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ABSTRACT. The present study is dealt with an appropriate mathematical model of the arotic
bifurcation in the presence of constrictions using which the physiological flow field is analized.
The geometry of the bifurcated arterial segment having constrictions in both the parent and its
daughter arterial lumen frequently occurring in the diseased arteries causing malfunction of the
cardiovascular system , is formed mathematically with the introduction of appropriate curva-
tures at the lateral junctions and the flow divider. The flowing blood contained in the stenosed
bifurcated artery is treated to be Newtonian and the flow is considered to be two dimensional.
The motion of the arterial wall and its effect on local fluid mechanics is not ruled out from the
present pursuit. The flow analysis applies the time-dependent, two-dimensional incompressible
nonlinear Navier-Stokes equations for Newtonian fluid. The flow field can be obtained primarily
following the radial coordinate transformation and using the appropriate boundary conditions
and finally adopting a suitable finite difference scheme numerically. The influences of the arte-
rial wall distensibility and the presence of stenosis on the flow field, the flow rate and the wall
shear stresses are quantified in order to indicate the susceptibility to atherosclerotic lesions and
thereby to validate the applicability of the present theoretical model.
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1. I NTRODUCTION

It is an well-established fact that many arterial diseases leading to the malfunction of the
cardiovascular system account for more than 50% of the total number of deaths. Atheroscle-
rosis is one such diseases that affects millions of people worldwide in the form of heart attack
and stroke. The root causes contributing to the formation of atherosclerotic lesions have long
been investigated but yet the progress in understanding is limited to the present scenario. Usu-
ally curvatures and bifurcations of large and medium sized arteries are severely affected by this
disease. Quite a good number of investigations revealed that there is a relationship between
the genesis and the progression of the disease with the locally irregular flow field occurring
in these critical regions. Hemodynamics has long been suspected of being involved in such
diseases. According to the modern conception , it is widely accepted that the geometry of an
arterial bifurcation plays a significant role in atherosclerosis owing to the fact that most lesions
are found in these areas as propounded by Wolf and Werthessen [1]. The fact that the arterial
walls in these critical sites are exposed to both high and low shear stresses due to adhesion and
depositions of blood platelets and lipids, is also well established in recent times. One of the
proposed several hypotheses for the role of hemodynamics in the genesis of atherosclerosis is
the occurrence of atheroselerosis closely related to high shear stresses, Fry [2] pointed out that
a shear stress of 38N/m2for as short as one hour duration can cause degradation in canine arte-
rial walls. He opined also that a moderately elevated wall shear stress or pressure can increase
the permeability of endothelial cells. Depending on the geometry of the bifurcated artery, ar-
eas of both high and low fluid shear can develop and such phenomena have been evolved from
many more studies (Roach and Smith [3], Zarins et al [4] , Ku et al [5], Glagov et al [6], Fried-
man [7]) involving shear stress hypothesis. For the purpose of conceptual understanding of
the flow phenomena through arterial bifurcation from the physiological point of view relevant
to the atherosclerotic lesions, one must have the knowledge of hemodynamics, knowledge of
atherosclerosis and the correlation between them. Moreover, under normal physiological con-
ditions the transportation of blood in the circulatory system depends entirely on the pumping
action of the heart producing a pulsatile pressure gradient throughout the arterial system. For
the purpose of gathering more knowledge about the fluid dynamic factor in atherogenesis, quite
a good number of theoretical and experimental studies have been carried out over the last years.
The various models and methodologies used in these studies are as diversified as the geomet-
ric parameters and hydrodynamic conditions of arterial bifurcations. A comprehensive review
concerning the specific domain of research under discussion has been successfully conducted
by Lou and Yang [8] . The numerical methods appeared to be of much use in supporting exper-
imental methods and can be explored a variety of cases to determine the flow variables which
are often difficult to obtain in experiments. Most of the studies dealing with blood flow through
arterial bifurcations have been performed with the assumption that the streaming blood as either
a Newtonian or a non-Newtonian fluid depending upon the arterial diameters. But Perktold et
al [9] observed from their human carotid bifurcation flow model that the non-Newtonian fea-
ture did not fundamentally change the flow pattern in the bifurcation. While a considerable
number of numerical studies concerns the flow analysis in different two and three-dimensional
carotid bifurcation models under rigid wall idealization, relativity few numerical studies incor-
porating the wall distensibility have been appeared in the literatures (Perktold et al [10]-[11],
Chakravarty et al [12] ) in recent times. Although a two-dimensional model bifurcation can not
provide three-dimensional information, but fortunately, major atherogenic regions around arte-
rial bifurcations are more concentrated in bifurcation planes coinciding with two-dimensional
planes especially in early stages of atherosclerosis [13]. Besides these, the flow behavior in
mildly stenosed carotid artery bifurcation was less intensively studied. Van de Vosse et al [14]
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computed the velocity field in a two-dimensional model of the carotid artery bifurcation in pul-
satile flow. They compared the axial velocity profiles in a mildly stenosed bifurcation and a
non-stenosed bifurcation and found that the influence of the geometry variation on the axial ve-
locity profiles and the wall shear stress to be relatively small. However, the situations involving
severity of the arterial constriction were not adequately explored to have an understanding of
the in vivo situations.

