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2 JOHNNY HENDERSON ANDABDELGHANI OUAHAB

1. I NTRODUCTION

This paper is concerned with the existence of solutions to second and higher order impulsive
functional and neutral functional differential equations with infinite delay. In particular, in
Section 3, we will consider the class of second order functional differential equations with
impulsive effects,

(1.1) y′′(t) = f(t, yt), a.e. t ∈ J := [0, b], t 6= tk, k = 1, . . . ,m,

(1.2) y(t+k )− y(t−k ) = Ik(y(t
−
k )), t = tk, k = 1, . . . ,m,

(1.3) y′(t+k )− y′(t−k ) = Ik(y(t
−
k )), t = tk, k = 1, . . . ,m,

(1.4) y(t) = φ(t), t ∈ (−∞, 0], y′(0) = η,

whereη ∈ IRn, 0 = t0 < t1 < ... < tm < tm+1 = b, f : J × B → IRn, (B is called
a phase spacethat will be defined later)Ik, Ik ∈ C(IRn, IRn), k = 1, 2, . . . ,m, are given
functions satisfying some assumptions that will be specified later,y(t+k ) = lim

h→0+
y(tk + h) and

y(t−k ) = lim
h→0−

y(tk − h) represent the right and left limits ofy(t) at t = tk, andφ ∈ B.

For any functiony defined on(−∞, b] and anyt ∈ [0,∞), we denote byyt the element ofB
defined byyt(θ) = y(t + θ), θ ∈ (−∞, 0]. Hereyt(·) represents the history of the state from
time t− θ up to the present timet.

Section 4 is devoted to second order impulsive neutral functional differential equations,

(1.5)
d

dt
[y′(t)− g(t, yt)] = f(t, yt), t ∈ J, t 6= tk, k = 1, ..,m,

(1.6) y(t+k )− y(t−k ) = Ik(y(t
−
k )), t = tk, k = 1, . . . ,m,

(1.7) y′(t+k )− y′(t−k ) = Ik(y(t
−
k )), t = tk, k = 1, . . . ,m,

(1.8) y0 = φ ∈ B, y′(0) = η,

where η, f, Ik, Ik, B are as in problem (1.1)-(1.4), andg : J × B → IRn is a given function.
In the least section, forn ≥ 2, we consider the higher order problem,

(1.9) y(n)(t) = f(t, yt), a.e. t ∈ J = [0, b], t 6= tk, k = 1, . . . ,m,

(1.10) y(i)(t+k )− y(i)(t−k ) = Ik,i(y(t
−
k )), t = tk, k = 1, . . . ,m, i = 1, . . . , n− 1,

(1.11) y(i)(0) = yi, i = 1, 2, . . . , n− 1,

(1.12) y(t) = φ(t), t ∈ (−∞, 0],

wheref andφ are as in problem (1.1)–(1.4), andIk,i ∈ C(IRn, IRn), k = 1, . . . ,m, i =
1, . . . , n − 1. In the literature devoted to equations with finite. delay, the state space is much
of the time the space of all continuous function on[−r, 0], r > 0, endowed with the uniform
norm topology; see the book of Hale and Lunel [22]. When the delay is infinite, the selection
of the stateB (i.e. phase space) plays an important role in the study of both qualitative and
quantitative theory. A usual choice is a semi-normed space satisfying suitable axioms, which
was introduced by Hale and Kato [21] (see also Kappel and Schappacher [24] and Schumacher
[31]) and the papers of Hale [19, 20] and Sawano [30]. For a detailed discussion on this topic
we refer the reader to the book by Hinoet al [23]. For the case where the impulses are absent,
an extensive theory for first order functional differential equations has been developed. We refer

AJMAA, Vol. 4, No. 2, Art. 6, pp. 1-26, 2007 AJMAA

http://ajmaa.org


IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS 3

to Hale and Kato [21], Hale and Lunel [22], Corduneanu and Lakshmikantham [11], Hinoet al
[23], Lakshmikanthamet al [26] and Shin [32].

