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2 C. OKEKE, A. BELLO, C. IzuCHUKWU, AND O. MEWOMO

1. INTRODUCTION

Let £ be a real Banach space afid £ — R be a convex function, then the domain jofs
defined by
domf :={z € E: f(x) < +oo}.
The functionf is said to be proper if dofh+£ (.
Letz € intdom f, then for anyy € E, we define the right-hand derivative ffat x by

o 1 f(l’—f—ty)—f(ﬂf)
(1.2) fo(x.y) = lim . :
The functionf is said to be Gteaux differentiable at if the limit in (L.1) exists ag — 0 for
eachy. The functionf is called Giteaux differentiable if it is Gteaux differentiable for any
x € intdom f.
Letl < ¢ < 2 < pwith é + é = 1, then the modulus of smoothness Bfis the function
pg - 10,00) — [0, 00) defined by

1
(1.2) pp(t) = suwp {S(le+yll +llz —yll) = 1: [l2]] < L Iyl < t}.
It is generally known thak’ is uniformly smooth if and only if

im 220 _ g
t—0 t

and for anyg > 1, £ is said to bej-uniformly smooth if there exist§’, > 0 such thafp(t) <
C,t for anyt > 0.
The duality mapping/, : E — 2" is defined by

Jo(x) = {a" € B+ (w,2") = ||=[|”, ||="]| = [|=|"~"}.

The duality mapping]f is said to be weak-to-weak continuougjf -~ r — (Jfa:m y) —
(fo, y) holds for anyy € E. We note that, (p > 1) spaces have this property, bt (p > 2)
does not posses this property.

Let dim £ > 2, then the modulus of convexity @ is the functiondg : (0,2] — [0, 1] defined
by

: T+y
0p(€) = inf{l — || ——= : l|lz]| = [lyl| = Lre = [lz = yl[}.

E is said to be uniformly convex if and onlydfz(¢) > 0 for all e € (0, 2] andE is p-uniformly
convex if there exist§’, > 0 such thav z(e) > C,e? for anye € (0, 2].

Remark 1.1. [1] . Itis generally known that’ is p-uniformly convex and uniformly smooth if
and only if E* is g-uniformly smooth and uniformly convex. In this case, the duality niajs
one-to-one, single valued and satisfigs= (J;)‘1 whereJ; is the duality map of-".

Definition 1.1. Let f : E — R be a Giteaux differentiable convex function, the Bregman
distance with respect tHis defined as:

As(z,y) = fly) — f(x) = (f'(x),y — z), Va,y € E.

The duality mapping/, is the derivative of the functioff,(x) = (%)||m||1’. Given thatf = f,,
the Bregman distance with respectfionow becomes

Ajle.y) = }9<||y\|p —NlallP) + (. — )
(1.3) - é(llxllp—Hyllp)—<Jpw—pr,y>-
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We note that the Bregman distance is not symmetric, therefore it is not a metric but it posses the
following properties

(1.4) Ap(z,y) = Ap(x, 2) + Ap(z,y) + (2 —y, Sz — Jpy), Vo, y,z € E.

(1.5) Ap(z,y) + Ap(y, z) = (x —y, o — Jpy), Yo,y € E.

For anyp-uniformly convex Banach spadg, the metric and Bregman distance have the follow-
ing relation:

kllz —yllP < Ap(z,y) < (x —y, Jpx — Jpy),
wherek > 0 is a fixed number.
Definition 1.2. Let C' be a nonempty, closed and convex subset of int flowhere int donf
denotes the interior domain ¢t Let7T : C' — C be any mapping, a point € C'is called a
fixed point of 7" if Tp = p. Whilep € C'is called an asymptotic fixed point @fif C' contains a
sequencéx,, }°° , which converges weakly teandlim,, ., ||z, — Tz,|| = 0. The set of fixed
points of 7" and asymptotic fixed points af are denoted by"(T") and F'(T') respectively. It is
clear thatF(T)) c F(T).
A mapping? : C' — (C'is said to be

() right Bregman firmly nonexpansivie
<Jf(Tm) — Jf(Ty),Tx —Ty) < (Jf(Tx) — Jf(Ty),x —y), Vao,y € C,
equivalently,

Ap(Ta, Ty) + Ap(Ty, Tx) + Ay, Tx) + Ay(y, Ty) < Ap(a, Ty) + Ap(y, Tx),
(ii) right Bregman strongly nonexpansi{gee [14]) with respect to a nonemp%(T) if
ATz, y) < Ap(z,y), Ve e C, y € F(T)

and if whenevei{z, } ¢ C'is boundedy € F'(T') and
Tim (Ap(2n,y) = Ap(T2n,y)) =0,

it follows that
lim Ap(x,, Tx,) = 0.

Remark 1.2. [14]. Every right Bregman firmly ponexpansive mapping is right Bregman strongly
nonexpansive mapping with respectf¢1’) = F'(T)).

Let £* be the dual space of a Banach spateA mappingM : E — 2F is called monotone if
(1.6) (—max—y) >0Vr,ye E, £ € M(z),n e M(y).

A monotone mapping// is said to be maximal if the graph dff denoted byG(M) is not
properly contained in the graph of any other monotone mapping. We recall that for any set-
valued operaton/, the graph of\/ is defined by

(1.7) G(T)={(z,y) :y € M(z)}.

Let £ be ap—uniformly convex Banach space. The resolvent\fis the operator Rgé" ;
E — 2% defined by

(1.8) Res™ := (JF + AM) " 0 JF, A > 0.

