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ABSTRACT. In this paper three different stable methods for solving numerically deconvolu-
tion problems with noise are studied. The methods examined are the variational regularization
method, the dynamical systems method, and the iterative regularized processes. Gravity survey-
ing problem with noise is studied as a model problem. The results obtained by these methods
are compared to the exact solution for the model problem. It is found that these three methods
are highly stable methods and always converge to the solution even for large size models. The
relative higher accuracy is obtained by using the iterative regularized processes.
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2 N. H. SWEILAM

1. I NTRODUCTION

It is well known that the classical example of an ill-posed problem (see [20]) is encountered
in the linear Fredholm integral equation of the first kind with a square integrable kernel:

(1.1)
∫ b

a

K(s, t)u(t)dt = g(s), c ≤ s ≤ d,

where the right-hand sideg and the kernelK are given functions andu is an unknown function.
In this paper, special attentions are given to the deconvolution problem which consists of solving
equation of the form

(1.2) Au :=

∫ t

0

K(s− t)u(s)ds := f(t), 0 ≤ t ≤ T,

whereK(t) is given for all t ≥ 0 andA : H → H be a linear, injective, bounded operator
in a Hilbert spaceH, A−1 : R(A) → H is unbounded, so that the problem of solving (1.2) is
ill-posed (see [17]). Deconvolution problems are important in many engineering applications,
in physics and other areas (see [9]). In practicef is measured with some error, sofδ is known,
‖fδ − f‖ ≤ δ.

For solving (1.2) numerically one uses regularization methods combined with projection
methods to find a stable approximationuδ := um(δ) ∈ Hm ⊂ Hn, whereHn is a finite dimen-
sional subspace ofH. The problem consists of findinguδ which solves the following equation

PmAum(δ) = Pmfδ such that limδ→0‖um(δ) − u‖ = 0,

wherePm is the orthoprojection operators onHm. The above equation is an equation of pro-
jection method. The usual approach to solve this projection equation is to use variational or
iterative regularization. In this paper we use the Dynamical System Method (DSM) developed
in [23]. Convergence rates for the variational, iterative and DSM regularization methods depend
on a priori smoothness assumptions on the data (see [17] and the reference cited therein).

Now by using projection methods like Galerkin method with an orthonormal basis or quad-
rature method ([3] and [7]), equation (1.2) can be written as a linear system

(1.3) Amum = f.

Problem (1.3) is called discrete ill-posed problem if the matrixAm is ill-conditioned, that is the
condition number

κ(Am) = ‖Am‖ ‖A−1
m ‖ >> 1.

Discrete ill-posed problems arise in a variety of applications such as astronomy [4], electrocar-
diography [5], mathematical physics [26] and other fields. Solving linear algebraic ill-condition
system (1.3) in a finite dimensional subspaceHm is also an ill-posed problem.

Our goal in this paper is to compute a stable solution to (1.3), given that noisy datafδ such
that‖f − fδ‖ ≤ δ. Three different stable regularization techniques will be considered in this
paper. The first one is the variational regularization method (see [10], [25] and [26]) which
is most common and well known technique for regularizing ill-posed problems. This method
attempts to provide a good estimate of the solution of (1.3) by a solutionuα,δ of the problem

(1.4) min{‖Au− fδ‖2 + α‖u‖2},
whereα is the regularization parameter anduα,δ is the regularization solution. The success of
the variational regularization method depends on making a good choice of the regularization
parameter which is not easy to find. The reason is thatuα,δ is too sensitive to perturbations in
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f , i.e., a small change inf may produce a large change inuα,δ.

The second regularization technique considered here is the dynamical systems method (DSM)
which is proposed by A. G. Ramm (see [12]-[24] and the references therein). The DSM is based
on an analysis of the solution of Cauchy problem for linear and nonlinear differential equations
in Hilbert space. Such an analysis was done for well-posed and some ill-posed problems (see
[20], and the references therein), using some integral inequalities. The stopping time is defined
by using the generalization of the discrepancy principle [18].