In view of the above mentioned facts, an attempt is made to develop a two dimensional aortic
bifurcation model mathematically in the present study in order to analyse the flow field for a
better understanding of the flow characteristics in the bifurcation. The improved time depen-
dent geometry of the bifurcated artery is constructed mathematically that takes into account
two constrictions —one in the parent aorta and another stenosis in the daughter arterial lumen
together with the necessary curvatures at the lateral junctions and the flow divider so as to rule
out the possibility of any discontinuity, abnormal shear rates and large flow separation zones or
non-existent flow separation zones. The streaming blood contained in the stenosed bifurcated
artery is treated as Newtonian and the flow is considered to be two dimensional. The cylindrical
coordinate system has been taken for analytical formulation. Special emphasis has been put on
the effect of arterial wall motion on local fluid mechanics but not on the stresses and strains in
the vascular wall. The nonlinear Navier-Stokes equations governing blood flow together with
the equation of continuity are undergone a radial coordinate transformation as an initial step
and by means of which the velocity field can be expressed more or less in a tractable form with
the use of the appropriate choice of the boundary conditions. Finally, the adoption of the finite
difference scheme in the present analysis leads to the quantification of the flow field through
large scale numerical computation and the influences of the arterial wall distensibility along
with the presence of constriction on the flow field , the flow rate and the wall shear stresses
are quantified at the end of the paper through graphical display of the results obtained. These
results are interpreted and discussed at length in order to validate the applicability of the model
under study in the realm of the mechanics of the flow in arotic bifurcation.

2. FORMULATION OF THE PROBLEM

The stenosed bifurcated arterial model under consideration is assumed to be symmetrical
about the trunk axis and straight circular cylinders of finite length. Both the parent aorta and
its branch are taken to bear constrictions in their lumen. The streaming blood is treated to be
Newtonian with constant viscosity while the vessel wall distensibility has been accounted for
through the introduction of the arterial wall motion into the local fluid mechanics but not on the
stresses and strains on the vessel wall.

Let ( r , θ , z) be the coordinates of the representative material point in the cylindrical polar
coordinate system of which the z-axis is taken along the axis of trunk while( r , θ ) are taken
along the radial and the circumferential directions respectively.

The time dependent geometry (Figure 1) of the stenosed bifurcated artery having a couple
of stenoses by taking into account the necessary curvatures at the lateral junctions and the flow
divider , is developed mathematically as algebraic functions of various model parameters. The
geometry of the outer wall is described mathematically as
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Figure 1: Schematic representation of the stenosed bifurcated artery.

(2.1) R1(z, t) =



a.a1(t), 0 ≤ z ≤ d′, d′ + l0 ≤ z ≤ z1[
a− 4τm

l20
{l0(z − d′)− (z − d′)2}

]
.a1(t), d

′ ≤ z ≤ d′ + l0[
a + r0 −

√
r2
0 − (z − z1)2

]
a1(t), z1 ≤ z ≤ z2

[2r1 sec β + (z − z2) tan β] a1(t), z2 ≤ z ≤ zmax

while that of the inner wall is given by

(2.2)

R2(z, t) =


0, 0 ≤ z ≤ z3√

r2
01 − (z − z3 − r01)2b1(t), z3 ≤ z ≤ z3 + r01(1− sin β)

(z − z2) tan β b1(t), z3 + r01(1− sin β) ≤ z ≤ z5, z6 ≤ z ≤ zmax√
r2
02 − (z − z6)2b1(t), z5 ≤ z ≤ z6

in whichR1(z, t) andR2(z, t) represent the respective radii of the outer and the inner wall,a
the radius of the parent arota,r1the radius of the branch artery,(r0, r01) the radii of curvatures
for the lateral junction and the flow divider respectively,z1the location of the onset of the lateral
junction, z2 the offset of the lateral junction,z3 the apex,d′ the position of the onset of the
stenosis in the parent arota,(z5, z6) the respective onset and the offset of the stenosis in the
branch artery andβ is the semi-bifurcation angle. Herezmaxhas been taken to be the finite
length of the arterial segment under consideration. Besides these, the rest of the parameters
involved in the above expressions (2.1) and (2.2) should be defined as follows:
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(2.3)

a1(t) = 1− (cos ωt− 1)k exp(−kωt), b1(t) = 1
a1(t)