The resolvent operator Rﬁ‘é is a Bregman firmly nonexpansive operator. Furthermore,
M (z) if and only if = = Reg" () (see e.g./[[24], for more details).
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The Bregman projectiof] . is defined by
(1.9 ch = argglelg Ay(z,y), Vo € E,

which is a unique minimizer of the Bregman distance.

Let C' and@ be nonempty, closed and convex subsets of real Banach spaeesl £, respec-
tively. Let A : £, — E5 be a bounded linear operator. The Split Feasibility Problem (SFP) is
to find a point

(2.10) x € C'suchthatdx € Q.

The SFP was first introduced in 1994 by Censor and Elvin [5] in finite-dimensional spaces. The
SFP is known to have wide applications in many fields, such as phases retrieval, medical image
reconstruction, signal processing and radiation therapy treatment (for examplée,[see [3, 4, 5, 6,
20,121)22] and the references therein).

Byrne [2] applied the forward-backward method, a type of projected gradient method to present
the so-called CQ-iterative procedure for approximating a solutioh of|(1.10) in Hilbert spaces,
which is defined by

(1.11) ni1 = Po(I — yA*(I = Pg)A)a,, n € N,

wherey € (0, %) with \ being the spectral radius of the operatStA. The approximation of
solutions of problen] (1.10) has also been studied by numerous authors in both finite and infinite
dimensional Hilbert spaces (see for examples,|[2] 6,18, 16, 17, 18,128,129, 34| 35,[36, 38, 39]).
The SFP has been extended from the setting of Hilbert spaces to more general Banach spaces
by many authors. Schopfet al. [26] introduced and studied the following algorithm (which is

a generalization of algorithm (1.[11)) for solving the SFP ([L.1Q)imiformly smooth Banach
spaces: For any, € E; andn > 0,

(1.12) tosr = [T [F7 (@) — tA" T (Az, — Po(Aw))] |

where A* is the adjoint of a bounded linear operatdy ¢ is any positive real number, is

the metric projection ontd) and C,  are nonempty, closed and convex subset#ofF,
respectively. They obtained weak convergence result under the assumption that the duality
mapping ofF is sequentially weak-to-weak continuous.

Wang [33] modified Algorithm[(1.72) and obtained strong convergence result for the following
Multiple-Sets Split Feasibility Problem (MSSFP): Find

(1.13) z € N_,C; such thatdz € 717, Q;,
wherer, s are two given integers};, i« = 1,2,3,...,r are closed convex subsets Bf and
Qj, j =r+1,...,r+sare closed convex subsetsiof. He introduced the following algorithm:

For anyz, € E;, define{z, } by

Yn = Tty

Dy ={u € Ey : Ap(yn, u) < Ap(an, u)};
E,={ue€E : (x, —u, JpElxo — Jflxn> > 0};
Tpg1 = HD,LﬂEn (20);

whereT,, is defined for each € N by

Hqi(n)(x); 1
Ji [JPa — t, A TP (1 — Po,my)Ax] 5 v

(1.14)

umﬂu@:{
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where i: N — [ is the cyclic control mapping
i(n)=nmod(r+s)+1
andt,, satisfies

1

g \"T
(1.16) 0<t§tn§< ) .
Cyl AP

Very recently, Shehet al. [28] introduced and studied the following iterative algorithm for
approximating a common solution of SFP and fixed point problems for right Bregman strongly
nonexpansive mappingsii-uniformly convex Banach spaces which are also uniformly smooth:
For afixedu € C, ug € Ey, define the sequencés,, }>° , and{u, }>2, recursively by

(1.17) T =le Jo" [TP (un) — ta A" TP (I — Po)Au,] ;
' tnis = e Jo 0 [and P (u) + B, JE () + 7, I (T)] 5

1
where0 <t <t, <k < (m)w . They established strong convergence of algorithm
(I.17) under some suitable conditions.

An important generalization of the SFP is the Split Equality Fixed Point Problem (SEFPP)
which is to find

(1.18) reC:=F(T),yeQ:=F(S)suchthatdx = By,

whereA : B — E3andB : Ey; — E3 are two bounded linear operators,and () are two
nonempty, closed and convex subset$ipfand E, respectively,/'(T") and F'(S) denotes the

sets of fixed points of the operatdfsand.S defined onE; and E, respectively;, F, and E

are real Banach spaces. Note thatif= E3; andB = [ (wherel is the identity map orE) in

(1.18), then problem (1.18) reduces to problém ([1.10). Moudafi and Al-Shemas [19] introduced
the SEFPP in Hilbert spaces. They proposed the following algorithm for solving the SEFPP:

(1 19) Tn+1 = T(xn - 'YnA*(Axn - Byn));
. Yn+1 :S<yn+'7nB*<Axn_Byn))v Vn > 1;

whereT : H, — H,, S : Hy — H, are two firmly quasi-nonexpansive mappings,:

H, — H3, B: Hy, — Hj are two bounded linear operators’, B* are the adjoints ofd, B
respectively,{v,} C (e, m — e) . Aa-4 and \p-p denote the spectral radii of* A
and B* B respectively. Furthermore, they established the weak convergence result for problem
(1.18) using algorithm[(1.19). Since then, many authors have studied the SEFPP in Hilbert
spaces for mappings more general than the firmly quasi-nonexpansive mappings. (for example,
see([10 11, 12, 31] and the references therein). In this paper, we study the following problem:
Let F, F5, and E3 bep—uniformly convex Banach spaces which are also uniformly smooth and
A: E, — Es, B : E, — E; be bounded linear operators. et : £, — 251, N, : B, — 22

1 = 1,2,...,m be multivalued maximal monotone mappings &hd £, — E1, S : F; — Fy

be right Bregman strongly nonexpansive mappings: EimdF'(T) andy € F(S) such that

(1.20) 0 € M;(z),

(1.22) 0 € N;(y) andAz = By.