Impulsive differential equations have become more important in recent years in some math-
ematical models of real processes and phenomena studied in control, physics, chemistry, pop-
ulation dynamics, biotechnology and economics. There has been a significant development in
impulse theory, in recent years, especially in the area of impulsive differential equations with
fixed moments; see the monographs of Bainov and Simeonov [3], Lakshmikanthamet al [25]
and Samoilenko and Perestyuk [29] and the papers of Aguret al [1], Ballinger and Liu [4],
Benchohraet al [5, 6], Francoet al [13] and the references therein.

The goal of this paper is to give existence and uniqueness results for higher order impulsive
functional differential equations with infinity delay. Very recently, Benchohraet al, [7, 8, 9]
studied local and global existence for first order impulsive functional differential equations with
infinite delay. The mains theorems of this paper extend to the infinite delay problems consider
by Benchohraet al [5, 6]. Our approach here is based on the Leray-Schauder alternative [12],
Banach fixed point theorem and a recent Frigon and Gransas nonlinear alternative of Leary-
Schauder type in Fréchet spaces [14].

2. PRELIMINARIES

In this short section, we introduce notations and definitions which are used throughout the
paper.
C([0, b], IRn) is the Banach space of all continuous functions from[0, b] into IRn with the

norm
‖y‖∞ = sup{‖y(t)‖ : 0 ≤ t ≤ b}.

L1([0, b], IRn) denotes the Banach space of measurable functionsy : [0, b] −→ IRn which are
Lebesgue integrable and normed by

‖y‖L1 =

∫ b

0

‖y(t)‖dt for all y ∈ L1([0, b], IRn).

Definition 2.1. The mapf : [0, b]×B −→ IRn is said to beL1-Carathéodory if
(i) t 7−→ f(t, x) is measurable for eachx ∈ B;

(ii) x 7−→ f(t, x) is continuous for almost allt ∈ [0, b];
(iii) For eachq > 0, there existshq ∈ L1([0, b], IR+) such that

‖f(t, x)‖ ≤ hq(t) for all ‖x‖B ≤ q and for almost allt ∈ [0, b].

3. L OCAL EXISTENCE AND UNIQUENESS RESULT

In order to define the phase space and the solution of (1.1)–(1.4) we shall consider the space

PC =
{
y : (−∞, b] → IRn, y(t−k ), y(t+k ), exist with y(tk) = y(t−k ),

y(t) = φ(t), t ≤ 0, yk ∈ C(Jk, IR
n)

}
,

whereyk is the restriction ofy to Jk = (tk, tk+1], k = 0, . . . ,m. Let ‖ · ‖PC be the norm inPC
defined by

‖y‖PC = sup{‖y(s)‖ : 0 ≤ s ≤ b}, y ∈ PC.
We will assume thatB satisfies the following axioms:

(A) If y : (−∞, b] → IRn, b > 0 and y0 ∈ B, and y(t−k ), y(t+k ), exist with y(tk) =
y(t−k ), k = 1, . . . ,m then for everyt in [0, b)\{t1 . . . , tm} the following conditions
hold:
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4 JOHNNY HENDERSON ANDABDELGHANI OUAHAB

(i) yt is inB; andyt is continuous on[0, b]\{t1, . . . , tm}
(ii) ‖yt‖B ≤ K(t) sup{‖y(s)‖ : 0 ≤ s ≤ t}+M(t)‖y0‖B,

(iii) ‖y(t)‖ ≤ H‖yt‖B

whereH ≥ 0 is a constant,K : [0,∞) → [0,∞) is continuous,M : [0,∞) → [0,∞)
is locally bounded andH,K,M are independent ofy(·).

(A-1) For the functiony(·) in (A), yt is aB-valued continuous function on[0, b)\{t1, . . . , tm}.
(A-2) The spaceB is complete.

Set
Bb = {y : (−∞, b] → IRny ∈ PC ∩B},

and let‖ · ‖b be the seminorm inBb defined by

‖y‖b := ‖y0‖B + sup{‖y(t)‖ : 0 ≤ s ≤ b}, y ∈ Bb.

Let us start by defining what we mean by a solution of problem (1.1)–(1.4).

Definition 3.1. A functiony ∈ Bb, is said to be a solution of (1.1)–(1.4) ify satisfies (1.1)–(1.4).

We will need the following auxiliary result in order to prove our main existence theorems.