,

z2 = z1 + (2r1 sec β−a
1−cos β

) sin β, z3 = z2 + q, r0 = 2r1 sec β−1
1−cos β

,

r01 = (z3−z2) sin β
1−sin β

, z6 = z5 + l cos β, r02 = (z6 − z2) tan β,

whereq is chosen to be a small number lying in the range0.1 ≤ q ≤ 0.5, for compatibility of
the geometry,(l0, l) the respective lengths of the stenoses in the parent and the daughter arteries
andk is a constant. Hereω = 2πfp, fp being the pulse frequency.

Considering the bifurcated arterial blood flow to be nonlinear, axisymmetric, unsteady, two-
dimensional, and fully developed with the treatment of a Newtonian fluid representing blood,
the usual Navier-Stokes equations and the equation of continuity governing blood flow under
pulsatile pressure gradient, may be written as

(2.4)
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+

µ

ρ
(
∂2w

∂r2
+

1

r

∂w

∂r
+

∂2w

∂z2
)

(2.5)
∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= −1

ρ

∂p

∂r
+

µ

ρ
(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+

∂2u

∂z2
)

and

(2.6)
∂u

∂r
+

u

r
+

∂w

∂z
= 0

whereu = u(r, z, t) andw = w(r, z, t) are the radial and the axial velocity components of
the fluid respectively,p the pressure,ρ the density andµ designates the viscosity of the fluid
representing blood.

Further, the pumping action of the heart is idealized by the pulsatile pressure gradient∂p
∂z

appearing in the axial Navier-Stokes equation (2.4) produced by it, the form of which has been
borrowed for humans from Burton [15] as

(2.7) − ∂p

∂z
= A0 + A1 cos ωt, t > 0

whereA0 is the constant amplitude of the pressure gradient,A1 is the amplitude of the pul-
satile component giving rise to systolic and diastolic pressure with an angular frequencyω.

3. BOUNDARY CONDITIONS

Along the axis of the artery no radial flow takes place and there is no shear rate of the fluid.
This may be expressed mathematically as

(3.1) u(r, z, t) = 0,
∂w(r, z, t)

∂r
= 0 on r = 0, 0 ≤ z ≤ z3

The velocity field on the outer wall surface may be taken as

(3.2) u(r, z, t) = α
∂R1

∂t
, w(r, z, t) = 0 on r = R1(z, t) for all z,

and on the inner half (branch) can be assumed as

(3.3) u(r, z, t) = α
∂R2

∂t
, w(r, z, t) = 0 on r = R2(z, t), z ≥ z3
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in whichα = 1 for z < z3 = sec β for z ≥ z3.
Moreover, it is assumed that no flow exists when the system is at rest, that means,

(3.4) u(r, z, 0) = 0 = w(r, z, 0).

4. METHOD OF SOLUTION

To obtain the flow-field of the present theoretical model one may disregard the radial Navier-
Stokes equation (2.5) as justified from the assumption of negligible variation of the pressure
within the arterial cross section, that is,p = p(z, t) since the arterial radius is relatively much
smaller than its finite length. This assumption is well established and supported by several
investigators in the past (cf. Womersley [16], Ling and Atabek [17], Imaeda and Goodman
[18], Deshpande et al [19] and Pedley [20]) .

Since the respective radiiRi(z, t) (i = 1, 2) of the outer and the inner wall of the present
bifurcated artery are specified by (2.1) and (2.2), the major attention is centered only on the
hemodynamic factors.