Furthermore, motivated by the recent work of Shetal. [28] we propose a new iterative
algorithm and using the algorithm, we state and prove a strong convergence result for the ap-
proximation of a solution of problem (1.20)-(1]21).
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2. PRELIMINARY

We state some known and useful results which will be needed in the proof of our main theorem.
In what follows, we shall denote the solution set of problem (1.20)-[1.21) tgfined by
I' = {(z,9) € F(T) x F(S) such that € N*, M;(z), 0 € N*,N;(y) andAz = By}.

Lemma 2.1.[9] Let £ be a Banach space andy € E. If E is g-uniformly smooth, then there
existsC,, > 0 such that

(2.1) |z =yl < l2]|” = a(J5 (x), y) + Collyl|®
From [1] and[7], we make use of the functidfh : E* x E — [0, +o00) which is defined by
1 1 i}
(2.2) %@w%z?bW—@uﬁ+?MﬂverweE-
It then follows thatl/, is nonnegative antl,(z, y) = A,(JF (x),y) forallz € E* andy € E.
Also, by the subdifferential inequality, we have
Vo (x*, dRB)y", Jf*(:p*) —z) < V(2" +y",z), Ve € E, 2*,y* € E* (see[28] for more details)

Furthermore, we have th#t = f is a proper weaklower semi-continuous and convex func-
tion sincef = f, is a proper lower semi-continuous and convex function (sele [23]). Thus for
all z € F, we have

(24) A, (Jf* (Z tiJz;E(xi)> ,z) =1, (Z tﬂf(mﬁ,z) < ZtiAp(xi,Z)’

where{z;}¥, ¢ Fand{t;}, c (0,1) with >-~  t, = 1 (see[27/-32, 28] for more details).
Lemma 2.2. [35]. Assume thafa,,} is a sequence of nonnegative real numbers such that
anr1 < (1 =7,)an + 7,00, n >0,

where{v,} is a sequence in (0,1) arfd,, } is a sequence ik such that

() Z7, = o0,
(i) limsup,,_,. d, < 00r 22 |8,7,,| < oo.
Thenlim,, . a, = 0.

Lemma 2.3.[13]. Let{a, } be a sequence of real numbers such that there exists a subsequence
{n;} of {n} with a,, < a,,+1 Vj € N. Then there exists a nondecreasing sequgmneg; C N

such thatn;, — oo and the following properties are satisfied by all (sufficiently large) numbers

k € N:

Ay, S Amy+1 anda/k’ S Qmyp,+1-
In fact,my, = max{i < k:a; < a;1}.

Lemma 2.4. [15] Let H be a Hilbert spacef : H — H a contraction with coefficien® <
a < 1, and A a strongly positive linear bounded operator with coefficient- 0. Then, for
0<vy<9/a

(@ =y, (A=vfle—(A=f)y) = (T —ra)llz —y|I*, =,y € H.
That is,A — ~ f is strongly monotone with coefficient- ~a.
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3. MAIN RESULT

Theorem 3.1. Let E;, E, and E3 be threep-uniformly convex Banach space which are also
uniformly smooth and! : £, — FE3, B : E;, — E3 be two bounded linear operators. Let
M, : B, — 2F1 N, : By — 2F2 § = 1,2, ..., m be multivalued maximal monotone mappings
andT : By — El, St By — E, be rlght Bregman strongly nonexpansive mappings such that

F(T) = F(T) and F(S) = F(S). Suppose thaf # () and {a,}, {8,}, are sequences in
(0,1). Letu, xy € Ey andv, yy € E, be arbitrary and the sequendéz,,, y,,) } be generated by

= U JE [JE(y,) + t,B* JE(Ax, — By,)] ;
U = O™ [T (2,) — t A*JES(Axn — By,)] ;

(3.1) wn =y [(1= ﬁn>J£2 (0n) + B, T2 Svn) ;

o= a7 (1= B, () + BT T
Yn+1 = Jq [OZanEQ (U) (1 — Qp, JEan:| 3
\ Tn+1 = q [aanl(u) (1 —ay ‘]EIZ"} ,n2 1,

whered™ = Rengm o Res;}Mm*l 0--+0 Res;}Ml, @0 = [and ™ = Res;}N’" o Res;‘Nmfl o
-0 Resy™, W’ = I, with conditions

() lim,_ . a,, =0,

(i) D0, oy = 00,
(i) 0<t<t,<k< (m)i
(iv) 3, € (a,b) for somea,b € (0,1).