Lemma 3.1. y is the unique solution of the problem (1.1)-(1.4) if and only ify is a solution of
the problem,

(3.1) y′(t) = η +

∫ t

0

f(s, ys)ds+
∑

0<tk<t

Ik(y(t
−
k )), t ∈ J, t 6= tk, k = 1, . . . ,m,

(3.2) y(t+k )− y(t−k ) = Ik(y(t
−
k )), k = 1, . . . ,m,

(3.3) y(t) = φ(t), t ∈ (−∞, 0].

Proof. Let y be a solution of the problem (1.1)–(1.4). Then

y′′(t) = f(t, yt) for t ∈ [0, b]\{t1 . . . , tm}.

An integration from0 to t (here t ∈ (0, t1]) of both sides of the above equality yields∫ t

0

y′′(t)ds =

∫ t

0

f(s, ys)ds

y′(t)− y′(0) =

∫ t

0

f(s, ys)ds.

Thus for t ∈ [0, t1], we have

y′(t) = η +

∫ t

0

f(s, ys)ds.

If t ∈ (t1, t2], then we have ∫ t

0

y′′(s)ds =

∫ t

0

f(s, ys)ds∫ t1

0

y′′(s)ds+

∫ t

t1

y′′(s)ds =

∫ t

0

f(s, ys)ds

y′(t−1 )− y′(0) + y′(t)− y′(t+1 ) =

∫ t

0

f(s, ys)ds

y′(t)− I1(y(t
−
1 ))− η =

∫ t

0

f(s, ys)ds.
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Thus for t ∈ (t1, t2] we have

y′(t) = η + I1(y(t
−
1 )) +

∫ t

0

f(s, ys)ds.

Continue to obtain fort ∈ [0, b] that

y′(t) = η +

∫ t

0

f(s, ys)ds+
∑

0<tk<t

Ik(y(t
−
k )).

Conversely, we prove that ify satisfies the problem (3.1)–(3.3), theny is a solution of the
problem (1.1)–(1.4). First,y(t) = φ(t) t ∈ (−∞, 0] andy(t+k ) − y(t−k ) = Ik(y(t

−
k )), k =

1, . . . ,m. Let t ∈ [0, b]\{t1, . . . , tm} and

y′(t) = η +

∫ t

0

f(s, ys)ds+
∑

0<tk<t

Ik(y(t
−
k )).

Then,
y′′(t) = f(t, yt), t ∈ [0, b]\{t1, . . . , tm}.

Theorem 3.2.Letf : J ×B → IRn be anL1-Carathéodory function. Assume the condition,

(H1) There exist a continuous nondecreasing functionψ : [0,∞) −→ (0,∞) and p ∈
L1([0, b], IR+) such that

‖f(t, x)‖ ≤ p(t)ψ(‖x‖B) for a.e.t ∈ [0, b] and eachx ∈ B,

with

Kb

∫ b

0

p(s)ds <

∫ ∞

c

dx

ψ(x)
,

whereKb = sup{|K(t)| : t ∈ [0, b]},Mb = sup{|M(t)| : t ∈ [0, b]} andc = Mb‖φ‖B+
Kb‖φ(0)‖.

Then the initial value problem (1.1)-(1.4) has at least one solution.

Proof. The proof will be given in several steps.
Step 1: Consider the problem,

(3.4) y′(t) = η +

∫ t

0

f(s, ys)ds, a.e. t ∈ [0, t1],

(3.5) y(t) = φ(t), t ∈ (−∞, 0].

Transform the problem (3.4)–(3.5) into a fixed point problem. Consider the operatorN : B ∩
C([0, t1], IR

n) −→ B ∩ C([0, t1], IR
n) defined by,

N(y)(t) =


φ(t), t ∈ (−∞, 0],

φ(0) + tη +

∫ t

0

∫ s

0

f(u, yu)duds, t ∈ [0, t1].

Let x(·) : (−∞, t1] → IRn be the function defined by

x(t) =

{
φ(0), if t ∈ [0, t1],

φ(t), if t ∈ (−∞, 0].
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Thenx0 = φ. For eachz ∈ C([0, t1], IR
n) with z0 = 0, we denote bȳz the function defined by

z̄(t) =

{
z(t), if t ∈ [0, t1],

0, if t ∈ (−∞, 0].