At the onset of the present analytical treatment, a radial coordinate transformation is initiated
with the following substitution

(4.1) ξ =
r −R2(z, t)

R1(z, t)−R2(z, t)
=

r −R2(z, t)

R(z, t)
,

which has the effect of immobilizing the arterial wall in the transformed coordinateξ. With
the introduction of (4.1), the equations (2.4) and (2.6) assume the following form

∂w

∂t
= −1

ρ

∂p

∂z

+
1

R

∂w

∂ξ
[(ξ

∂R

∂t
+

∂R2

∂t
) +

µ

ρ(ξR + R2)

− µ

ρ

{
∂2R2

∂z2
+ ξ

∂2R

∂z2
− 2

R

∂R

∂z
(ξ

∂R

∂z
+

∂R2

∂z
)

}
]

+
µ

ρR2
[1 + (ξ

∂R

∂z
+

∂R2

∂z
)2]

∂2w

∂ξ2 −
u

R

∂w

∂ξ

− w[
∂w

∂ξ
− 1

R
(ξ

∂R

∂z
+

∂R2

∂z
)
∂w

∂ξ
] +

µ

ρ

∂2w

∂z2
(4.2)

(4.3)
1

R

∂u

∂ξ
+

u

(ξR + R2)
+

∂w

∂z
− 1

R

∂w

∂ξ
(ξ

∂R

∂z
+

∂R2

∂z
) = 0.

The accompanied conditions represented by (3.1) - (3.4) should be read according to (4.1) as

(4.4) u(ξ, z, t) = 0,
∂w(ξ, z, t)

∂ξ
= 0 on ξ = 0 for 0 ≤ z≤ z3 ,

(4.5) u(ξ, z, t) = α
∂R1

∂t
, w(ξ, z, t) = 0 on ξ = 1 for all z ,

(4.6) u(ξ, z, t) = α
∂R2

∂t
, w(ξ, z, t) = 0 on ξ = 0 for z ≥ z3
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and

(4.7) u(ξ, z, 0) = 0 = w(ξ, z, 0).

Multiplying (4.3) by(ξR + R2) and integrating it with respect toξ , one obtains

u(ξ, z, t) = (ξ
∂R

∂z

+
∂R2

∂z
)w(ξ, z, t) +

R2

(ξR + R2)
u(0, z, t)

− R

(ξR + R2)

∫ ξ

0

(ξR + R2)
∂w

∂z
dξ

− 1

(ξR + R2)

∫ ξ

0

(2ξR
∂R

∂z
+ R2

∂R

∂z
+ R

∂R2

∂z
)wdξ(4.8)

which subsequently holds the following form subject to the application of (4.5) as

−
∫ 1

0

(ξR + R2)
∂w

∂z
dξ

=

∫ 1

0

[(2ξ
∂R

∂z
+

R2

R

∂R

∂z
+

∂R2

∂z
)w +

R1

R

{
α

∂R1

∂t
− R2

R1

u(0, z, t)

}
f(ξ)]dξ .(4.9)

Since the choice off(ξ) is arbitrary, one can assume, without any loss of generality, the form
of this arbitrary functionf(ξ) = −4ξ(ξ2 − 1) satisfying

∫ 1

0
f(ξ)dξ = 1.

The equation (4.8) can be rewritten by taking into account the approximation of the treatment
of equality between the integrals to integrands together with the condition (4.5) as

u(ξ, z, t) = (ξ
∂R

∂z
+

∂R2

∂z
)w(ξ, z, t) +

R2

(ξR + R2)
u(0, z, t)

− ξ2R1

(ξR + R2)

{
α

∂R1

∂t
− R2

R1

u(0, z, t)

}
(2− ξ2).(4.10)

Useing (4.10) into (4.2) so that the latter becomes

∂w

∂t
= −1

ρ

∂p

∂z

+ [(ξ
∂R

∂t
+

∂R2

∂t
) +

µ

ρ(ξR + R2)

− µ

ρ

{
∂2R2

∂z2
+ ξ

∂2R

∂z2
− 2

R

∂R

∂z
(ξ

∂R

∂z
+

∂R2

∂z
)

}
− R2

(ξR + R2)
u(0, z, t)− ξ2R1

(ξR + R2)

{
α

∂R1

∂t
− R2

R1

u(0, z, t)

}
(2− ξ2)]

1

R

∂w

∂ξ

+
µ

ρR2
[1 + (ξ

∂R

∂z
+

∂R2

∂z
)2]

∂2w

∂ξ2 +
µ

ρ

∂2w

∂z2
− w

∂w

∂z
.(4.11)

These equations (4.10) and (4.11) appear to be better representation of the equations gov-
erning flow in the bifurcated artery and these would be of some help to obtain the flow field
numerically in concert with the boundary conditions without much trouble.
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5. FINITE DIFFERENCE APPROXIMATION

The finite difference scheme for discretizing and solving the equations (4.10) and (4.11)
numerically is essentially based on the conventional forward difference representation for the
time derivative and the central difference formula for the spatial derivatives. The discretized
version of the equation (4.11) should now be read as