1 1

__q !
0<t<t,<k< <2DqllBHq> ’

Then{(z,, y,)} converges strongly toz,y) € T’

Proof. Let (z*,y*) € T, a,, = Jff [J];El(:vn) — tnA*JpES(Axn — Byn)] and
by = Jo* [JE2(yn) + tnB* T3 (A, — Byy)|. Then, using[(118)[(3l1) and Lemnfa (2.1), we
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have
A(na?) = A@"IE [JP(2,) — t,A JE Az, — By,)] %)
A (@I [P () — to A TP (An — Bya)] )

IN

Ap(JqET (I (@) — t, A I (A, — By,)] , @)

= I ) AT Ay = By = (I (). ")
(AT T (A, = By)) + |l

Cy(tal AL

IA

1
§||Jf1 (@) |[* = ta(Aty, Jy* (Azn — Bya)) + 17,7 (A, — Bya)||*

1
—(;" ()"} + [l 4 tf A, T (A = Bya))

1 1
= EH%HP — (JE1 (), ") + I—ij*Hp + t,(Ax™ — Ax,, Jff*’(Aa:n — Byn))

Gl A, - Byl

tllA|?
(32) = Ap(wn,a") +t, (I3 (Az, — By,), Az — Az,) + Cyl( |q| 1)

|| Az — Bya|[".

Similarly, from (3.1) and Lemma (2.1), we have
Ap(vn, ¥) < Ap(yn, y*) — ta(J? (Az,, — By,), By* — Bys,)

| Daltall B’

(3.3) [Az, — Bya|[".

Adding (3.2) and[(3]3) and using the fact tht* = By*, we have
Ap(tn, %) + Ap(vn, ¥*) < Ap(@n, ™) + Ap(Yn, y") — tn(Jf3(Axn — By,), Az, — By,)

C,(t,||A D,(t,||B]||)?
# 2, =y 20 P, B
= AP($H> )+A (ym )
A D Bl
(3.4) _ |:tn_ ( Q(tn(‘]‘ H) =+ q(tny H) >:| ||A1En —Byan.
Using condition (iii) in [3.4), we have
(3.5) Ap(tn, ") + Ap(vn, ¥") < Ap(@n, %) + Ap(Yn, ¥¥).
From (3.1) and[(2]4), we have
Ay(zp,z*) = A, (Jff [(1 = ﬁn)Jffun + 5anfTun] ,x*)
< (1- ﬂn)Ap(umm*) + ﬁnAp(Tumx*)
< (1 —=70,)A(un, ") + B,A,(Tuy, x¥)
(3.6) < Ap(un, x")
Similarly, we have
(3.7) Ap(wn, y") < Ay(v,, y").
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From (3.1) and[(316) and (2.4), we have
Ap(Tni1, ) = A, (JI [ (w) + (1 = o) I 2], 2¥)

< apAp(u, ") + (1 — ) Ay (2, %)

< apAp(u, ") + (1 — a) Ay (up, )
(3.8)
Similarly, from (3.1) and[(3]7), we have
(3.9) Ap(Ynr1,y) < (v, y") + (1 — ) Ay(va, y7).

Adding (3.8) and[(3]9) and using (B.5), we have

Ap(xn-i-la l‘*) + Ap(yn-‘rl? y*> S O [AP(UJ JI*> + AP(”? y*>
< [Ap(u, %) + Ap(v,y7)

< max{Ay(u,z") + Ap(v,y

% —

(3.10) max{A,(u, ") + A, (v,y"), Ap(zo,2") + Ap(yo,y™)}-

Therefore{A,(z,, 2*)+ A, (yn, y*)} is bounded and consequentfy\, (u,,, 2*) + A, (v, y*) },
{zn} {yn}, {un}, {vn}, {Az,} and{ By, } are all bounded.
Also, from (3.1) and inequality (2.3) with* = —a,(J (u) — J7 (x*)), we obtain
Ap(Tpt1, %) = A, (JqET [aanl(u) + (1 - ozn)Jfl(zn)} ,x*)
= V, (o J () + (1 = o) I (2), %)
<V (OszpE1 (u) + (1 — an)JpEl(zn) — an(Jfl (u) — JpEl(:v*)), 93*)
—<—an(Jfl(u) — Jfl (%)), Jff [aanl (u) + (1 — an)Jfl(zn)] —z")
V, (7 (@) + (1= ) I (z0), %) + o (S (w) — TP ("), 2gn — 2°)
A, (7 [on ) (2%) + (1= an) I (20)] 27
o (S (u) — TP (%), gy — 27)
an Ay (x*,2%) + (1 — ay) Ay (2, 27) + an<Jfl (u) — Jfl (%), Tpp1 — )
(1= ) Ap(2n, %) + an (2 (0) — TP (2*), 2pg1 — 2¥)
(3.11) (1= ) Ap(un, &) + an (S (u) = 7 (2%), 21 — 2¥).

Similarly, we have
(B12) Ap(yni1,y*) < (1= ) Ap(vn, ¥") + an(J2(0) = L2 ("), Ynt1 — ¥7).
Adding (3.11) and (3.12), we have

Ap(@ni1,87) + Dp(Yni1,y") < (1= an) [Dp(n, 77) + Ap(vn, y7)]
Fou [(J7H(w) — TP ("), Tpn — )
H2 (0) = L2 Y Ynsr — Y7
(1= an) [Ap(xn, ) + Ap(yn, y")]
+0zn[(Jfl(u) — Jfl (%), Tpyq — )
(3.13) HI2 W) = L2 ) g — ¥
We now consider two cases to establish the strong converged¢e,ofy,,)} to (z, y).