Since iterative regularization methods are important for treating large-scale problems, the
third regularization technique considered here is the iterative regularized processes, which is
proposed also by A. G. Ramm ([1], [19] ) to solve equation (1.3) in case whenA is a closed,
densely defined inH, unbounded operator. In Section 2 an overview of the variational regular-
ization method, DSM and the iterative regularized processes is presented. In section 3 numerical
experiments and comparisons between these methods are presented.

2. OVERVIEW OF THE METHODS AND ALGORITHMS

2.1. Variational regularization method. This method (see [10], [20], [25] and [26]) consists
of finding a global minimizer of (1.4), wherefδ is a noisy data and‖f − fδ‖ ≤ δ . The
global minimizer of the quadratic functional (1.4) is the unique solution to the linear system
(A∗A + αI)uα,δ = A∗fδ, where I is the unit matrix. This system has a unique solutionuα,δ =
(A∗A + αI)−1A∗fδ. To determine the suitableα, let uα(δ),δ be a solution of (1.4) and consider
the equation

(2.1) ‖Auα,δ − fδ‖ = τδ,

whereτ ∈]1, 2[. Equation (2.1) is the usual discrepancy principle. One can prove that equation
(1.4) determinesα = α(δ) uniquely,α(δ) → 0 asδ → 0, anduδ := uα(δ),δ → y wherey is
the minimal-norm solution to (1.3) (see [20]) asδ → 0. This justifies the usual discrepancy
principle for choosing the regularization parameter ([11]). For more details on the theory of
variational regularization method see e.g., [20], Chapter 2.

2.2. Analysis of the DSM methods.In the following, we will give a brief description of the
analysis of the DSM and for more details on the analysis of DSM see (see [12]-[24] and the
references therein). The DSM analysis is bases on a construction of a dynamical system with
the trajectory; by using Cauchy problem for nonlinear differential equations in a Hilbert space;
starting from an initial approximation point and having a solution to problem (1.3) as a limiting
point. It is proved in [20] that if equation (1.3) is solvable and‖f − fδ‖ ≤ δ, the following
results hold:

Theorem 2.1. Assume thatf = Ay, y ⊥ N(A), A is a linear operator, closed and densely
defined inH. Consider the problem

(2.2)
du

dt
= −u + T−1

ε(t)A
∗f , u(0) = u0,

N(A) := {u : Au − f = 0}, u0 ∈ H is arbitrary, Tε = T + ε(t), T = A∗A, ε = ε(t) is
a continuous function monotonically decaying to zero att → ∞ and

∫∞
0

ε(s)ds = ∞. Then
problem (2.2) has a unique solutionu(t) defined on[0,∞), and the following limit exists:

limt→∞u(t) := u(∞) and u(∞) = y.
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It is pointed out in[20] that if fδ is given in place of the exact solutionf , calculate its solution
uδ(t) ast = tδ, it can be proved that

limδ→0‖uδ(tδ)− y‖ = 0,

if tδ is suitable chosen. The stopping timetδ can be uniquely determined, for example by
a discrepancy principle, see[24], for bounded operatorsA. Also, it is pointed out that the
argument in[20] remains valid in the case of unboundedA without any essential change.

2.3. The dynamical systems algorithm.The DSM algorithm can be applied as follows:
Step 1. Solve the following ordinary differential equation:

(2.3)
du

dt
= Φ(u, t), u(0) = u0,

where

(2.4) Φ(u, t) = −u + (A∗A + ε(t))−1A∗fδ, u0 = 0,

and the discretization is based on an explicit Runge-Kutta (4,5) formula which is the best for-
mula to apply as a ’first try’ for most problems, for more details see [8].
Step 2. The stopping timetδ is defined by using the following generalization of the discrepancy
principle: whenτ ∈]1, 2[, the stopping time is chosen by the formula

(2.5) ‖Auδ(tδ)− fδ‖ = τδ,

and we assume that

(2.6) τδ < ‖Auδ(t)− fδ‖ for all times t < tδ,

i.e., tδ is the first momentt, at which the discrepancy is equal toτδ. If

‖Au0 − fδ‖ > τδ,

then formulas (2.5) and (2.6) determine uniquelytδ > 0, see [24].

