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1. I NTRODUCTION

We denote byL∞(a, b) the commutative Banach algebra of real-valued functions defined and
essentially bounded on(a, b). Let L be a positive linear functional onL∞(a, b). UnlessL is
trivial, there is no loss of generality in takingL(1) = 1.

It is well known that iff, g ∈ L∞(a, b) with m ≤ f ≤ M andp ≤ g ≤ P a.e. then

(1.1) |L(fg)− L(f)L(g)| ≤ 1

4
(M −m)(P − p).

In its original form this reads

(1.2)

∣∣∣∣ 1
b−a

∫ b

a

f(x)g(x)dx− 1
b−a

∫ b

a

f(x)dx 1
b−a

∫ b

a

g(x)dx

∣∣∣∣ ≤ 1

4
(M −m)(P − p),

and as such is known as Grüss’ Inequality. Proofs of it, of other particular cases of (1.1), and
of (1.1) itself can be found in the literature. (Chapter 10 of [4] serves as a comprehensive
reference.)

The purpose of this note is to present some new proofs of these results, which we believe to
be of interest. We begin with some preparation.

It is clear that both (1.1) and (1.2) are invariant under affine transformations off andg (that
is f → af + b, g → αg + β ). In view of this we may suppose, for example, thatm (and/or
p) is positive, or is zero. Indeed we could even takem = p = 0 andM = P = 1. Below we
make free use of these devices, whilst staying as close to the original right hand sides of (1.1)
and (1.2) as is convenient.

We note also that to prove (1.1), for example, is it sufficient to establish it with the absolute
value signs on the left removed. For if the inequality is true without them, forf andg, then it is
also true forM + m− f andg, whence the result becomes

L(fg)− L(f)L(g) ≥ −1

4
(M −m)(P − p),

which gives (1.1).
Finally, there is no loss of generality if we take(a, b) = (0, 1) and we shall do this throughout.

2. TWO PROOFS OF (1.2)

Here we give two proofs of (1.2) without the absolute value signs, and we takeM = P = 1

andm = p = 0. Also, for brevity, we write
∫

f to mean
∫ 1

0
f(x)dx etc.

First proof of (1.2).Let f ∗ andg∗ be the non-increasing rearrangements off andg ([3], Sec
10.13).

Then
∫

f =
∫

f ∗ and
∫

g =
∫

g∗ but
∫

fg ≤
∫

f ∗g∗ so that∫
fg −

∫
f

∫
g ≤

∫
f ∗g∗ −

∫
f ∗

∫
g∗ =

∫
f ∗(g∗ −

∫
g∗)

Note that the rearranged functions are each non-increasing from1 to 0 in (0, 1).
We suppose that the change of sign ofg∗ −

∫
g∗ takes place atx = α, and then defineF via

F (x) =

 1 if 0 ≤ x ≤ α

0 if α < x ≤ 1.
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Let the change of sign ofF −
∫

F take place atx = β, say, and defineG via

G(x) =

 1 if 0 ≤ x ≤ β

0 if β < x ≤ 1.

Then we have∫
f ∗(g∗ −

∫
g∗) ≤

∫
F (g∗ −

∫
g∗) =

∫
g∗(F −

∫
F ) ≤

∫
G(F −

∫
F ).

Now supposing for the sake of definiteness thatα ≤ β, this last expression is equal to

α− αβ.

But

α− αβ ≤ α− α2 ≤ 1

4
,

which completes a proof of (1.2). �

Second proof of (1.2).Denote byK ⊂ L∞(0, 1) the closed convex set of functions which are
bounded almost everywhere by0 and1. Forf, g ∈ K let

Ψ(f, g) =

∫
fg −

∫
f

∫
g.

Suppose now thatg is fixed. ThenΨ is a continuous linear functional onK. It will take its
maximum value at an extreme point ofK – that is, whenf is a characteristic function taking
only values0 and1 – sayφ(g). Therefore

Ψ(f, g) ≤
∫

φ(g)g −
∫

φ(g)

∫
g.

Next consider

Ψ(φ(g), w) =

∫
φ(g)w −

∫
φ(g)

∫
w (w ∈ K).

In a similar way, this is maximized by∫
φ(g)θ(g)−

∫
φ(g)

∫
θ(g)

for some characteristic functionθ(g).
We point out that just asφ depends ong so doesθ depend onφ(g) and hence also ong. But

whateverg may be, the upper bound ofΨ(f, g) has the form∫
φθ −

∫
φ

∫
θ

for some characteristic functionsφ andθ satisfying, say,

φ(x) = 1 onE1 and = 0 elsewhere in(0, 1)

and
θ(x) = 1 onE2 and = 0 elsewhere in(0, 1).