IA AN A

IA
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Case 1 Suppose thatA,(z,,, 2*)+A,(yn, y*) } IS monotone non-increasing, théA ,(z,,, *)+
A, (yn,y*)} is convergent. Thus,

i [(Ap(ni1,2%) + Bp(Unt1,y7)) = (Bp(@n, 27) + Ap(yn, y7))] = 0.

n—oo

From (3.6), [(3.]7),[(3]8) and (3.9), we have

0 < (Ap(tn, @) + Ap(vn, ¥*)) — (Ap(wn, 7) + Ap(2n,¥*))
= (Bp(un, ) + Bp(vn, ¥")) = (Bp(@ns1,27) + Ap(Yni1,y7))
+ (Bp(@nt1, %) + Bp(Yni1,¥7)) — (Bp(wn, ) + Bp(2n,y"))
< (Bp(@n, 27) + Ap(yn, ¥7)) = (Bp(@nt1,2") + Bp(Ynr1,¥7))
T (Bp(u, 2) + Ap(v,y7)) + (1 = o) (Bp(tn, %) + Ap(vn, y"))
— (Ap(un, ") + Ap(vpn,y*)) — 0, @asn — oo,

which implies

(3.14)  lim (Ap(un,x™) — Ap(zn,2¥)) = Im (Ap(vn, y") — Ap(wy,,y")) = 0.

n—oo n—oo

Also, from the definition of,,, we have
Ap(zp, T°) Ay (J7E((1 = B,)J7 (un) + 8,0 (Tun)) , %)

< (1= 8)Ap(un, %) + B, Ap(Tup, )
= Ap(un,2") + By, [Ap(Tun, ™) — Ap(up, )] .

(3.15)

Also, from (3.14),((3.1b) and condition (iv) we obtain

(3.16)8,, (Ap(tn, x*) — Ap(Tup, %)) < Ap(un, 2*) — Ap(z,, 2*) — 0, asn — co.
Since{g,} is bounded (see condition (iv)), we have

(3.17) nhjgo (A (tn, z°) — Ap(Tup, z*)) = 0.

Similarly, we have

(3.18) lim (A, (vn,y*) — Ap(Sv,,y*)) = 0.

n—oo

SinceT andS are right Bregman strongly nonexpansive mappings, then from|(3.17)) and (3.18),
we have

lim A, (Tup, u,) =0

n—oo

and
lim A,(Svy,v,) =0

n—oo

respectively, which implies

(3.19) lim ||T"u, — uy,|| =0
and
(3.20) lim |[Sv, — v,|| = 0.
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From (3.4) and[(3.11), we have

h—(@“”“”+DNﬂBW)hm%—B%W

q
(Ap(zn, 27) + Bp(Yn, y7)) = (Bp(tn, ) + Ap(vn, 7))
(Ap(@n, 27) + Bp(Yn, y7)) = (Bp(Tns1, 27) + Bp(Ynt1,47))
+1,Y )) ( (um ) + AP(Umy*))
(A

+ (Ap(Tng1, ) + Ap(yn
(Ap(Tn, @) + Ap(Yn, y p(Tny1, 77) +Ap(yn+lyy*))

IA

) -
+(1 = an) (Ap(n, %) + Ap (v, ¥7)) = (Bp(un, %) + Ap(vn, y7))
o [(J) () = TN (@), 2 — ") + (2 (0) = L2 (Y7), Ynsr — 7))
= ( (xna *> + (yn7 )) - (A (x’rl-i-h *) + A (yn—l—la *))
o ((J) () = T (27), T — %) = Ay(ug, 27))
+an((J,” (v) = JEQ( ) Unt1 = Y7) — Bp(vn,y*)) — 0, @sn — oo
That is,
ta||AIN?T Dy(t,||Bl])¢
1m[%_(@(””>+ x||m)hm%_3%wzg
n—00 q q
i Cak?~ (|9 Dqk~'(||B])9 Cq(tnllAlDT Dy (tn]|B]])?
Since0 < t(l—( 7 + 7 )) < (tn—< . + . )),We
have
(3.22) lim ||Az, — By,||’ = 0.
From the definitions ofi,, andb,,, we have
E E E * 7E3 Eq
[, an — ) | = (|, (@) — 82 A", (A, — Bys) — J," (@)
< tal| A1 7,7 (Azn — By)|
(o )&HAWA By,
< . Tn — DYn|| — 0; n — 0.
Cqll Al
Slncer is norm to norm uniformly continuous on bounded subsets;gfwe have
(3.22) lim ||a, — z,|| = 0.

Similarly, we have

(3.23) lim ||b, — yn|| = 0.

Since ReﬁM'm is a right Bregman firmly nonexpansive mapping, we have

A, (Reg" (@™ tay,), z*) + A, (2*, RegM (D" a,)) + Ay(P™ ' a,, Reg™ (9" 1ay,)) +

Ap(x* %) < A" ay, 2*) + A, (2%, RegV (™ 1ay,))
which implies

A, (ResM (@™ 'a,),2*) + A, (2™ 'a,, Reg™™ (0" a,)) < A, (P ay, 27).
That is,
(3.24) A (D™ a,, @Ma,) < AL (P ta,, 1Y) — Ay (P ay, ).
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Similarly, we have

(3.25) A, (U, UV 1h,) < AT, ) — AL (Y, ).