(5.1) wk+1
i,j = wk

i,j +4t [−1

ρ
(
∂p

∂z
)k
i + (ak

i,j + bk
i,j + ck

i,j)d
k
i,j + ek

i,j + fk
i,j],

in which the respective expressions forak
i,j , bk

i,j , ck
i,j , dk

i,j , ek
i,j and fk

i,j are included in Ap-
pendix for the sake of brevity. The discretization has been performed by defining

zi = (i−1)4z, i = 1(1) M +1 and ξj = (j−1)4ξ, j = 1(1) N +1 for the entire arterial
segment under consideration where4z and4ξ represent the respective increments in the axial
and the radial directions. Consequently, the discretized version of the boundary conditions (4.4)
- (4.7) should be read as

(5.2) uk
i,1 = 0 , wk

i,2 = wk
i,1 for zi ≤ z3 and for all k ,

(5.3) uk
i,N+1 = α

∂Rk
1,i

∂t
, wk

i,N+1 = 0 for all zi ,

(5.4) uk
i,1 = α

∂Rk
2,i

∂t
, wk

i,1 = 0 for zi ≥ z3

and

(5.5) u1
i,j = 0 = w1

i,j , i = 1(1)M + 1 , j = 1(1)N + 1.

The solutions of (5.1) can be obtained numerically by using the relevant conditions mentioned
above. These solutions are then used to determineu from (4.10) directly. Unlike the flow-field
in the parent aorta , the velocity components in the branched arteries along the oblique line
inclined at an angleβ with the parent axis are defined by the following truncated Taylor’s series
expressions as

(5.6) w
/k
i,j = wk

i,j −4ξ(j − 1) tan β
∂wk

i,j

∂z
+

1

2
[4ξ(j − 1) tan β]2

∂2wk
i,j

∂z2
+ . . .

(5.7) u
/k
i,j = uk

i,j −4ξ(j − 1) tan β
∂uk

i,j

∂z
+

1

2
[4ξ(j − 1) tan β]2

∂2uk
i,j

∂z2
+ . . .

and consequently their discretized form with first order approximations should be read as

(5.8) w
/k
i,j = wk

i,j − (
j − 1

24z
)4ξ tan β(wk

i+1,j − wk
i−1,j) + O(h2),

(5.9) u
/k
i,j = uk

i,j − (
j − 1

24z
)4ξ tan β(uk

i+1,j − uk
i−1,j) + O(h2),

h being the width of the mesh.
The volumetric flow rate(Qp) for the parent(z < z3) aorta and the net flux(Qd) for the

daughter(z ≥ z3) arteries can thus be obtained as
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(5.10) Qp = 2πRk
i [R

k
i

∫ 1

0

ξjw
k
i,jdξj + Rk

2,i

∫ 1

0

wk
i,jdξj],

(5.11)
Qd = −πRk

i

∫ sec β
2

0
(ξjR

k
i + Rk

2,i)(w
/k
i,j cos β + u

/k
i,j sin β)dξj

+ πRk
i

∫ sec β
sec β

2

(ξjR
k
i + Rk

2,i)(w
/k
i,j cos β + u

/k
i,j sin β)dξj .

Finally, the wall shear stresses on the parent outer wall and the daughter inner wall should
have the following derived expressions as

(5.12) τ out = µ[α
∂2R1

∂z∂t
− 1

R4ξ

∂R1

∂z
(α

∂R1

∂t
− uk

i.N)− 1

R4ξ
wk

i,N ],

(5.13) τ in = µ[α
∂2R2

∂z∂t
− 1

R4ξ

∂R2

∂z
(uk

i,2 − α
∂R2

∂t
) +

1

R4ξ
wk

i,2].

Here the suffixes′p′ , ′d′ , ′out′, and′in′ indicate the parent, the daughter, the outer wall and
the inner daughter wall respectively.

6. NUMERICAL RESULTS AND DISCUSSION

The applicability of the present mathematical model is based on the large scale numerical
computation of the flow field together with various relevant quantities of interest depending
upon the existing data for the physical parameters encountered in the present analysis. An exten-
sive quantitative analysis has been performed with the use of the following data (cf. Milnor[21],
Lou and Yang [8]) :

a = 11 mm, l0 = 4 mm, d′ = 4 mm, z1 = 10 mm, z2 = 36 mm, z3 = 36.5 mm,
z5 = 40 mm, z6 = 50.6 mm, τm = 0.3a , fp = 1.2 Hz , β = 45o, ρ = 1.05X103Kgm−3,
zmax = 60 mm, µ = 0.035P, r1 = 0.7a, k = 0.1, A0 = 10Kg m−2s−2, A1 = 0.2A0.
The finite difference scheme adopted in the present analysis primarily to solve (5.1) numer-

ically has been found to converge satisfactorily with the respective spacings4z = 0.1 and
4ξ = 0.01 while the time step has been chosen to be4t = 0.00001. The necessary conver-
gence of the results has been successfully achieved with the desired degree of accuracy and
the results are displayed through the Figs. 2-19 and discussed at length in order to validate the
applicability of the present model.