If y(·) satisfies the integral equation,

y(t) = φ(0) + tη +

∫ t

0

∫ s

0

f(u, yu)duds,

we can decomposey(·) asy(t) = z̄(t) + x(t), 0 ≤ t ≤ t1, which impliesyt = z̄t + xt, for every
0 ≤ t ≤ t1, and the functionz(·) satisfies

(3.6) z(t) = tη +

∫ t

0

∫ s

0

f(u, z̄u + xu)duds.

Set
C0 = {z ∈ C([0, t1], IR

n) : z0 = 0}.
Let the operatorP : C0 → C0 be defined by

(Pz)(t) = tη +

∫ t

0

∫ s

0

f(u, z̄u + xu)duds, t ∈ [0, t1].

Obviously, that the operatorN has a fixed point is equivalent toP has a fixed point, and so we
turn to proving thatP has a fixed point. We shall use the Leray-Schauder alternative to prove
thatP has fixed point.
Claim 1: P is continuous.
Let {zn} be a sequence such thatzn → z in C0. Then

‖(Pzn)(t)− (Pz)(t)‖ ≤ t1

∫ t1

0

‖f(s, z̄ns + xs)− f(s, z̄s + xs)‖ds.

Sincef isL1-Carathéodory, then we have

‖P (zn)− P (z)‖∞ ≤ t1‖f(·, z̄n(·) + x(·))− f(·, z̄(·) + x(·))‖L1 → 0 asn→∞.

Claim 2: P maps bounded sets into bounded sets inC0.
Indeed, it is enough to show that for anyq > 0, there exists a positive constant` such that for
eachz ∈ Bq = {z ∈ C0 : ‖z‖∞ ≤ q} one has‖P (z)‖∞ ≤ `. Let z ∈ Bq. Sincef is an
L1-Carathéodory function, we have for eacht ∈ [0, t1]

‖(Pz)‖∞ ≤ t1‖η‖+ t1

∫ t1

0

hq∗(s)ds := `,

where
‖z̄s + xs‖B ≤ ‖z̄s‖B + ‖xs‖B ≤ Kbq +Kb‖φ(0)‖+Mb‖φ‖B := q∗.

Claim 3: P maps bounded sets into equicontinuous sets ofC0.
Let l1, l2 ∈ [0, t1], l1 < l2 and letBq be a bounded set ofC0 as in Claim 2. Letz ∈ Bq. Then
for eacht ∈ [0, t1] we have

‖(Pz)(l2)− (Pz)(l1)‖ ≤ |l1 − l2||η|+
∫ l2

l1

∫ s

0

‖f(u, z̄u + xu)‖dsdu

≤ |l1 − l2||η|+ |l2 − l1|‖hq∗‖L1 .

We see that‖(Pz)(l2)− (Pz)(l1)‖ tends to zero independently ofz ∈ Bq, asl2− l1 → 0. As
a consequence of Claims 1 to 3, together with the Arzelá-Ascoli theorem, we can conclude that
P : C0 −→ C0 is continuous and completely continuous.
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Claim 4: There exist a priori bounds on solutions.
Let z be a possible solution of the equationz = λP (z) andz0 = λφ, for someλ ∈ (0, 1). Then

(3.7) ‖z(t)‖ ≤ t1|η|+ t1

∫ t

0

‖f(s, z̄s + xs)‖ds ≤ t1|η|+ t1

∫ t

0

p(s)ψ(‖z̄s + xs‖B)ds.

But

(3.8)

‖z̄s + xs‖B ≤ ‖z̄s‖B + ‖xs‖B

≤ K(t) sup{‖z(s)‖ : 0 ≤ s ≤ t}+M(t)‖z0‖B

+K(t) sup{‖x(s)‖ : 0 ≤ s ≤ t}+M(t)‖x0‖B

≤ Kb sup{‖z(s)‖ : 0 ≤ s ≤ t}+Mb‖φ‖B +KbM‖φ(0)‖.

If we namew(t) the right hand side of (3.8), then we have

‖z̄s + xs‖B ≤ w(t),

and therefore (3.7) becomes

(3.9) ‖z(t)‖ ≤ t1‖η‖+ t1

∫ t

0

p(s)ψ(w(s))ds, t ∈ [0, t1].

