigenfunctions
as shown in Figures (1)-(7). It is found that the ADM results show that the corresponding
eigenfunction forα∗

5 breaks down and not satisfying the boundary conditiony(1) = 0 (see
Attili [1] ) whereas in the present study they are smooth and more accurate.

α∗
n Baily et al. [7] Attili [1] Present

α∗
0 7.37399 7.37398501517 7.373985015

α∗
1 36.33602 36.3360195952 36.33601960

α∗
2 85.29258 85.2925820941 85.29258209

α∗
3 154.09862 154.098623739 154.0986237

α∗
4 242.70555 242.705559362 242.7055594

α∗
5 351.091215481 351.0911671

α∗
6 478.629381125 479.2434134

α∗
7 627.1550441

Table 3.4: The first few eigenvalues
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Figure 1: The first eigenfunction

Figure 2: The second eigenfunction

Figure 3: The third eigenfunction

AJMAA, Vol. 4, No. 2, Art. 3, pp. 1-9, 2007 AJMAA

http://ajmaa.org


8 MUHAMMED I. SYAM AND QASEM M. A L-MDALLAL

Figure 4: The fourth eigenfunction

Figure 5: The fifth eigenfunction

Figure 6: The sixth eigenfunction
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Figure 7: The seventh eigenfunction
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