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ABSTRACT. In this paper three different stable methods for solving numerically deconvolu-
tion problems with noise are studied. The methods examined are the variational regularization
method, the dynamical systems method, and the iterative regularized processes. Gravity survey-
ing problem with noise is studied as a model problem. The results obtained by these methods
are compared to the exact solution for the model problem. It is found that these three methods
are highly stable methods and always converge to the solution even for large size models. The
relative higher accuracy is obtained by using the iterative regularized processes.
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2 N. H. SWEILAM

1. INTRODUCTION

It is well known that the classical example of an ill-posed problem (see [20]) is encountered
in the linear Fredholm integral equation of the first kind with a square integrable kernel:

b
(1.1) / K(s,t)u(t)dt = g(s), ¢ <s<d,

where the right-hand sidgand the kernek” are given functions andis an unknown function.
In this paper, special attentions are given to the deconvolution problem which consists of solving
equation of the form

(1.2) Au = /tK(s—t)u(s)ds — (), 0<t<T,
0

where K (t) is given for allt > 0 andA : H — H be a linear, injective, bounded operator

in a Hilbert space, A~ : R(A) — H is unbounded, so that the problem of solvi@(l.Z) is
ill-posed (seel[17]). Deconvolution problems are important in many engineering applications,
in physics and other areas (sek [9]). In pracfide measured with some error, gpis known,

Ifs = fll < 0.

For solving [I.2) numerically one uses regularization methods combined with projection
methods to find a stable approximation:= u,,; € H,, C H,, whereH, is a finite dimen-
sional subspace df. The problem consists of finding; which solves the following equation

PmAum((;) = me5 such that limgﬁoHum(g) — u|| =0,
where P, is the orthoprojection operators d@f,,. The above equation is an equation of pro-
jection method. The usual approach to solve this projection equation is to use variational or
iterative regularization. In this paper we use the Dynamical System Method (DSM) developed
in [23]. Convergence rates for the variational, iterative and DSM regularization methods depend
on a priori smoothness assumptions on the datal(sée [17] and the reference cited therein).

Now by using projection methods like Galerkin method with an orthonormal basis or quad-
rature method ([3] and [7]), equatidn (IL.2) can be written as a linear system

(1.3) At = f.

Problem|[(1.B) is called discrete ill-posed problem if the matjxis ill-conditioned, that is the
condition number

K(Am) = | Al |45 >> 1.

Discrete ill-posed problems arise in a variety of applications such as astronomy [4], electrocar-
diography([5], mathematical physic¢s [26] and other fields. Solving linear algebraic ill-condition
system([(1.8) in a finite dimensional subspat,g is also an ill-posed problem.

Our goal in this paper is to compute a stable solutior td (1.3), given that noisy dstieh
that|| f — fs]| < d. Three different stable regularization techniques will be considered in this
paper. The first one is the variational regularization method (see [10], [25] ahd [26]) which
is most common and well known technique for regularizing ill-posed problems. This method
attempts to provide a good estimate of the solution of (1.3) by a solutigrof the problem

(1.4) min{||Au — f5]|* + a|ul|*},

whereq is the regularization parameter ang; is the regularization solution. The success of
the variational regularization method depends on making a good choice of the regularization
parameter which is not easy to find. The reason is#hatis too sensitive to perturbations in
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[, 1.e., a small change ifi may produce a large changeup ;.

The second regularization technique considered here is the dynamical systems method (DSM)
which is proposed by A. G. Ramm (sée|[12]4[24] and the references therein). The DSM is based
on an analysis of the solution of Cauchy problem for linear and nonlinear differential equations
in Hilbert space. Such an analysis was done for well-posed and some ill-posed problems (see
[20], and the references therein), using some integral inequalities. The stopping time is defined
by using the generalization of the discrepancy principlé [18].

Since iterative regularization methods are important for treating large-scale problems, the
third regularization technique considered here is the iterative regularized processes, which is
proposed also by A. G. Rammi_{[1], [19] ) to solve equatjon|(1.3) in case whisma closed,
densely defined i/, unbounded operator. In Section 2 an overview of the variational regular-
ization method, DSM and the iterative regularized processes is presented. In section 3 numerical
experiments and comparisons between these methods are presented.

2. OVERVIEW OF THE METHODS AND ALGORITHMS

2.1. Variational regularization method. This method (see [10], [20], [25] and [26]) consists

of finding a global minimizer of[(1]4), wherg; is a noisy data andjf — f5|| < ¢ . The
global minimizer of the quadratic functional (1.4) is the unique solution to the linear system
(A*A+ al)u,s = A* fs, where | is the unit matrix. This system has a unique solutipn =

(A*A + ol)~' A* f5. To determine the suitable, let Uq(s),s D€ a solution of4) and consider
the equation

(21) ||Aua,5 — f(;H = 7'5,

wherer €]1, 2. Equation[(2.]) is the usual discrepancy principle. One can prove that equation
(1.4) determines: = a/(0) uniquely,a(d) — 0 asd — 0, andus := uq@s) s — y Wherey is

the minimal-norm solution td (1.3) (see [20]) &s— 0. This justifies the usual discrepancy
principle for choosing the regularization parameterl([11]). For more details on the theory of
variational regularization method see e.g., [20], Chapter 2.