Using (3.9) in the definition ofw, we have that

w(t) ≤ t1Kb

∫ t

0

p(s)ψ(w(s))ds+ t1|η|+Mb‖φ‖B +Kb‖φ(0)‖, t ∈ [0, t1].

Denoting byβ(t) the right hand side of the last inequality we have

w(t) ≤ β(t), t ∈ [0, t1],

β(0) = t1|η|+Mb‖φ‖B +Kb‖φ(0)‖,
and

β′(t) = t1Kbp(t)ψ(w(t))

≤ t1Kbp(t)ψ(β(t)), t ∈ [0, t1].

This implies that for eacht ∈ [0, t1]∫ β(t)

β(0)

ds

ψ(s)
≤ t1Kb

∫ t1

0

p(s)ds <

∫ ∞

c

ds

ψ(s)
.

Thus from (H1) there exists a constantK∗ such thatβ(t) ≤ K∗, t ∈ [0, t1], and hence
‖z̄t + xt‖B ≤ w(t) ≤ K∗, t ∈ [0, t1]. From equation (3.9) we have that

‖z‖∞ ≤
∫ t1

0

p(s)ψ(K∗)ds := K̃1.

Set
U0 = {z ∈ C0 : sup{‖z(t)‖ : 0 ≤ t ≤ t1} < K̃1 + 1}.

P : U0 → C0 is continuous and completely continuous. From the choice ofU0, there is no
z ∈ ∂U0 such thatz = λP (z), for someλ ∈ (0, 1). As a consequence of the nonlinear
alternative of Leray-Schauder type [12], we deduce thatP has a fixed pointz in U0. HenceN
has a fixed pointy which is a solution to problem (3.4)–(3.5). Denote this solution byy0.

Step 2: Consider now the problem,
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(3.10) y′(t) =

∫ t

t1

f(s, ys)ds+ y′0(t
−
1 ) + I1(y0(t

−
1 ), a.e. t ∈ (t1, t2],

(3.11) y(t+1 ) = y0(t
−
1 ) + I1(y0(t1)), y(t) = y0(t), t ∈ (−∞, t1].

Let
C1 = {y ∈ C((t1, b], IR

n) : y(t+1 ) exists}.
SetC∗ = B ∩ C([0, t1], IR

n) ∩ C1. Consider the operatorN1 : C∗ → C∗ defined by:

N1(y)(t) =


y0(t), (−∞, t1],

y0(t
−
1 ) + I1(y0(t

−
1 )) + (t− t1)[y

′
0(t

−
1 ) + I1(y0(t

−
1 ))]

+

∫ t

t1

∫ s

t1

f(u, z̄u + xu)dsdu, t ∈ (t1, t2].

Let x(·) : (−∞, t2] → IRn be the function defined by

x(t) =

{
y0(t

−
1 ) + I1(y0(t1)), if t ∈ (t1, t2],

y0(t), if t ∈ (−∞, t1].

Thenxt1 = y0. For eachz ∈ C∗ with zt1 = 0, we denote bȳz the function defined by

z̄(t) =

{
z(t), if t ∈ [t1, t2],

0, if t ∈ (−∞, t1].

If y(·) satisfies the integral equation,

y(t) = y0(t
−
1 ) + I1(y0(t

−
1 )) + (t− t1)[y

′
0(t

−
1 ) + I1(y0(t

−
1 ))] +

∫ t

t1

∫ s

t1

f(u, yu)duds,

we can decompose it asy(t) = z̄(t) + x(t), t1 ≤ t ≤ t2, which impliesyt = z̄t + xt, for every
t1 ≤ t ≤ t2, and the functionz(·) satisfies

(3.12) z(t) = (t− t1)[y
′
0(t

−
1 ) + I1(y0(t

−
1 ))] +

∫ t

t1

∫ s

t1

f(u, z̄u + xu)dsdu.

Set
Ct1 = {z ∈ C∗ : z(t1) = 0}.

Let the operatorP1 : Ct1 → Ct1 be defined by,

(P1z)(t) =


0, t ∈ (−∞, t1],

(t− t1)[y
′
0(t

−
1 ) + I1(y0(t

−
1 ))] +

∫ t

t1

∫ s

t1

f(u, z̄u + xu)dsdu, t ∈ [t1, t2].

