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ABSTRACT. The iterated variational method is considered in the approximation of eigenvalues
and eigenfunctions for a class of two point boundary value problems. The implementation of
this method is easy and competes well with other methods. Numerical examples are presented
to show the efficiency of the method proposed. Comparison with the work of others is also
illustrated.
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1. INTRODUCTION

We consider the following class of eigenvalue problems of the form

(1.1) p(2)y ()] + aq(z)y(z) = g(z),

on (0, 1) with some specified boundary conditions, whefe), p(z) > 0 with ¢(x) andp(x)
are smooth functions. This problem is regular with the analogous singular problem having the
form given in [1.1) subject to boundary conditions of the form

(1.2) ay(0) +by'(0) =0, ey(1) +dy'(1) =0,

where againy(x), p(z) > 0, % € Lio(0,1], % ¢ L'(0,1), anda,b,c,d are constants. Un-

der these conditions, (1.1) is termed a singular eigenvalue problem. Such linear and nonlinear
boundary value problems have been the subject of numerical investigation of many recent pa-
pers. General existence and unigueness results for solutions of the singular problem were given
in Fink et al. [5] and Baxley[3] while for the eigenvalue problem was considered by Nassif [6],
Elder [4] and Baileyet al. [2].

Now since the application of these problems to applied sciences and engineering is so impor-
tant, enough work was done to investigate them. A well-known example of those problems is
the analysis of the behavior of magneto-electro-elastic material which has the ability of convert-
ing the magnetic, electric, and mechanical energies from one to another. It is worth noting that
this engineering problem is a promising candidate in designing and manufacturing intelligent
and smart systems and structures. The mathematical modeling of characteristics of such mate-
rial, see Wang and Zon@![7] , is a very active area of research and investigations. Therefore,
the solution of such model represents a challenge since it involves solving a particular singular
boundary value problem.

The numerical treatment of such regular and singular boundary value problems has always been
far from trivial. For that reason several authors have been extensively involved in the solution
of such class of problems and numerous innovative methods and approach have enriched the
scientific literature; each with its particular merits and advantages. Attili [1] used the homo-
topy perturpation method and Adomian decomposition method to solve this type of problem.
We will treat the regular and the singular problem given [by]|(1.1) using the iterated variation
method. The method is proved to be efficient and the details will be given in the coming sec-
tions. Itis worth mentioning that it is a promising method for solving](1.1). Not much was done
using this method in terms of numerical approximation to eigenvalue problems, making it the
subject of interest of further investigation.

The rest of the paper is organized as follows. We will present the iterated variational method in
the next section while the numerical results and comparisons will be done in the last section.

2. METHODOLOGY
Rewrite the Sturm-Liouville problen (1.1) of the form or
" P(z) , q(z) g(x)
2.1 x)+ ) +a—y(r) = =—=%, x € (0,1).
(2.1) y'(x) p<x>y( ) p(x)y( ) (@) (0,1)
The present analytical technique based on dividing the prolplemm (2.1) into two parts as follows

(2.2) Dsly] + D1ly] = j@ x € [0, 1].
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whereD; and D, are linear operators defined as

— _ P, M
Doyl = 4" (x), and Dily] = o) y'(z) + &p(x)y(x)’ x € [0,1].
By defining a correction functional through the following iteration form as follows
23wl =m0+ [ A (D] + DO~ 45 ) de

where) is the Lagrange multiplier which should be obtained by a variational theoryj,aisca
restricted variation with the properdyj,, = 0. It should be noted that the initial choicegfcan
be chosen as the solution of equatidsy] = 0. In order to determine the Lagrange multiplier
we could first rewrite equation (2.3) in the form

24 ynra(@) = {1 = N(@)} yul2) + Az)y, () + /Ox {N"(€)yn(&) + D1[gn ()]} dE.

Making the above functional given ij (2.4) stationary, we obtain

(2.5) dynsa(z) = {1 = XN(2)} 0yn(z) + Mz)dy, («) +/0 {N"(€)0yn (&) + Dr[67a(£)]} dE,
and consequently, we obtain the following stationary conditions
A€ =0
A(f)lg:x =0
1-— X(g)|£:x = 0.

It can be easily shown that the Lagrange multipher ¢ — x satisfies all the above stationary
conditions. Furthermore, the first initial conditign ([1.2) will be used to find the first constant in
yo Whereas the second condition will be used in the calculations of the eigenvalone=ach
iteration step.

3. NUMERICAL RESULTS

Herein, we apply the variational iteration technique presented in the previous section to solve
some eigenvalue problems. Numerical results will be presented in this section.

