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ABSTRACT. A measured solenoid is a laminated space endowed with a tranversal measure in-
variant by holonomy. A measured solenoid immersed in a smooth manifold produces a closed
current (known as a generalized Ruelle-Sullivan current). Uniquely ergodic solenoids are those
for which there is a unique (up to scalars) transversal measure. It is known that for any smooth
manifold, any real homology class is represented by a uniquely ergodic solenoid. In this paper,
we prove that the currents associated to uniquely ergodic solenoids are dense in the space of
closed currents, therefore proving the abundance of such objects.
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1. INTRODUCTION

In [2], the authors introduced the concept of a measured solenoid as a laminated space S
endowed with a transversal measure µ. Given a measured oriented solenoid Sµ, any smooth
map f : S → M into a differentiable manifold M gives rise, by integration of forms, to a
closed current

(Sµ, f) ∈ Ck(M) ,

whose associated homology class

[Sµ, f ] ∈ Hk(M,R)

is called the generalized Ruelle-Sullivan class.
A special role in the theory is played by the solenoids which have an ergodicity property. A

uniquely ergodic solenoid is a solenoid S for which there is a unique (up to multiples) transver-
sal measure, and this measure has to support the whole of the solenoid. In this situation, the
“geometry” (that is, the solenoid itself) determines the “measure”. This has a more precise sig-
nificance if we note the following: for a uniquely ergodic immersed solenoid f : S → M , take
one leaf l ⊂ S, and an exhaustion lR by compact sets such that f(lR) can be capped off by a
“small” cap, thus defining a homology class [f(lR)] ∈ Hk(M,Z). Then the normalizations

[f(lR)]

Vol(f(lR))
−→ [Sµ, f ] .

In other words, any one leaf determines the whole solenoid.
The main result of [2] establishes that for any manifoldM , any homology class a ∈ Hk(M,R)

can be represented by a uniquely ergodic oriented solenoid f : S →M , which moreover is im-
mersed (but we have to allow possible transversal self-intersections if a ∪ a 6= 0).

In this note, we want to prove that for a given homology class a ∈ Hk(M,R), the currents
associated to immersed uniquely ergodic solenoids are dense in the space of closed currents in
Ck(M) representing a.

Acknowledgements. We would like to thank Denis Sullivan for raising the question addressed
in this paper. Partially supported through the Spanish MEC grant MTM2007-63582.

2. DEFINITIONS

Let us review the main concepts introduced in [2].

Definition 2.1. A k-solenoid, where k ≥ 0, of classCr,s, is a compact Hausdorff space endowed
with an atlas of flow-boxes A = {(Ui, ϕi)},

ϕi : Ui → Dk ×K(Ui) ,

whereDk is the k-dimensional open ball, andK(Ui) ⊂ Rl is the transversal set of the flow-box.
The changes of charts ϕij = ϕi ◦ ϕ−1

j are of the form

(2.1) ϕij(x, y) = (X(x, y), Y (y)) ,

where X(x, y) is of class Cr,s and Y (y) is of class Cs.

Let S be a k-solenoid, and U ∼= Dk ×K(U) be a flow-box for S. The sets Ly = Dk × {y}
are called the (local) leaves of the flow-box. A leaf l ⊂ S of the solenoid is a connected k-
dimensional manifold whose intersection with any flow-box is a collection of local leaves. The
solenoid is oriented if the leaves are oriented (in a transversally continuous way).
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DENSITY OF ERGODIC SOLENOIDS 3

A transversal for S is a subset T which is a finite union of transversals of flow-boxes. Given
two local transversals T1 and T2 and a path contained in a leaf from a point of T1 to a point of T2,
there is a well-defined holonomy map h : T1 → T2. The holonomy maps form a pseudo-group.

Definition 2.2. Let S be a k-solenoid. A transversal measure µ = (µT ) for S associates to
any local transversal T a locally finite measure µT supported on T , which are invariant by the
holonomy pseudogroup, i.e. if h : T1 → T2 is a holonomy map, then h∗µT1

= µT2
.

We denote by Sµ a k-solenoid S endowed with a transversal measure µ = (µT ). We refer
to Sµ as a measured solenoid. Observe that for any transversal measure µ = (µT ) the scalar
multiple c µ = (c µT ), where c > 0, is also a transversal measure. Notice that there is no natural
scalar normalization of transversal measures.