As in Step 1 we can show thatP1 is continuous and completely continuous, and ifz is a possible
solution of the equationsz = λP1(z) and z0 = λy0, for someλ ∈ (0, 1), there existsK∗1 > 0
such that

‖z‖∞ ≤ K∗1 .

Set
U1 = {z ∈ Ct1 : sup{‖z(t)‖ : t1 ≤ t ≤ t2} ≤ K∗1 + 1}.

As a consequence of the nonlinear alternative of Leray-Schauder type [12], we deduce thatP1

has a fixed pointz in U1. ThusN1 has a fixed pointy which is an solution to problem (3.10)–
(3.11). Denote this solution byy1.
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Step 3:We continue this process and taking into account thatym := y
∣∣∣
[tm,b]

is a solution to the

problem

(3.13) y′(t) =

∫ t

tm

f(s, ys)ds+ y′m−1(t
−
m) + Im−1(y(t

−
m)), a.e. t ∈ (tm, b],

(3.14) y(t+m) = ym−1(t
−
m−1) + Im(ym−1(t

−
m)), y(t) = ym−1(t), t ∈ (−∞, tm−1].

The solutiony of the problem (1.1)-(1.4) is then defined by

y(t) =



y0(t), if t ∈ (−∞, t1],

y1(t), if t ∈ (t1, t2],

. . .

ym(t), if t ∈ (tm, b].

The proof is complete.

We next introduce some additional conditions that lead to uniqueness of the solution of (1.1)–
(1.4).

(A1) There existsl ∈ L1([0, b], IR+) such that

‖f(t, x)− f(t, x)‖ ≤ l(t)‖x− x‖B for all x, x ∈ B andt ∈ J.
(A2) There exist constants0 < ck < 1, 0 < dk < 1, k = 1, . . . ,m, such that

‖Ik(y)− Ik(x)‖ ≤ ck‖x− x‖, |Ik(y)− Ik(x)| ≤ dk‖x− x‖, for each x, x ∈ IRn.

Theorem 3.3. Assume that hypotheses (A1)-(A2) hold. Then the IVP (1.1)–(1.4) has a unique
solution.

Proof. The proof will given in several steps.
Step 1We prove that the problem (3.4)–(3.5) has unique solution. Then we prove only that
the operatorP defined in Theorem 3.2 has a unique fixed point. We shall show thatP is a
contraction operator. Indeed, considerz, z∗ ∈ C0. Thus for eacht ∈ [0, t1],

(Pz)(t) = tη +

∫ t

0

∫ s

0

f(u, z̄u + xu)duds.

Then,

‖P (z)(t)− P (z∗)(t)‖ ≤
∫ t

0

∫ s

0

‖f(u, z̄u + xu))− f(u, z̄∗u + xu)‖duds

≤
∫ t

0

t1l(s)‖z̄s − z̄∗s‖Bds

≤
∫ t

0

l(s)Kb sup
s∈[0,t]

‖z(s)− z∗(s)‖ds

≤
∫ t

0

1

τ
l̃(s)eτbl(s)e−τbl(s) sup

s∈[0,t]

‖z(s)− z∗(s)‖ds

≤
∫ t

0

1

τ
l̃(t)eτbl(t)ds‖z − z∗‖B∗
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≤ 1

τ

∫ t

0

(eτbl(s))′ds‖z − z∗‖B∗

≤ 1

τ
eτbl(t)ds‖z − z∗‖B∗ .

Thus

e−τbl(t)‖P (z)(t)− P (z∗)(t)‖ ≤ 1

τ
‖z − z∗‖B∗ .

Therefore,

‖P (z)− P (z∗)‖B∗ ≤
1

τ
‖z − z∗‖B∗ ,

wherel̂(t) =

∫ t

0

l̃(s)ds, l̃(t) = t1Kbl(t) and‖ · ‖B∗ is the Bielecki-type norm onC0 defined

by

‖z‖B∗ = max{‖z(t)‖e−τbl(t) : t ∈ [0, t1]}.
As a consequence of the Banach fixed point theorem, we deduce thatP has a unique fixed point
which is a solution to (3.4)–(3.5). Denote this solution byy0.
Step 2By analogies of Step 1 we can prove that the problem (3.10)–(3.11) has a unique solution.
We denote this solution byy1.