Example 3.1. Consider the eigenvalue problem

(3.1) y"(x) + ay(z) =0, r € (0,1)
subject to
(3.2) y'(0)=0, y(1)=0.

It should be noted that the analytical eigenvalues and the corresponding eigenfunctions are
known for this example and given by

2
(3.3) ay, = <2k i 17r) , Yn(z) = cos (Qk; 17rx)

2
wherek =0,1,---.

According to the analysis presented in the previous section, we can easily see that

yOZBv
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where the first condition of (3.2) has been applied. Hgis a nonzero constant. Consequently,

the functional iteratiorf (2]3) is ready to construct a convergent sequence to the sg(ujiofa-

ble (3.1) lists the approximations to the first eigenvalye= 2.467401101 using the functional
iteration [2.B). The results illustrate the rapid convergence of this method. The approximated

af o —a
2.000000 0.467401
2.535898 0.068497
2.464604 0.002797
2.467479 0.000078

A WDN RS

Table 3.1: The approximations to the first eigenvalue

solution after thirteen iterates is given by

yis(z) = B(1—0.5ax+0.041667 o’x* — 0.0013889 o*2° 4 0.000024802 o'
0.00000027557 2% + 0.0000000020877 aS2'* — 1.1471 x 107" a2
+ 47795 x 107 a®2'% — 1.5619 x 107" 2" + 4.1103 x 107" "0z

— 88968 x 1072 aMa® + 16117 x 10724 a2 — 2.4796 x 10727 a132%).

Satisfying the second boundary condition in the approximated solutignand then solving
the resulted equation fer we obtain those eigenvalues

o = 2.4674011, of = 22.2066099, o, = 61.6844723,

which are in excellent agreement with the exact results. At the end of the discussion of this
example, it is worthy mentioning here that the results of this example are in a good agreement
with the results of Attili [1] who uses the homotopy perturpation method and Adomain Decom-
position method.

Example 3.2. Consider the eigenvalue problem

(3.4) y'(z) + (34 a)y(z) =0, x € [0, 7]
subject to
(3.5) y'(0) =0, ¢'(7)=0.

It is well-known that the analytical eigenvalues and the corresponding eigenfunctions of this
equation are given by

(3.6) ap = k*— 3, yr(x) = cos kx.

wherek = 0,1, - - -. Those values will be used for comparison purposes.

Similar to the solution steps discussed in the previous example, we apply the first condition
on the solution of/”(x) = 0 to obtain an initial solutiony, = B, which is required for start-

ing the functional iteratiorf (213). The first eigenvalug, = —3, is found exactly by the first
iteration,n = 1. The results of the first five iterates, summarized in tgblg (3.2), show excellent
approximations for, = —2 whenn > 4.

AJMAA Vol. 4, No. 2, Art. 3, pp. 1-9, 2007 AIJMAA


http://ajmaa.org

THE ITERATED VARIATIONAL METHOD FOR THEEIGENELEMENTS OF ACLASS

a5 — Qo

n
1
2
3
4
5
6
7
8
9

-2.039673859
-1.995476483
-2.000282816
-1.999986473
-2.000000443
-1.999999918

0.039673859
0.004523517
0.000282816
0.000013527
0.000000443
0.000000082

10 -1.999999932 0.000000068

Table 3.2: The Approximations far,

The approximated solution after thirteen iterates is given by
yis(z) = B(1—053+a)z>—0.08333 (3+a)(-1.5—-05a)z’
0.002778 (3 + @) (—=1.5 — 0.5 &) 2% — 0.00004960 (3 4 a)®
(=1.5—0.5a) 2® + 0.0000005511 (3 + @)* (=1.5 — 0.5) 2°
— 0.000000004175 (34 a)° (=1.5 —0.5a) z'2 4+ 2.294 x 10~
x (34+a)(=1.5-05a)z" — 9559 x 107 34+ a)" (=1.5 - 0.5a) z'°
3124 x 1071 (34 a)® (-1.5 - 0.5a) 2% — 8.221 x 107 (34 a)’
x (=1.5-05a)z? + 1.779 x 1072 (34 a)" (=1.5 — 0.5 o) 2%
— 3223x 107 34+ a)" (=15 —0.5a) 2% + 4.959 x 1072 (3 + )"
x (=1.5—0.5a)z%).

Satisfying the second boundary condition in the approximated solutignand then solving
the resulted equation far we obtain the third and fourth approximated eigenvalugs—
.9999995921 anda; = 6.033557406, which are in excellent agreement with the corresponding
exact resultsy; = 1 anda, = 6, respectively.

O

Example 3.3. Consider the eigenvalue problem

(3.7) y'(@) +y(x) + ay(z) = 0, z €[0,1]
subject to
(3.8) y(0) =0, y(1)=0.