2.2. Analysis of the DSM methods.In the following, we will give a brief description of the
analysis of the DSM and for more details on the analysis of DSM seel(ske [12]-[24] and the
references therein). The DSM analysis is bases on a construction of a dynamical system with
the trajectory; by using Cauchy problem for nonlinear differential equations in a Hilbert space;
starting from an initial approximation point and having a solution to probfem (1.3) as a limiting
point. It is proved in[20] that if equatiof (1.3) is solvable ahti— f5|| < 4, the following

results hold:

Theorem 2.1. Assume thaf = Ay, y 1L N(A), A is a linear operator, closed and densely
defined inH. Consider the problem

du 1 s
(2.2) i + Te(tl)A f, u(0) = uo,
NA) ={u:Au—f =0}, uo € Hisarbitrary, T. = T +€(t), T = A*A, e = €¢(t) is
a continuous function monotonically decaying to zeré at oo and fooo €(s)ds = oco. Then
problem [(2.2) has a unique solutiarft) defined orj0, co), and the following limit exists:

limi_oou(t) :== u(o0o) and u(oco) =y.
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It is pointed out iN20] that if f5 is given in place of the exact solutigi calculate its solution
us(t) ast = ts, it can be proved that
lims—ol|us(ts) — yll =0,

if ¢5 is suitable chosen. The stopping timecan be uniquely determined, for example by
a discrepancy principle, sef24], for bounded operatorst. Also, it is pointed out that the
argument in20] remains valid in the case of unboundédvithout any essential change.

2.3. The dynamical systems algorithm. The DSM algorithm can be applied as follows:
Step 1. Solve the following ordinary differential equation:
du

(2.3) pri O (u,t), u(0) = up,
where
(2.4) O(u,t) = —u+ (A*A+et)) A" f5, u =0,

and the discretization is based on an explicit Runge-Kutta (4,5) formula which is the best for-
mula to apply as a 'first try’ for most problems, for more details s5ée [8].

Step 2. The stopping timg is defined by using the following generalization of the discrepancy
principle: whenr €]1, 2[, the stopping time is chosen by the formula

(2.5) |Aus(ts) — fs]| = 70,

and we assume that

(2.6) 76 < ||Aus(t) — fs]| foralltimes ¢ < ts,

i.e.,ts is the first moment, at which the discrepancy is equalto. If
[Aug — f5]| > 76,

then formulas[(2]5) andl (2.6) determine uniqugly- 0, see[[24].

2.4. lterative regularized processes.The following iterative regularized processes to solve
equation [(1.3) with noise is proposed also by A. G. Ramm [19] in case whisna closed,
densely defined i/, unbounded operator. The iterative processes formula:

(2.7) Upi1 = Bu, + T, A*f, wo:=uy, uy L N(A); B:=al; ',
wherea = constant > 0, and the initial elementu, is arbitrary in the subspack', N =
N(A)=N(T), T=A*A, T,=T +al, B>0, |B|<1.

Theorem 2.2. Assume thaf = Ay, y L N(A), Ais a linear operator, closed and densely
defined inH. Under the above assumptions it can be proved that

lim |lu, —y| = 0.

Proof. (see[[19]).

It's pointed out in[19] that the iterative proce$s (2.7) yields stable solutions of equatipn (1.3),
when f;5 in place of f, where f5 is given such thall f — fs|| < J, the stopping rule, i.e., the
numbern(d) such thatims_.o ||u,s — y|| = 0, is found for any fixed smalf as a minimizer for

the problem

) 1
(2.8) c(n+1)5+ ||B"(ug — y)|| = min, where c¢= N
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2.5. Iterative regularized algorithm. This algorithm can be applied by using the following

steps:

Step 1. Choose, = ug, wuy L N(A)

Step 2.1 = Bu, + T, 'A% f5

Step 3. Check the stopping rule: find) for any fixed smalb as the minimizer for the problem
1

NG

whereE(n) := |B"w|, w:=uy —y, w LN, B"w= Bw,= B(u,—y).

c(n+1)0+ E(n) =min., c:=

3. APPLICATION

In this section we will apply the above stable methods to solve numerically gravity surveying
problem as a model problem ([27]). This model has a convolution type kernel and can be
expressed in the form of equatidn (1.2). To explain the model, assume that a one dimensional
horizontal mass distribution(t) lies at depthd below the surface from 0 to 1 on t axis; for
the geometry and the location of theand¢ axes see Figurg 1. From measurements of the
vertical component of the gravitational field, denotgd), at the surface from O to 1 on s axis,
it is required to compute the mass distribution, denatéd, along thet axis, i.e., an inverse
problem. The contribution tg from an infinitesimal pardt of the mass distribution atis given
by

sin(6)

dg = - u(t)dt,

wherer = /(d? + (s — t)?) is the distance between the two points on ¢hendt. Using that
sinf = ¢, one get
in(¢ d
wu(t)dt - —u(t)dt.
r (d>+ (s —t)%)2
The total value ofy(s) for anys is therefore

1 d
mgzé(ﬁ+@_wﬁmmw

Thus, we arrive at a deconvolution problem for computing the desired quanith kernel
given by K (s — t) = d(d* + (s — t)2) 2 ..