The results of Figure (2) represent the behaviour of the axial velocity profile of the streaming
blood in the parent aorta at a specific location ofz = 6 mm corresponding to the constricted
site for three different time periods. The present figure also includes the corresponding results
for two more cases at a particular instant of t=2s — by disregarding the parental constriction in
one and by withdrawing the wall motion in another. All the curves appear to be flattened almost
half way towards the wall keeping their respective maxima on the axis and then to diminish
gradually towards the wall surface to approach minimum value (zero) on the outer surface.
One may observe from their behaviour with time that the axial velocity gets enhanced with the
advancement of time more towards the axis than in the vicinity of the wall surface.

One may also notice that there is a considerable deviation of the results both with respect
to ’nonstenotic’ and ’no wall motion’ which eventually quantify the effects of stenosis and the
distensibility of the arterial wall on the axial velocity profile plotted for the same instant of time.
The presence of constriction causes the axial velocity to slow down considerably as one moves
away from the wall and similar is the effect of wall motion on the flow profile.
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Figure 2: Axial velocity profile for the parent aorta at z=6 mm for different time periods.

Unlike the behaviour of the axial velocity profile, the results of the radial velocity component
varying radially at the same critical location of z=6mm exhibited in Figure (3)are noted to be
alternately negative and positive for three given time periods. Both the bottom most curves
corresponding to t=1s and 3s appear to decline from zero on the axis as one moves away from
it and eventually to increase towards the wall to attain some finite values on the wall surface.
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Figure 3: Radial velocity profile for the parent aorta at z=6 mm for different time periods.
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Conversely,the topmost curves corresponding to t=2s are observed to increase from zero on
the axis, rise to definite peaks and then slightly diminish towards the wall surface. From the
noted deviation of the results of these two curves one can easily quantify the effect of stenosis on
the radial velocity profile. The presence of constriction helps enhancing the radial flow velocity
to a large extent unlike the axial velocity presented in Figure 2. Most of the curves of the present
figure appear to be concave upwards or downwards in the vicinity of the wall surface excepting
that for the rigid vessel (no wall motion) where the profile becomes almost symmetrical. It is
again interesting to note that the vascular rigidity reduces the radial velocity of the streaming
blood to an extent so that the profile gets shifted towards the origin with zero velocity on the
wall surface. The finite non-zero (positive or negative) velocity on the wall surface possesses a
reflection of the wall motion encountered in the present model. Although the magnitudes of the
radial flow velocity are all time lower than those of the axial velocity, but the effects of parental
constriction and the distensibility of the arterial wall are recorded more on the radial velocity
profile than on the axial velocity profile of the flowing blood.

Figure (4) shows the results of the axial velocity profile in the daughter arteries at a critical
location ofz = z∗ where the stenosis in the daughter artery assumes its maximum constriction
for three different time periods. Two more curves are also plotted in the present figure at a
particular instant of t=2s — one by disregarding the presence of constriction while the other by
withdrawing the wall motion from the system. All the curves appear to rise from zero on the
inner daughter wall, attain their maxima and then gradually diminish to zero on the outer wall
surface.
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Figure 4: Axial velocity for the daughter artery at (z= (z5 + z6)/2) for different times.

There is a drastic change of the axial velocity profile in the daughter artery over that in the
parent aorta due to the obvious reasons of the bifurcated flow phenomena where the direction
of the flow alters from parent duct to its branches. One may observe that the presence of
constriction causes significant increase of the axial velocity in the daughter artery in contrast
with that in the parent aorta and such enhanced velocity is recorded maximum towards the mid-
way from inner to outer wall surface. So, the effect of stenosis in the daughter arterial lumen
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on the axial velocity profile is found to be quite significant. There is also some notable effect of
vessel wall distensibility on the velocity profile of the streaming blood in the branched artery.

The unsteady behaviour of the radial velocity profile of the stream in the daughter artery at the
same critical location ofz = z∗ is shown in Figure (5) for three different times. The appearance
of negative velocities indicates the back flow right from the inner wall to the outer wall surface.
All the curves representing the radial velocities drop from zero on the inner wall surface, attain
their minima at a short distance away from the inner wall and then rise to become zero again on
the outer wall surface.
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Figure 5: Radial velocity profile for the daughter artery at z=z∗ for different times.