Definition 2.3. Let S be a k-solenoid. The solenoid S is uniquely ergodic if it has a unique (up
to scalars) transversal measure µ and its support is the whole of S.

Now let M be a smooth manifold of dimension n. An immersion of a k-solenoid S into M ,
with k < n, is a smooth map f : S → M such that the differential restricted to the tangent
spaces of leaves has rank k at every point of S. The solenoid f : S → M is transversally
immersed if for any flow-box U ⊂ S and chart V ⊂M , the map f : U = Dk ×K(U)→ V ⊂
Rn is an embedding, and the images of the leaves intersect transversally in M . If moreover f is
injective, then we say that the solenoid is embedded.

Note that under a transversal immersion, resp. an embedding, f : S → M , the images of the
leaves are immersed, resp. injectively immersed, submanifolds.

Denote by
Ck(M)

the space of compactly supported currents of dimension k on M . We have the following.

Definition 2.4. Let Sµ be an oriented measured k-solenoid. An immersion f : S → M de-
fines a generalized Ruelle-Sullivan current (Sµ, f) ∈ Ck(M) as follows. Let S =

⋃
i Si be a

measurable partition such that each Si is contained in a flow-box Ui. For ω ∈ Ωk(M), we define

〈(Sµ, f), ω〉 =
∑
i

∫
K(Ui)

(∫
Ly∩Si

f ∗ω

)
dµK(Ui)

(y) ,

where Ly denotes the horizontal disk of the flow-box.

In [2] it is proved that (Sµ, f) is a closed current. Therefore, it defines a real homology class

[Sµ, f ] ∈ Hk(M,R) .

In their original article [3], Ruelle and Sullivan defined this notion for the restricted class of
solenoids embedded in M .

In [2], it is proved that if (Sµ, f) is an embedded solenoid and the transversal measure has no
atoms (for instance, if S has no compact leaves), then

[Sµ, f ] ∪ [Sµ, f ] = 0 .

So if a ∈ Hk(M,R) is a homology class with a ∪ a 6= 0, then it cannot be represented by an
embedded solenoid.

Now we introduce a Riemannian metric on M . Let (Sµ, f) be a uniquely ergodic immersed
oriented solenoid. The leaf-wise volume of S (induced by the metric on M ) together with the
transversal measure, give a finite measure supported on S. We normalize it to have total mass
1. Note that this produces a unique transversal measure µ.
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Let l ⊂ S be a leaf of S. Suppose that there is an exhaustion lR of l such that f(lR) has a
small cap, that is, there is an oriented submanifold CR of dimension k with boundary ∂CR =
−∂f(lR), satisfying

(2.2)
Vol(CR)

Vol f(lR)
−→ 0 .

Then consider the integration current (lR, f) ∈ Ck(M), defined by 〈(lR, f), ω〉 =
∫
lR
f ∗ω. We

have the following:

Proposition 2.1. In the situation above, (lR, f)/Vol f(lR)→ (Sµ, f).

Proof. First note that the currents (lR, f)/Vol f(lR) are bounded. Therefore they accumulate.
To see that the sequence converges, it is enough to check that there is only one accumulation
point. So assume that (lR, f)/Vol f(lR) converges, say, to some current T .

First note that the current T is closed:

〈∂T, ω〉 = lim
R→∞

1

Vol f(lR)
〈∂(lR, f), ω〉

= lim
R→∞

1

Vol f(lR)
〈∂CR, ω〉

= lim
R→∞

1

Vol f(lR)

∫
CR

dω = 0 ,

by (2.2).
Clearly, T is supported on S. By unique ergodicity, T should be a multiple of (Sµ, f). Let

us see this: T is a current defined by a transversal measure if and only if it is a daval measure
as defined in [2] (that is, locally it is the product of the Riemannian volume along leaves with
a transversal measure). This is equivalent to T being invariant by the group G0

S consisting of
diffeomorphisms of the solenoid isotopic to the identity. So we have to check that for a leaf-wise
vector field X defined on the solenoid, LXT = 0 holds. However, for any (k + 1)-form β on
S, iXβ|S = 0, so

∫
lR
iXβ = 0. This means that 〈iX(lR, f), β〉 = 〈(lR, f), iXβ〉 = 0. Therefore

iXT = 0, and hence
LXT = diXT + iXdT = 0 ,

as claimed.
The argument above yields that T = λ(Sµ, f), for some λ ∈ R. Clearly λ ≥ 0, since both

currents define the same orientation at a fixed point of the leaf l. Consider the norm dual to the
C0-norm on Ck(M). It is easy to see that ||(lR, f)/Vol f(lR)|| = 1. Therefore ||T || = 1. But
our normalization implies that ||(Sµ, f)|| = 1. So T = (Sµ, f).