2.4. Iterative regularized processes.The following iterative regularized processes to solve
equation (1.3) with noise is proposed also by A. G. Ramm [19] in case whenA is a closed,
densely defined inH, unbounded operator. The iterative processes formula:

(2.7) un+1 = Bun + T−1
a A∗f, u0 := u⊥0 , u⊥0 ⊥ N(A); B := aT−1

a ,

wherea = constant > 0, and the initial elementu0 is arbitrary in the subspaceN⊥, N :=
N(A) = N(T ), T = A∗A, Ta = T + aI, B ≥ 0, ‖B‖ ≤ 1.

Theorem 2.2. Assume thatf = Ay, y ⊥ N(A), A is a linear operator, closed and densely
defined inH. Under the above assumptions it can be proved that

lim
n→∞

‖un − y‖ = 0.

Proof. (see [19]).
It’s pointed out in [19] that the iterative process (2.7) yields stable solutions of equation (1.3),
whenfδ in place off, wherefδ is given such that‖f − fδ‖ ≤ δ, the stopping rule, i.e., the
numbern(δ) such thatlimδ→0 ‖un,δ − y‖ = 0, is found for any fixed smallδ as a minimizer for
the problem

(2.8) c (n + 1)δ + ‖Bn(u0 − y)‖ = min, where c =
1

2
√

a
.
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2.5. Iterative regularized algorithm. This algorithm can be applied by using the following
steps:
Step 1. Chooseu0 = u⊥0 , u⊥0 ⊥ N(A)
Step 2.un+1 = Bun + T−1

a A∗fδ

Step 3. Check the stopping rule: findn(δ) for any fixed smallδ as the minimizer for the problem

c (n + 1) δ + E(n) = min., c :=
1

2
√

a

whereE(n) := ‖Bnw‖, w := u⊥0 − y, w ⊥ N, Bnw = Bwn = B(un − y).

3. APPLICATION

In this section we will apply the above stable methods to solve numerically gravity surveying
problem as a model problem ([27]). This model has a convolution type kernel and can be
expressed in the form of equation (1.2). To explain the model, assume that a one dimensional
horizontal mass distributionu(t) lies at depthd below the surface from 0 to 1 on t axis; for
the geometry and the location of thes and t axes see Figure 1. From measurements of the
vertical component of the gravitational field, denotedg(s), at the surface from 0 to 1 on s axis,
it is required to compute the mass distribution, denotedu(t), along thet axis, i.e., an inverse
problem. The contribution tog from an infinitesimal partdt of the mass distribution att is given
by

dg =
sin(θ)

r2
u(t)dt,

wherer =
√

(d2 + (s− t)2) is the distance between the two points on thes andt. Using that
sinθ = d

r
, one get

sin(θ)

r2
u(t)dt =

d

(d2 + (s− t)2)
3
2

u(t)dt.

The total value ofg(s) for anys is therefore

g(s) =

∫ 1

0

d

(d2 + (s− t)2)
3
2

u(t)dt.

Thus, we arrive at a deconvolution problem for computing the desired quantityf with kernel
given byK(s− t) = d(d2 + (s− t)2)

−3
2 .:

Figure 1: The geometry of gravity surveying.
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3.1. Numerical treatment. Using a quadrature rule [2],[6] we can approximate the integral in
our Fredholm integral equation as follows

(3.1)
∫ 1

0

K(s, t)u(t)dt '
n∑

j=1

ωjK(si, tj)ũ(tj) = f(si), i, j = 1, ..., n.

whereũ(tj) andf(si) are the approximation ofu(t) andg(s) respectively. When these equa-
tions (3.1) are rewritten in matrix notation, one obtains the systemAnun = f , whereAn is an
n× n matrix. The elements ofAn, f andun are given by

aij = ωjK(si, tj), fi = f(si), uj = ũ(tj), i, j = 1, ..., n.