Adding (3.24) and (3.25), we have

Ay (@™ a,, @ a,) + A, (N 1b,, UND,)

A (@™ a,, 2*) + A, (TN, yt) — (Ap(Cbman, %) + A, (U, y*))

IA

(3.26) Ap(an, ) + Ap(bn, y*) — (Ap(®"an, %) + A (TN, yY))
(A:D<xm )+ Ap(Yn, ¥*)) — (Ap(q)mam z*) + Ap(\IIan’y*))
= (Bp@n, 2") + Bp(Un, ¥7)) — (Dp(@ns1,27) + By (Ynt1,97))
+ (Ap(@nt1,27) + Bp(Ynt1,Y7)) — (Dp(un, %) + Ap(vp, y7))
(Ap(zn, 27) + Bp(Yn, y7)) — (Bp(Tn1, 27) +Ap(yn+1,y*))

+(1 = an) (Ap(tn, %) + Bp(0n,y%)) = (Ap(un, 27) + Ap(vn, y7))

o [(J,7 (u) = T ("), @ — 27) + (T2 (0) = 2 (Y7), Yner — 7))

= (Ap(zp,2") + A (ym ) = (Ap(@ni1,2°) + ADp(Ynt1,Y")
) —
) —

IN AN -

IN

)
o (T3 () = L7 (@), apgn — %) = Dp(up, 7))
o (1, (v JE"’( )y Ynr1 —y*) = Ap(vn, ")) — 0, @sn — oo,

which implies

(3.27) Tim AL (@™ a, @ay) = lim A, (Y0, UN,) = 0.

By the same argument as (3.24)-(3.26), we have

A (@™ 2a,, @™ ta,) + A, (N 2h,, UV,

Ap(an, ) + Ap(bn, y*) — (A" Hap, 2*) + A (TN by, 4))

(Ap (s @) + Dy (Yns ) — (Ap(P" s, %) + Ay (T, "))

= (Ap(@n, ) + Ap(Un: ¥7)) — (Ap(Tng1, @) + Ap(Ynt1,¥7))

+ (Ap(@n41, %) + Bp(Yni1,Y7)) — (Bp(n, ) + Ap(va, y7))

[VARVAN

< (Bp(@n; 27) + Ap(yn, ¥7)) = (Ap(@nga, 27) +Ap(yn+17y*))
+(1 = an) (Ap(tn, %) + Bp(0n,y%)) = (Ap(un, 27) + Ap(vn, y7))
o [(J7 (u) = T ("), @ — 27) + (T2 (0) = 2 (Y7), Yner — 7))
= (Bp(@n, %) + Ap(yn, ¥7)) = (Bp(@nt1, 27) + Ap(Yns1,57))
tan ((Jy () = 7 (27), 2gn — 27) = Ap(up, z7))
(328)  +an((J2(v) = JE(Y"), gurs — ¥7) — Dylvny7)) — 0, @Sn — oo,
which implies
(3.29) Tim A (@™ 2a,, @™ 'a,) = lim A, (TN =2p,,, UN1p,) = 0.
Continuing in the same manner, we have that
(3.30) nh_)rrc}o A (D" 3a,, " %a,) = = nh_)n;oA (an, ®a,) =0,
and
(3.31) T}LIEO A, (UN 3, N 2q,) = nhjgloA (an, ®ay,) = 0.
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From (3.27),[(3.29)[(3.30) and (3]31), we can conclude that
lim A, (@ a,, ®a,) =0, 1 =1,2,...,m,

n—oo

lim A,(9" b, ¥"b,) =0, r=1,2,...,N.
Which implies
(3.32) hm |®'a, — @ la,||=0,1=1,2,...,m,
(3.33) lim [[U"b, — U™ 'b,|| =0, r=1,2,...,N.

Also, we have that
lim ||a, — ®(a,)|| = 0.

n—oo

Hence,

lim [|a, —u,|| < lim [[la, — ®'a,|| +[|®'a, — Pap|[ + - + || a, — u||] — 0, asn — co.
n—oo n—oo

That is,
(3.34) nh_)rxgo [lan — uy,|| = 0.
Similarly, we obtain
(3.35) nh_)nolo ||br, — vn|] = 0.
From (3.22) and (3.34), we have
(3.36) nh_)rgo ||zn — un|| = 0.
Similarly, we have
(3.37) Tim [Jy, — va]| = 0.
Also we have
lxn — Txnl| = ||ln — tn + wy — Tup + Tuy — Ty |

< o = unll + g — T || + | Twn, — Ty

< 2||un - an + Hun - Tun”
Hence from|[(3.19) and (3.B6), we obtain

(3.38) lim ||z, — Tx,| = 0.
Similarly, from (3.20) and (3.37) we obtain
(3.39) Tim |y — Syall = 0.

SlnceJE1 andJE2 are uniformly continuous on bounded subset&ptind F; respectively, we

have from @Z) and (3.83) that

3.40 lim ||[JEr ®la, — JE @ a,|| =0, 1 =1,2,...,m,
p p

and

(3.41) lim [[J2W7b, — J20 1, || =0, r=1,2,...,N.

Since{r,} is bounded in; and £, is reflexive, there exists a subsequeficg, } of {z,,} that
converges weakly to. By (3.38), we have that € F(T) sinceF(T) = F(T). Also since{y, }
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is bounded inZ; and E; is reflexive, there exists a subsequefgg, } of {y,} that converges
weakly tog. By (3.39), we have that € F(S) sinceF(S) = F(S).
Next, we show tha € M;(z) and0 € M, (y), foreachl = 1,2,...,mandr =1,2,..., N.
Leti € {1,2,3,..m}. Let (z,n) € G(M,), then € M,z., From®'a, = Reg(®'"1a,), we
have that

JPo!a, € (JP + AM)) Dla,
which implies

1

3 (JFro'ta, — JPdla,) € MP'ay,.
By the monotonicity ofM/;, for eachl = 1,2, ..., m, we have

1 -

(n — X (JpElCI)l Ya, — J[;ElCI)lan) J 2 — @lan> > 0.
This implies
1
(n,z — dla,) > <X (JflCIDZ_lan — Jfltblan) 2 — @l_lan> .