Hence

Ψ(f, g) ≤
∫

φθ −
∫

φ

∫
θ = m(E1 ∩ E2)−mE1mE2.
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We may suppose thatmE1 ≤ mE2, and then we get

m(E1 ∩ E2)−mE1mE2 ≤ mE1 − (mE1)
2 ≤ 1

4
,

which completes another proof of (1.2). �

3. TWO PROOFS OF (1.1)

For these two proofs we take the bounds off andg to beM, m andP, p respectively, as there
is no advantage in not doing so. We shall prove the versions with the absolute value signs. First
we need a little more preparation. For brevity again, we writeF for L(f) andG for L(g). There
should be no confusion with theF andG used before.

Consider the following quadratic inλ :

L((g − λ)2) wherep ≤ λ ≤ P.

This quadratic takes its minimum value atG, so applying the Schwarz inequality for positive
linear functionals and remembering thatL(1) = 1 we get

(3.1) L(|g −G|)2 ≤ L((g −G)2) ≤ L((g − P + p

2
)2) ≤ 1

4
(P − p)2,

so that

(3.2) L(|g −G|) ≤ 1

2
(P − p).

First proof of (1.1).SinceL(g −G) = 0 we have

|L(fg)− L(f)L(g)| = |L(f(g −G))| = 1

2
|L((2f −M −m)(g −G))|

≤ 1

2
L((|f −M |+ |f −m|) |g −G|) ≤ (M −m)L(|g −G|).

Interchanging the roles off andg in the first and last of these we can combine the two results
to get a ‘pre-Grüss inequality’

(3.3) |L(fg)− L(f)L(g)| ≤ 1

2
Min [(M −m)L(|g −G|) , (P − p)L(|f − F |] ,

which is a refinement of (1.1).
Now applying (3.2) to the former of these last two expressions we get

|L(fg)− L(f)L(g)| ≤ 1

2
(M −m)

1

2
(P − p),

which concludes a proof of (1.1). �

Second proof of (1.1).This proof follows quickly from (3.1). We have

|L(fg)− L(f)L(g)| = |L((f − F )(g −G))| ,
and so

|L(fg)− L(f)L(g)|2 ≤
∣∣L((f − F )2)

∣∣ ∣∣L((g −G)2)
∣∣ ,

by Schwarz’s Inequality. By (3.1), this gives

|L(fg)− L(f)L(g)|2 ≤ (M −m)2

4

(P − p)2

4
,

and taking square roots, we have concluded another proof of (1.1). �
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4. FINAL REMARKS

Remark 4.1. Inequality (3.3) is obtained in [2] by a different method. There, the sharpness of
the constant1/2 is also demonstrated.

Remark 4.2. If in (1.1) we takef andg to be continuous on[a, b], then in view of the form of
positive linear functionals defined onC[a, b], it can be written as∣∣∣∣ 1

b−a

∫ b

a

f(x)g(x)dw − 1
b−a

∫ b

a

f(x)dw 1
b−a

∫ b

a

g(x)dw

∣∣∣∣ ≤ 1

4
(M −m)(P − p),

wherew is non-decreasing in[a, b]. Now takinga = 0, b = n andw(x) ≡ [|x|] (the integer part
of x) and writingak for f(k) andbk for g(k), we get the discrete form of Grüss’ Inequality:∣∣∣∣∣ 1n

n∑
k=1

akbk −
1

n

n∑
k=1

ak
1

n

n∑
k=1

bk

∣∣∣∣∣ ≤ 1

4
(M −m)(P − p),

in whichm ≤ ak ≤ M, andp ≤ bk ≤ P for all k.

Remark 4.3. Referring to the second proof of (1.2) above we remark that the same method
can be extended to the case of three or more functions. For example (leaving the details to the
reader), ∫

fgh−
∫

f

∫
g

∫
h ≤ m(E1 ∩ E2 ∩ E3)−mE1mE2mE3

≤ mE1 − (mE1)
3 ≤ 2

3
√

3
.

The absolute value signs can now be added to the left hand side for the same reason as before.
It should be noted, however, that the analogue can only be arrived at withm = p = 0 because
the affine property is absent in the case of more than two functions.

Remark 4.4. Chebyshev’s Inequality ([4]) reads: Iff andg are both increasing or both de-
creasing then ∫ b

a

fg ≥ 1
b−a

∫ b

a

f

∫ b

a

g.

This can be established using the same idea as in the second proof of (1.2) above. Indeed,
looking instead for a minimum forΨ, we get (with the obvious changed roles forφ andθ)

Ψ(f, g) ≥
∫

φθ −
∫

φ

∫
θ = m(E1 ∩ E2)−mE1mE2,

and sinceφ andθ are both increasing or both decreasing, this is positive. (Each ofE1, E2 is an
interval and one of them is a subset of the other.)

In the same way, and in view of Remark 4.2 above, we can obtain an inequality due to
Andersson ([1]): Iffj are convex and increasing on[0, 1] with fj(0) = 0, then∫ 1

0

f1 · · · fn ≥ 2n

n+1

∫ 1

0

f1 · · ·
∫ 1

0

fn.

Here the extreme points are functions of the formαx (α ≥ 0), and
∫ 1

0
f1···fn− 2n

n+1

∫ 1

0
f1···

∫ 1

0
fn

is zero when eachfj is an extreme point.
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