The velocity gets diminished further with considerable deviation in magnitude if one disre-
gards the presence of stenosis in the daughter arterial lumen of the present model. When the
wall motion is totally withdrawn, that is, for a rigid bifurated artery, the velocity profile also
gets perturbed to some extent more towards the inner wall vicinity than near the outer wall.
Thus one can easily quantify the effects of stenosis and the vascular deformability on the radial
velocity pattern of the branched artery. It may be of some importance to record that although
the magnitudes of the radial velocity are greatly enhanced in the branch artery than those in the
main aorta but these are, however, quite smaller than those of the axial velocity in the daughter
arteries.

Figures (6) and (7) represent the respective axial and the radial velocity profiles in the daugh-
ter arteries at four distinct locations corresponding to a particular instant of t=2s. The general
features are the occurrence of strongly skewed velocity profiles with positive and negative val-
ues in both the directions respectively in the proximal part of the branches with steep velocity
gradients at the flow divider walls(z = z3). At the onset(z = z5) of the stenosis , the axial
velocity is diminished largely with an almost symmetrical flow pattern about the mid-wall while
a reverse flow (from negative to positive values) with smaller magnitudes occurs in the radial
direction.

The critical site(z = z∗) of the stenosis in the daughter artery , however, experiences en-
hanced axial velocity from that at the onset and a back flow again along the radial direction.
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Figure 6: Axial velocity for the daughter artery for different axial positions att = 2s.
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Figure 7: Radial velocity for the daughter artery for different axial positions att = 2s.

Finally, at the offset, that is , distal to the stenosis(z = z6)the axial flow velocity is reduced sig-
nificantly where the peak velocity is attained more towards the outer wall unlike other patterns
but the radial velocity continues to move further backward following the usual pattern. All these
observations agree qualitatively well with those of (Perktold and Rappitsch [22]) who studied
the flow characteristics of blood through a compliant carotid bifurcation model. One notable
feature from the results of the present figures is that both the profiles get largely perturbed near
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the apex of all the chosen sites with enhanced magnitudes right from the inner wall vicinity to
the area towards the outer wall.

The variations of the flow rate with time spanned over quite a few cardiac cycles within a
period of 10s at the apex are exhibited in Figure (8) for three different cases —- first based
on the present updated model, the second having no wall motion and the third in the absence
of constriction. The flow rate appears to get accelerated in the systolic phase and decelerated
in the diastolic phase of the first cardiac cycle followed by similar fluctuations with gradually
diminishing amplitudes for a few more cardiac cycles in succession and finally these fluctuations
completely damp out for the rest of the time.
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Figure 8: Variation of the flow rate with time at the apex.

One may notice from the behaviour of the flow rate that back flow does occur and several flow
separation zones are formed as the direction of the flow rate changes from positive to negative,
negative to positive and so on during the period of nearly six cardiac cycles. In the absence of
the stenosis, the flow rate follows the analogous trend with a little reduction of magnitudes for
the entire time range considered here. So, there is no significant effect of constriction noted on
the flow rate at the apex. If one disregards the wall motion, the flow rate behaviour changes dras-
tically to show an all time increasing trend with much reduced magnitudes where no back flow
takes place. Thus the vessel wall distensibility helps reducing the flow rate to a considerable
extent and its effect can easily be quantified through a direct comparison of the relevant curves
of the present figure. The subsequent figures (9) (10) (11) exhibit almost analogous behaviour
of the flow rate excepting some deviations in magnitudes at three respective specific locations—
one at the onset of the stenosis, other at the maximum constriction site of the stenosis and finally
at the offset of the stenosis of the daughter artery.
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Figure 9: Variation of the flow rate with time at the onset of the stenosis.
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Figure 10: Variation of the flow rate with time at the maximum constriction site.
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Figure 11: Variation of the flow rate with time at the offset of the stenosis.

One should note that the effect of constriction on the flow rate appears to be significant to
some extent only in Figure 10 and the maximum effect of wall distensibility on the flow rate
arises in Figure (8) relative to the rest of the results. The results of these figures possess a
common feature that the flow rate curves become steady to some extent after expiry of the sixth
cardiac cycle when the wall motion is taken into account.
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Figure 12: Variation of the wall shear stress at the parent aorta (z = 6 mm) with time.
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Figure (12) records the behaviour of the time variant wall shear stress at the parent aorta at
z = 6 mm corresponding to its maximum constriction site. Two more curves are also plotted
in this figure : (i) in the absence of any constriction and (ii) in the absence of wall motion as
noted with distinguishable marks. It appears that the wall shear stress increases a little from
zero at the onset of the first cardiac cycle during systole and diminishes largely during diastole
followed by continuously increase and decrease depending upon the systolic and the diastolic
phases of the next several cardiac cycles and eventually it becomes steady towards the end of
the time advancement. Back flow does take place with the formation of two small separation
zones during the first two cardiac cycles.