3. REALIZATION THEOREM

Let M be a smooth compact oriented Riemannian C∞ manifold and let a ∈ Hk(M,R) be a
non-zero real k-homology class. The main result of [2] is the construction of a uniquely ergodic
oriented transversally immersed k-solenoid representing a positive multiple of a.

The construction is as follows. Take a collection C1, . . . , Cbk ∈ Hk(M,Z) which is a basis of
Hk(M,Q) and such that theCi are represented by immersed submanifolds Si ⊂M with a trivial
normal bundle and such that all intersections are transversal. After switching the orientations
of Ci if necessary, reordering the cycles and multiplying a by a suitable positive real number,
we may suppose that

a = λ1C1 + · · ·+ λrCr,

for some r ≥ 1, λi > 0, 1 ≤ i ≤ r, and
∑
λi = 1.
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Let h : T → T be a diffeomorphism of the circle which is a Denjoy counter-example with
an irrational rotation number and of class C2−ε, for some ε > 0. Hence h is uniquely ergodic.
Let µK be the unique invariant probability measure, which has support on a Cantor set K ⊂ T.
Partition the Cantor set K into r disjoint compact subsets K1, . . . , Kr in cyclic order, each of
which with µK(Ki) = λi.

Now construct the immersed solenoid f : S →M as follows. The central part (or core) of S
lies inside a ball in M , and it is of the form C = Sk−1 × [−1, 1]×K embedded as

(x, t, y) 7→ (x, t, ht(y)) ,

where ht is an isotopy of T from the identity to h.

The rest of the solenoid consists of (Si − (D+
i ∪ D−i )) × Ki for i = 1, . . . , r, where Si −

(D+
i ∪D−i ) is Si with two balls removed, and we are taking parallel copies of Si as leaves. We

glue the boundaries ∂D±i ×Ki to the boundaries Sk−1 × {±1} ×Ki ⊂ ∂C.
This gives an oriented k-solenoid of class C∞,2−ε. That is, the changes of charts (2.1) are

C∞ in x and C2−ε in y.
We have a global transversal T = {p} × K ⊂ Sk−1 × K ⊂ S. Identifying T ∼= K, the

holonomy pseudo-group is generated by h : K → K. Hence S is uniquely ergodic. Let µ
denote the transversal measure corresponding to µK .

Figure 1: The solenoid S.

It remains to prove that [Sµ, f ] = a (up to a scalar multiple). This is done by coupling against
suitable test forms, as done in [2].

4. DENSITY OF UNIQUELY ERGODIC SOLENOIDS

Now we move on to the main result of this paper. We consider the space of currents Ck(M)
with the weak topology (that is, the topology as a dual space to Ωk(M) with the Fréchet topol-
ogy given by the C∞-convergence of forms).
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Theorem 4.1. Let T ∈ Ck(M) be a (compactly supported) closed current representing a ho-
mology class a ∈ Hk(M,R). Then there is an oriented immersed uniquely ergodic solenoid
f : S →M such that the current (Sµ, f) is as close to T as we want, and [Sµ, f ] = a.

Proof. We start by considering the oriented, transversally immersed, measured solenoid fa :
Sa →M , constructed in Section 3. It satisfies the condition [Sa, fa] = a. Then

T − (Sa, fa) ∈ Ck(M)

is an exact current. Therefore there is some T ′ ∈ Ck+1(M) with

T − (Sa, fa) = ∂T ′ .

By a regularization procedure (or using the density of the forms in the space of currents), we
can find a smooth (n − k − 1)-form β (thought of as a current, by duality) such that T ′ − β is
very small. So

T ≈ (Sa, fa) + dβ .