Now the midpoint rule is used to discretize the gravity surveying problem, with quadrature and
collocations points equidistantly distributed in the interval[0, 1] assi = ti = (i− 0.5)/n, i =
1, ..., n. Thus, the matrix elements are given by

aij =
d
n

(d2 + (si − tj)2)
3
2

=
n2d

(n2d2 + (i− j)2)
3
2

, i, j = 1, ..., n.

The exact solution of the model problem, is chosen such asuorig(t) = sin(πt)+0.5sin(2πt),
and the elements of the exact solutionu thus consists of the sampled values ofun at the abscissas
tj = (j − 0.5)/n for j = 1, ..., n. Finally, the right-hand sidef is computed asf = Anun. Due
to our choice of quadrature and collocation points we obtain a symmetric matrix, and the depth
is chosen such thatti ≤ d ≤ si andd ≤ r, then in the following computational work the depth
d is chosen to bed = 0.25.

At this stage, we emphasize that in practice the right-hand side is usually a perturbed version
of this f . That is, we solve the systemAnun,δ = fδ, wherefδ = f + δ, and the vectorδ repre-
sents the perturbation of the exact data.

For the numerical computations, the quadrature rule withn = 20, leads to a20 × 20, linear
ill-posed system of equations:Anun = f, where the condition number of the matrixAn is equal
to 3.71137471 e5. Perturbed the right-hand side vectorf ; by adding a noise termδ to the last
row in f ; in order to havefδ. Let us takeτ = 1.9, δ = 0.02, c0 = 0.1, c1 = 0.1, ε(t) := c0

c1+t
.

For the iterative processes, leta = 4, δ = 0.02,

(3.2) u0 = [0.001 0.002 0.003 0.004 0.005 0 0 0 . . . 0 0]t.

Table 1 shows the results obtained when the iterative regularized processes is applied to solve
the gravity model problem, where the third column gives the relative error:= ‖uexact−uapprox‖

‖uexact‖ .

Table 2 shows the results obtained by using variational regularization method with stopping
rule (2.1), the DSM method with stopping rule (2.5) and the iterative regularized processes with
stopping rule (2.8). The results show that the DSM is superior to variational regularization
terms of accuracy. Moreover, The higher accuracy is obtained by using the iterative regular-
ized processes with stopping rule (2.8). Also the numerical computations show that the relative
error in all methods are not decaying further as the the dimension of the matrixAn increases,
because the major component in these errors come from the noise level and not from the er-
ror of the computational method. The above methods are tested also with different values of
d, d = 0.5, 0.75, 1.0, and1.5, it is found that although the condition number become bigger, the
methods always converge to the solution even for large size 7 model problem and the iterative
regularized processes, DSM is superior to variational regularization method.

Finally, it is important to mention that CPU computer time for both DSM and variational
regularization, is approximately the same and it is very small, it is nearly 0.0013 minute for
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this problem. Also the CPU computer time for the iterative regularized processes is very small:
about 0.00208 minute for 50 iteration, 0.00338 minute for 150 iteration and 0.0052 for 270
iteration, Table 1. Finally, we pointed out that the approximate solutions are obtained by using
Matlab version7.

n c (n + 1)δ + E(n) c(n+1)δ+E(n)
n

Relative error
5 0.255 0.051 0.0636
10 0.227 0.022 0.0487
50 0.356 0.0071 0.0297
100 0.587 0.0058 0.0256
150 0.828 0.0055 0.0235
200 1.072 0.0053 0.0224
250 1.318 0.00527 0.0221
270 1.417 0.00524 0.0222

Table1
Method Relative error α, tδ, , n(δ)

Variational regularization 2.85e− 2 α = 0.03984
DSM 2.36e− 2 tδ = 6.7

Iterative Process 2.22e− 2 n(δ) = 270

Table 2
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