Almost similar feature is observed in the case of the absence of any constriction but with
considerable deviation in magnitudes. One may note in this connection that the stress values
get reduced considerably when the parent arterial constriction is completely disregarded. When
the wall motion is withdrawn from the present system, the stress curve almost continuously
declines without having any major fluctuations and hence one can estimate the influence of wall
distensibility on the wall shear stress quantitatively right through the comparison of the relevant
curves of the present figure.

Unlike the characteristics of the wall shear stress in the parent arota, Figures (13)(14)(15)(16)
represent the variations of the wall shear stress experienced by the daughter outer wall with time
at various respective locations viz. (i) at the apex, (ii) at the onset of stenosis, (iii) at the max-
imum constriction site and (iv) at the offset of stenosis. All these figures also include the cor-
responding results by disregarding the presence of constriction and by ignoring the vessal wall
distensibility. The stresses experienced by the daughter outer wall appear to be over hundred
times more than those experienced by the parent wall.
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Figure 13: Variation of the outer wall shear stress at the apex with time.
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Figure 14: Variation of the outer wall shear stress at the onset of the stenosis with time.
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Figure 15: Variation of the outer wall shear stress at the maximum constriction site.
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Figure 16: Variation of the outer wall shear stress at the offset of the stenosis with time.

The stress chracterizes to have large fluctuations from positive to negative, negative to posi-
tive and so on towards the first few cardiac cycles and eventually the fluctuations with variable
amplitudes gradually die out with large advancement of time. The stress curves become steady
beyond t = 6s where no further fluctuations are found to form. Such behaviour of stress includes
back flow with the formation of several flow seperation zones. The magnitudes of the stress get
reduced considerably when one disregards the presence of constriction as also when the wall
motion is withdrawn from the present system. It is worth while to mention that the sign of the
wall shear stress becomes positive when the flow is forward and negative when the stream is
reversed. It has been suggested that the change of shear stress direction or amplitude within
a cardiac cycle may have some relevance to atherogenesis (cf. McDonald [23] ). It has also
been speculated by Fischer et al [24] that the increased collagen production resulting from the
pulsatile wall stretch due to pulsatile pressure gradient may be an initiating event in vessal wall
injury leading to atherogenesis. Thus the observations of the present results agree well with this
hypothesis and perhaps it would help understanding the development of arterial diseases.

Finally, the concluding Figures (17)(18)(19) present the variations of the stress experienced
by the daughter inner wall with time at three specific locations respectively — (i) at the onset
of the constriction , (ii) at the maximum constriction site and (iii) at the offset of the stenosis.
Unlike those of the outer daughter wall , the wall shear stress on the inner daughter wall appears
to gain its magnitude quite higher for the entire time range considered here which becomes all
time positive with several fluctuations towards the early period of a few cardiac cycles till time
t = 5s and then it remains almost steady for rest of the time. In the absence of the stenosis, the
stress values are reduced significantly only in the stenotic region than at the onset and the offset
of the stenosis.
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Figure 17: Variation of the inner wall shear stress with time at the onset of the constriction.
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Figure 18: Variation of the inner wall shear stress at the maximum constricted site with time.
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Figure 19: Variation of the inner wall shear stress at the offset of the constriction with time.

A considerable reduction of the stress values is also recorded when the wall motion is disre-
garded. The distensible bifurcation experiences shear stresses higher to some extent than those
of a rigid bifurcation at both the inner and the outer wall of the branch artery. The inner wall
shear stress does not show flow reversal and hence no flow separation zones are detected irre-
spective of the presence and the absence of the arterial constrictions and of the wall motion. In
the present context, it may be worthwhile to mention that there have been two major hypothe-
ses that relate to a possible hemodynamic role in atherogenesis – one is the low shear stress
proposed by Caro et al [25] and the other is the high shear stress reported by Fry [2]. Both are
equally important in the realm of bifurcated arterial flow phenomena and hence proper emphasis
needs to be put on them so as to validate the applicability of the present model.

7. APPENDIX

The quantitiesak
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i,j involved in the difference equation (5.1) have
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and
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