Now take an open cover {Ui} of M by coordinate open sets, and a refinement {Vi} such that
V i ⊂ Ui. Consider a partition of unity ρi subordinated to Vi, and let βi = ρiβ. Writing in
coordinates (x1, . . . , xn) for Ui, we have

βi =
∑

i1<...<in−k−1

hi1...in−k−1
dxi1 ∧ · · · ∧ dxin−k−1

.

Consider now a bump function ρ̃i, which is one on Vi and zero off Ui. Then

βi =
∑

i1<...<in−k−1

ρ̃i hi1...in−k−1
d(ρ̃i xi1) ∧ · · · ∧ d(ρ̃i xin−k−1

) ,

and
dβi =

∑
i1<...<in−k−1

d(ρ̃i hi1...in−k−1
) ∧ d(ρ̃i xi1) ∧ · · · ∧ d(ρ̃i xin−k−1

) .

As dβ =
∑
dβi, we have that dβ can be written as a sum of terms of the form

(4.1) df i1 ∧ · · · ∧ df in−k ,
where f i1, . . . , f

i
n−k are (compactly supported) globally defined functions on M .

If f1, . . . , fn−k are compactly supported functions on M , write

(4.2) F = (f1, . . . , fn−k) : M → Rn−k .

Then the form α = df1 ∧ · · · ∧ dfn−k = F ∗ω, where ω = dx1 ∧ · · · ∧ dxn−k is the volume form
on Rn−k.

Lemma 4.2. If α = df1 ∧ · · · ∧ dfn−k, with F as in (4.2), then there is an embedded solenoid
with trivial holonomy and transversal Cantor sets whose associated current is as close to α as
we want.

Proof. Consider the set C = {x ∈M ; α(x) = 0}. Then F (C) ⊂ Rn−k is the set of critical val-
ues of F , which has zero measure by Sard’s theorem. Denote by K = F (M) ⊂ Rn−k, and note
that it is compact since F is compactly supported. Now let U be a small open neighbourhood
of F (C). We see that

(4.3) F ∗ω − F ∗(ω|K−U) = F ∗(ω|U)

is small (as a current in M ). Fix ε > 0, and consider Cε = {x ∈ M ; |α(x)| < ε}. For
β ∈ Ωk(M), we have

(4.4)
∣∣∣∣∫
F−1(U)∩Cε

F ∗ω ∧ β
∣∣∣∣ ≤ ε Vol(Supp(F ))|β| ,
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so it is small. In the complement M − Cε, the leaves F−1(x) have uniformly bounded volume.
This follows from the fact that dF has norms ≥ ε in normal directions to the leaves, and the
total volume of M − Cε is bounded (recall that M may be non-compact, but as F is compactly
supported, M − C is compact, and hence M − Cε is also compact). Therefore

(4.5)
∣∣∣∣∫
F−1(U)∩(M−Cε)

F ∗ω ∧ β
∣∣∣∣ =

∣∣∣∣∫
U

(∫
F−1(x)

β

)
dx1 ∧ . . . dxn−k

∣∣∣∣ ≤ C Vol(U) ,

which is small by taking U ⊃ C very small. Adding (4.4) and (4.5), we get that (4.3) is small.
The current F ∗(ω|K−U) is actually a solenoid. The leaves F−1(x) are compact submanifolds,

and the transversal measure is the pull-back of ω to the transversals. Note thatK−U is a global
transversal, and that the holonomy is trivial. Now consider a measure µ, supported on a Cantor
set which approximates ω|K−U . Then

〈F ∗µ, β〉 =

∫
K−U

(∫
F−1(y)

β

)
dµ(y) = 〈µ, F∗β〉 .

Since the norm of dF is bigger than a fixed constant, the norm of F∗β is bounded by a constant
times the norm of β. Therefore

|〈F ∗µ, β〉 − 〈F ∗ω, β〉| = |〈µ− ω, F∗β〉| ≤ ε|F∗β| ≤ Cε|β| ,

for some small ε > 0. This completes the proof of the lemma.

Using this lemma, we get a collection of solenoids, with transversals being Cantor sets, whose
union defines the sought current. All but one have trivial holonomy, and the remaining one is
uniquely ergodic. Our next task is to perform a surgery to obtain a connected (and uniquely
ergodic) solenoid. First note that we may decompose a solenoid with trivial holonomy into
smaller chunks so that its total (transversal) mass is smaller than that of the solenoid Sa.