Since{x, } converges weakly t@, we have from[(3.40) and (3.36) that
(n,z—x) > 0.
Hence, by the maximal monotonicity of;, we have that € M, (z). Since: was arbitrary, we
have0 € N, M;(z).
By similar argument, we obtain thate NY_, M, (7).
We now show thatlz = By.

SinceA : F; — EjandB : E;, — Ej are bounded linear operators,afid,} and{y,}
converges weakly te andy, respectively we have that for arbitrafye E3,

f(Azn) = (f o A)(2n) — (f 0 A)(T) = f(AT).
Similarly
f(Bxn) = (f o B)(yn) — (f o B)(y) = f(By).

This convergence implies that
Ax, — By, — AT — By.

Also, by weakly semi-continuity of the norm, it follows that
(3.42) ||Az — Byl|| < ligicgf ||Ax,, — By,|| = 0.
That is,Az = By. Therefore(z,y) € T.
We now show thaf(z,,, y,)} converges strongly taz, 7).
(3.43)  Ap(zn,un) < (1—5,)A (un,un) + B,8,(Tup, u,) — 0, asn — oo.
Also, we have

Ap(Tpir,un) = A, (Jqu [oszpEl(u) +(1-— an)JpElzn}  Un)

(3.44) < oAy (u, un) + (1= an)Ap(zn, un) — 0, @Sn — oo,
which implies
(3.45) lim ||z,11 — uy|| = 0.

Similarly, we have
(3.46) nhjlgo |[Ynt1 — vnl[ = 0.
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From (3.36) and (3.45), we have
(3.47) lim ||z,41 — 2u]| = 0.

Similarly, we have

(3.48) Tim {lyn41 = yal| = 0.

From (3.18), we have

Ap(nt1,T) + Bp(yni1,7) < (1= o) [Ap(an, T) + Ap(yn, J)]
(3.49) o [(J) (1) = (@), @agr = 2) + (L2 (0) = L2 (5), Ynss — )] -

Using Lemma[(2]2) in (3.49), we conclude tHat,,, y,,) } converges strongly toz, 7).

Case 2 Suppose that there exists a subsequdnggof {n} such that

Ap(lL‘m,fL‘*) + Ap(ynwy*) < Ap<xni+1’ {L‘*) + Ap(ynr‘rl)y*) VieN.

By Lemma|2.8), we can find a nondecreasing sequéngg C N such thatn, — oo and for
all £ € N, we have

Ap(ilfmk, .CIZ'*> + Ap(ymk’ y*) S Ap(xkarl? 1'*) + Ap(ykarla y*)

and

(3.50) Ap(xlw z") + Ap(yk7 y') < AP<Imk+17 r*) + Ap<ymk+17 y).
Then, by the same arguments aqdin (B.14), (3.15)[and|(3.16), we have that
(3.51) kh_)rgo T Uy, — U, || =0

and

(3.52) ]}LIQO [|SUm, — U, || =0

From (3.18), we have
(Ska+1 ) (ymk+17 27)
< (1= amy) (Bp(m, T) + Bp (Y- 9))

(353) +amk (< f ( ) Jfl(f),l‘mk+1 - j) + <Jf2<v) - Jf2<g)7ymk+1 - g)) )
which implies
Ay, (Bp(Tmy, T) + Bp(Yms §)) < (Bp(Tmy, T) + Bp(Umir 1) = (Bp(Tmi15 ) + Bp(Ymy+1, )
it ((JE () = TP (@), i1 — )
+<sz (U) - sz (g)v Ymp+1 — g>)
Ay, ((Jfl (u) — Jfl (Z), Toy1 — T)

(3.54) (2 (V) = L2 (@), Y1 — 9))-
That is
(Ap(@mys T) + Dy, §)) < (T, (1) = T (@), Tinger = ) + (T2 (0) = T2(9)s Y1 — 7)) -
Which implies
(3.55) lim (Ap(zm,, T) + Ap(Ym,, 7)) = 0.

k—o0

From {3.50) and (3.55), we have
Ap(xkff) + Ap(yk,g) S Ap(xmk-i-l? j) + Ap(ymlﬁ-l?g) - 07 aSk - OO,

IN
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which implies that{ (z, yx)} converges strongly tez, y). Thus,{(z,,y.)} converges strongly
to (z,y) €T'. 1

Corollary 1. Let Fy, E, and E5 be threep-uniformly convex real Banach spaces which are
also uniformly smooth and : £, — FE3;, B : Ey; — FE3 be two bounded linear opera-
tors. LetM : B, — 281, N : E, — 2F2 be multivalued maximal monotone mappings and
T:E — Ey, S: Ey — E; be right Bregman strongly nonexpansive mappings such that
F(T) = F(T) and F(S) = F(S). Suppose thaf := {(z,3) € F(T) x F(S) such that) e
M(z), 0 € N(y) and Az = By} # 0 and{«a,}, {5,}, are sequences if0, 1). Letu, zq € E;
andv, yy € E, be arbitrary and the sequendéz,,, y,,)} be generated by

(v, = Res;}NJ(? [JqE2(yn) + tnB*Jf3 (Az,, — Byn)} ;
Uy = Res;MJqET [Jfl (xn) — tnA*Jf3(A$n - Byn)} ;
W = Jg* [(1= B,) T (vn) + B, T F2Sva] ;
=y [0 = B,) 7 (wn) + 8,77 T
Ynt1 = Jq [an‘];i%( ) + ( —ap) JEzwn} ;

(Zny1 = JqET [aanl (u) + (1 —ay JElzn} ,

(3.56)

with conditions
() lim, . a, =0,
(i) 3202 an = oo,
1 1
q— q qg—1
(i) 0<t<t,<k< (m) 0<t<t,<k< <W> ,
(iv) S, € (a,b) for somea,b € (0,1).
Then{(z,,y,)} converges strongly toz, ) € T.
Recall that in a real Hilbert space, the duality mappitg becomes the identity mappirg
Thus, the resolvent dff now becomes:
Reg = (I +AM) ol = I+ M) = J.