The exact eigenvalues and the corresponding eigenfunctions of this equation are found theo-
retically and given by

1
(3.9 oy = (km)* + 7 ye(z) = e sin(knx).

wherek =0,1,---.

The initial solution,y,, is found to be
yo(z) = Az,

where A is a nonzero constant. The implementation of the variational iterdtioh (2.3) gives the
following approximated values for the first eigenvalue,= 10.11960440, as reported in table

AJMAA Vol. 4, No. 2, Art. 3, pp. 1-9, 2007 AJMAA


http://ajmaa.org

6 MUHAMMED |. SYAM AND QASEM M. AL-MDALLAL

(3.3). Itis clearly seen that the speed of convergence is slower than that in Examples 3.1 and

la] — o

Boo~vooabswNr|s

9.712272286
10.20571352
10.10723513
10.12121726
10.11941996
10.11962329

0.407332114

0.08610912
0.01236927
0.00161286
0.00018444
0.00001889

Table 3.3: The approximated values of the first eigenvalue

[3.9. The thirteens iterateg,s;(x), gives a good estimation;; = 39.72882695 , for the second
eigenvalueq, = 39.72841762.

Example 3.4. Consider the eigenvalue problem

(3.10) y'(x) + (é +a)y(z) =0, x € (0,1)
subject to
(3.11) y(0) =0, y(1)=0.

The available results obtained by different numerical schemes are summarized ij table (3.4).
It can be seen that present method is in an excellent comparison with ADM until the fifth
eigenvalueq:. However, the discrepancies between both methods seems to be increasing after
ai. Extra comparisons are done with the ADM by tracking some corresponding eigenfunctions
as shown in Figureg [(1){(7). It is found that the ADM results show that the corresponding
eigenfunction fora; breaks down and not satisfying the boundary condijoh) = 0 (see
Attili [1] ) whereas in the present study they are smooth and more accurate.

Baily et al. [7] Attili [1] Present
7.37399 7.37398501517 7.373985015

0

1 36.33602 36.3360195952 36.33601960
fa% 85.29258 85.2925820941 85.29258209

3

3 %

! 154.09862  154.098623739 154.0986237
ay  242.70555 < 242.705559362 242.7055594
ok 351.091215481 351.0911671
o 478.629381125 479.2434134
fa%s 627.1550441

Table 3.4: The first few eigenvalues
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0.254

0.29

0.154

019

0.054

0.1

0.059

Figure 1: The first eigenfunction

-0.05]

0.1

10,154

0.14

0.054

Figure 2: The second eigenfunction

-0.05+

014
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Figure 3: The third eigenfunction
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Figure 4: The fourth eigenfunction

0.0
0.04
0.0
0 4 o ) 1
t

-0.024

-0.044

-0.064

Figure 5: The fifth eigenfunction

0.04

0.02

-0.02

0.04

Figure 6: The sixth eigenfunction
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0.044

0.024

-0.024

-0.044

Figure 7: The seventh eigenfunction

REFERENCES

[1] B. ATTILI and M. SYAM, The homotopy perturbation method for the eigenelements of a class of
two-point boundary value problem&dvanced Studies in Contemporary Math14L.(1) (2007), pp.
1306-1316.

[2] P. B. BAILEY, W. N. EVERITT and A. ZETTLE, Computing eigenvalues of singular Sturm-
Liouville problems,Results in Mathemati¢c20 (1991), pp. 391-422.

[3] J. BAXLEY, Some singular nonlinear Boundary value proble®M J. Math. Anal.22 (1991),
pp. 463—-479.

[4] I. T. ELDER, An invariant imbedding method for computation of eigenlength of singular two point
boundary value problemg, Math. Anal. Appli.85(1982), pp. 360-384.

[5] A. M. FINK, J. A. GATICA, E. HRENANDEZ, and P. WALTMAN, Approximations of solutions of
singular second-order boundary value problegiaM J. Math. Anal.22 (1991), pp. 440-462.

[6] N.R. NASSIF, Eigenvalue finite difference approximation for regular and singular Sturm-Liouville
problemsMath. Comp.49(1987), pp. 561-580.

[7] X. WANG and Z. ZHONG, A circular tube or bar of cylindrically anisotropic magnetoelectroelastic
material under pressuring loadirflgt. J. of Eng. Scj.41(2003), pp. 2143-2159.

AJMAA Vol. 4, No. 2, Art. 3, pp. 1-9, 2007 AIJMAA


http://ajmaa.org

	1. Introduction
	2. Methodology 
	3. Numerical results 
	References