Figure 1: The geometry of gravity surveying.
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3.1. Numerical treatment. Using a quadrature rulel[2])[6] we can approximate the integral in
our Fredholm integral equation as follows

(3.1) /0 K (s, t)u(t)dt ~ ijK(si,tj)ﬂ(tj) = f(s;), 4,j=1,...n.

whereu(t;) and f(s;) are the approximation af(¢) andg(s) respectively. When these equa-
tions (3.1) are rewritten in matrix notation, one obtains the system, = f, whereA,, is an
n X n matrix. The elements od,,, f andu,, are given by
;5 :CUjK(Si,tj), fz = f(SZ'), Uy :fb<tj), Z,] = 1,...,71.
Now the midpoint rule is used to discretize the gravity surveying problem, with quadrature and
collocations points equidistantly distributed in the intef@al | ass; = t; = (i — 0.5)/n, =
1,...,n. Thus, the matrix elements are given by
g n?d o
Aij = = 7 = —, 4,j=1,..,n.
(@ +(si—1;)%)2  (RPd®+ (i —j)%)?
The exact solution of the model problem, is chosen sueh,ast) = sin(nt)+0.5sin(2nt),
and the elements of the exact solutiotihus consists of the sampled valuespft the abscissas
t; =(j—0.5)/nforj =1,...,n. Finally, the right-hand sid¢ is computed ag = A, u,. Due
to our choice of quadrature and collocation points we obtain a symmetric matrix, and the depth
is chosen such that < d < s; andd < r, then in the following computational work the depth
d is chosen to bd = 0.25.
At this stage, we emphasize that in practice the right-hand side is usually a perturbed version
of this f. That is, we solve the systery,u,, s = fs, wherefs = f + d, and the vectod repre-
sents the perturbation of the exact data.

For the numerical computations, the quadrature rule with 20, leads to &0 x 20, linear
ill-posed system of equationsgt,,u,, = f, where the condition number of the matr, is equal
t0 3.71137471 . Perturbed the right-hand side vectarby adding a noise tern to the last
row in f; in order to havefs. Let us taker = 1.9,6 = 0.02, ¢ = 0.1, ¢; = 0.1, €(t) := Cfit.

For the iterative processes, tet= 4, § = 0.02,

(3.2) up = [0.001 0.002 0.003 0.004 0.005 0 0 0...0 0]".

Table 1 shows the results obtained when the iterative regularized processes is applied to solve
- . . . exact __, approx
the gravity model problem, where the third column gives the relative errgp——»"""|

uezact
Table 2 shows the results obtained by using variational regularization metr|1|od vaith stopping
rule (2.1), the DSM method with stopping rule (2.5) and the iterative regularized processes with
stopping rule[(2J8). The results show that the DSM is superior to variational regularization
terms of accuracy. Moreover, The higher accuracy is obtained by using the iterative regular-
ized processes with stopping rule (2.8). Also the numerical computations show that the relative
error in all methods are not decaying further as the the dimension of the mgtincreases,
because the major component in these errors come from the noise level and not from the er-
ror of the computational method. The above methods are tested also with different values of
d,d = 0.5,0.75,1.0, and1.5, it is found that although the condition number become bigger, the
methods always converge to the solution even for large size 7 model problem and the iterative
regularized processes, DSM is superior to variational regularization method.

Finally, it is important to mention that CPU computer time for both DSM and variational
regularization, is approximately the same and it is very small, it is nearly 0.0013 minute for

AJMAA Vol. 4, No. 2, Art. 4, pp. 1-8, 2007 AJMAA


http://ajmaa.org

ON THE NUMERICAL SOLUTION FOR DECONVOLUTION PROBLEMS WITH NOISE 7

this problem. Also the CPU computer time for the iterative regularized processes is very small:
about 0.00208 minute for 50 iteration, 0.00338 minute for 150 iteration and 0.0052 for 270
iteration, Table 1. Finally, we pointed out that the approximate solutions are obtained by using
Matlab version7.

n ¢(n+1)8 + E(n) ot 0F B Relative error
5 0.255 0.051 0.0636
10 0.227 0.022 0.0487
50 0.356 0.0071 0.0297
100 0.587 0.0058 0.0256
150 0.828 0.0055 0.0235
200 1.072 0.0053 0.0224
250 1.318 0.00527 0.0221
270 1.417 0.00524 0.0222
Tablel
Method Relative error | «,ts,,n(0)
Variational regularization 2.85¢ — 2 a = 0.03984
DSM 2.36e — 2 ts = 6.7
Iterative Process 2.22e -2 n(d) = 270
Table 2
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