Also note that ifH is a real Hilbert space, theill = H*. Using these facts, we obtain the
following corollary in real Hilbert spaces.

Corollary 2. Let H, H, and H; be three real Hilbert spaces amtl: H; — Hs, B : Hy — Hj
be two bounded linear operators. Lé&f; : H, — 271 N, : Hy, — 2124 = 1,2 ..., m be
multivalued maximal monotone mappings ahd H, — H,, S : H, — H, be strongly nonex-
pansive mappings. Suppose tha¥ () and{«,}, {5,}, are sequencesifd, 1). Letu, z, € H;
andwv, yo € H, be arbitrary and the sequendéz,,, y,,)} be generated by

(Un = J)]\Vm o (])]\Vm_1 0---0 J)J\Vl [Yn + t,B*(Az,, — By,)];
u, = J/{me o Ji”m*l 0.0 J;\wl [z, — t, A*(Azx, — By,)];
= (1 —=B,)vn + B3,,Svn;
= (1= 05,)u, + 6, Tuy;
Ynt1 = v + (1 — o) wn;

Tni1 = apu+ (1 — )z,

(3.57)

\

with conditions

) lim, . a, =0,

(i) D52y am = oo,
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n- ’ HA*(Axn__B%)HQ_’_HB*(AZCH_B?JTL_
being any nonegative value), where the set of indexes{n : Ax,, — By, # 0},
(iv) 3, € (a,b) for somea,b € (0,1).
Then{(z,, y,)} converges strongly toz,y) € I'.

IIE — 6),n € Q) otherwisegt, =t (¢

4. APPLICATION

4.1. Split Equality Variational Inequality Problem and Split Equality Fixed Point Prob-
lem. LetD : C' C E — E* be strongly positive bounded linear mapping with coefficient 0
andf : C C E — E* be a contraction mapping with coefficieh o < 1. Then Lemma 2]4
also holds in a more general Banach space, i.e., we havé/thaty f) is a monotone operator
in £. Indeed, for allr,y € C'and0 < v < Z, we obtain

(D=7f)z=(D=~fly,x—y) = (Av—Ay—~(fx— fy),z—y)
(Ar — Ay, x —y) —(fr — fy,xz —y)
Tllz =yl =yl f2 = fylllle —yl|
7|z =yl = yallz —ylf*,
which implies that (D — vf)x — (D — vf)y,z —y) > 0.
It can also be shown thaD — ~ f) is a Lipschitzian mapping. Indeedy, y € C, we have

(D = 7f)z— (D —=7f)yll |Dx = 7fx — Dy + 7 fyll.

|Dx — Dyllx + 7l fz — fyl.«
kllz —yll + mallz =y
(4.1) (k =+ a7)llz —yl|,

which implies that D — 7f) is Lipschitzian with coefficienf. = k£ + a7. Hence,(D — 7f) is
a monotone and L-Lipschitz mappingiif< v < Z. Therefore, if we defind/ : E — 2F" by

Nex+ (D —71f)x if z€C,
0 if v¢C,
whereN¢z is the normal cone of' atz, defined by

Nex ={w € E* : (w,x —y) >0, Yy € C}.

Then, M is maximal monotone and/~(0) = VIP(C,D — 7f) (see, for example, [[[25],
Theorem 3]), wher& I P(C, D — 7f) is the solution set of the variational inequality problem:
Findz* € C such that

(4.3) (D—71f)z",y—2a*) >0 VyeC.

Let,

I :={(z,7) € F(T)xF(S), such thatz, y) € (N~ ,VIP(C, D, — 7f,))x (", VIP(Q, D, — 7)) }.
Then, we state the following theorem for approximating a common solution of split equality

variational inequality problem and split equality fixed point problem, whose proof follows from
the proof of Theorem 3.1.

(AVANLVS

IA A IA

(4.2) Mz = {

Theorem 4.1. Let E;, E» and E5 be threep-uniformly convex real Banach spaces which are
also uniformly smooth an@’, @) be nonempty, closed and convex subsét,ofF, respectively.
Foreachl = 1,2,...,mandr = 1,2,...,N,letD, : C — Ef, D, : Q — Ej be strongly
positive bounded linear mappings with coefficient 0O and f; : C — EY, f, : Q — E; be
contraction mappings with coefficieat< o < 1such thatd < v < Z. LetT : E; — Ej,
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S : Ey — E, be right Bregamn strongly nonexpansive mappings suchA(@) = F(T) and
F(S) = F(S). LetA: E; — E3, B : E; — FE3 be two bounded linear operators ahd # (.

Let the sequencf(x,, y,)} be generated by Algorithm 3.1, théfw,,, y,)} converges strongly

to (z,y) € I'".

Remark 4.1. Our work extend results for split equality monotone inclusion problem from the

framework of Hilbert spaces to the more generainiformly convex Banach spaces which are
also uniformly smooth.
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