Proposition 4.3. Let fi : Si,µi → M , i = 1, 2, be two immersed oriented measured solenoids
of the same dimension k with Cantor transversal structure. Suppose that there are two disjoint
discsDn−k

i ⊂M such that Ti = Dn−k
i ∩Si is a global transversal for Si. Let hi be the holonomy

of Si. Suppose also that there is a diffeomorphism ϕ : T1 → T2 which preserves the measures.
Then there is an immersed oriented measured solenoid f : Sµ → M with global transversal
T = T1, and holonomy h = ϕ−1 ◦ h2 ◦ ϕ ◦ h1, such that the associated currents satisfy

(Sµ, f) ≈ (S1,µ1
, f1) + (S2,µ2

, f2) .

Proof. Take flow boxes Dk × Ti for Si, with {0}× Ti corresponding to Ti, remove the interiors
Dk

1/2 × Ti, and glue the boundaries, to get the required (abstract) solenoid

S = (S1 −Dk
1/2 × T1) ∪∂Dk

1/2
×T1
∼=ϕ ∂Dk1/2×T2

(S2 −Dk
1/2 × T2) .

The transversal measure is induced by µ1 (or µ2).
It remains to define the immersion f : S → M . On Si − Dk

1 × Ti, it is defined to be equal
to fi. Now fix y0 ∈ T1 and y′0 = ϕ(y0) ∈ T2, and consider a path γ : [0, 1] → M from y0 to
y′0 transversal to the leaves through the end-points. Fatten up γ to a map γ̂ : Dk × [0, 1]→ M ,
which matches the leaves at the end-points. We can take a small open set U ⊂ Dn−k

1 and the
corresponding ϕ(U) ⊂ Dn−k

2 , so that we can extend γ̂ to a map

γ̃ : Dk × [0, 1]× (U ∩ T1)→M .

Repeating this for a finite cover of T1, we obtain an open subset V ⊃ T1, and a map

γ̃ : Dk × [0, 1]× T1 →M .
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Now define f : S →M as follows. Firstly, send (Dk
1−Dk

3/4)×Ti to fi((Dk−Dk
ε )×Ti), and

secondly, define f on ((DK
3/4 −Dk

1/2)× T1) ∪ϕ ((Dk
3/4 −Dk

1/2)× T2) as γ̃|Skε×[0,1]×T1
. Finally,

one has to smooth out the corners, but this is achieved with a very small perturbation.
To end the proof of the proposition, we need to consider the difference current

T ′′ = (Sµ, f)− (S1,µ1
, f1)− (S2,µ2

, f2) .

The leaves L′′y of this solenoidal current are diffeomorphic to the middle portion, plus two small
caps

L′′y = γ̃(Skε × [0, 1]× {y}) ∪ f1(D
k
ε × {y}) ∪ f2(D

k
ε × {ϕ(y)}), y ∈ T1 .

So

〈T ′′, β〉 =

∫
T1

(∫
L′′y

β

)
dµ(y) .

The volume of L′′y is bounded by a constant times ε, so it is very small for ε small, as required.

We conclude the proof of Theorem 4.1 as follows. We have the solenoid (Sa, fa) and a
collection of solenoids (Si, fi) approaching (4.1). Decompose Si into smaller solenoids so that
we can assume that the total transversal measure of Si does not exceed that of Sa. We can
use Proposition 4.3 to glue each Si (once at a time) to Sa (note that Proposition 4.3 works
with the transversal of Si and a sub-transversal of Sa). Note here that we have to construct a
diffeomorphism between the transversal Cantor sets. For this it may be necessary to arrange the
transversal Cantor set for Si in such a way that it is diffeomorphic to the transversal Cantor set
of Sa, but this is not problematic, since we were only requiring that the transversal measure of
Si approximates the smooth transversal measure of the foliation that Si is approximating.

The holonomy of the resulting solenoid is that of Sa, hence it is uniquely ergodic. This
completes the proof of Theorem 4.1.

Remark 4.1. An immersed solenoid f : S → M is said to have a trapping region if there is
a ball B in M such that all holonomy phenomenon of S occur inside B, and the holonomy is
generated by a single map (see [2] for a precise definition). All the solenoids constructed in
Sections 3 and 4 have a trapping region. This is relevant since the more restricted the class of
solenoids that we use is, the better it is for possible future applications.
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