We continue this process and taking into account thatym is the unique solution of the problem
(3.13)–(3.14). The solutiony of the problem (1.1)-(1.4) is then defined by

y(t) =



y0(t), if t ∈ (−∞, t1],

y1(t), if t ∈ (t1, t2],

. . .

ym(t), if t ∈ (tm, b].

Let x, y be a two solutions of the problem (1.1)–(1.4). Ift ∈ (tk, tk+1], k = 0, . . . ,m, then
x(t) = y(t). If t = t+k , k = 1, . . . ,m, then from (A2) we have

|Ik(x(tk))− Ik(y(tk))| ≤ ck|x(tk)− y(tk)|
and

|Ik(x(tk))− Ik(y(tk))| ≤ dk|x(tk)− y(tk)|.
Then

|x(t+k )− y(t+k ))| ≤ 0, |x′(t+k )− y′(t+k ))| ≤ 0,

and these inequalities imply thatx(t+k ) = y(t+k ) andx′(t+k ) = y′(t+k ). Thus, there is a unique
solution of the problem (1.1)–(1.4).

3.1. Global Existence and Uniqueness Result.In this subsection, we are concerned with an
application of a recent nonlinear alternative for contraction maps in Fréchet spaces, due to
Frigon and Granas [14], to the existence and uniqueness of a problem, with infinitely many
impulses and infinit delay. More precisely we consider the problem,

(3.15) y′′(t) = f(t, yt) a.e. t ∈ J∗ := [0,∞)\{t1, t2, . . .},

(3.16) y(t+k )− y(t−k ) = Ik(y(t
−
k )), k = 1, . . . ,

(3.17) y′(t+k )− y′(t−k ) = Ik(y(t
−
k )), k = 1, . . . ,

(3.18) y(t) = φ(t), t ∈ (−∞, 0], y′(0) = η,
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wheref : J∗ ×B → IRn andIk, Ik ∈ C(IRn, IRn), k = 1, . . . , and0 = t0 < t1 < . . . < tm <
. . . , lim

n→∞
tn = ∞, y(t+k ) = lim

h→0+
y(tk + h) andy(t−k ) = lim

h→0−
y(tk − h) represent the right and

left limits of y(t) at t = tk. For any functiony defined on(−∞,∞) and anyt ∈ [0,∞), we
denote byyt the element ofB defined byyt(θ) = y(t+ θ), θ ∈ (−∞, 0].
As we know, investigation of many properties of solutions for a given equation, such as stability,
oscillation, needs its guarantee of global existence. Thus it is important and necessary to estab-
lish sufficient conditions for global existence of solutions for impulsive differential equations.
The global existence results for impulsive differential equations with different conditions were
studied by Cheng and Yan [10], Graef and Ouahab [15], Guo [16, 17], Guo and Liu [18], Oua-
hab [28], Marinoet al [27], Stamov and Stamova [33], Weng [34], Yan [35, 36]. Very, recently
this alternative was applied by Araraet al [2] for controllability of functional semilinear differ-
ential equations, and by Graef and Ouahab [15] for functional impulsive differential equations
with variable times. In [8] Benchohraet al, obtained some results on global existence of first
order impulsive functional differential equations with infinity delay and boundary conditions.
For more details on the following notions we refer to [14]. LetX be a Fréchet space with a
family of semi-norms{‖ · ‖n), n ∈ IN}. Let Y ⊂ X. We say thatY is bounded if for every
n ∈ IN, there existsMn > 0 such that

‖y‖n ≤Mn for all y ∈ Y.

ToX, we associate a sequence of Banach spaces{(Xn, ‖ · ‖n)} as follows. For everyn ∈ IN,
we consider the equivalence relation∼n defined byx ∼n y if and only if ‖x − y‖n = 0 for
all x, y ∈ X. We denoteXn = (X/ ∼n, ‖ · ‖) the quotient space, the completion ofXn with
respect to‖ · ‖n. To everyY ⊂ X, we associate a sequence{Y n} of subsetsY n ⊂ Xn as
follows. For everyx ∈ X, we denote by[x]n the equivalence class ofx of subsetsXn, and we
defineY n = {[x]n : x ∈ Y }. We denote byY

n
, intn(Y n) and∂nY

n, respectively, the closure,
the interior and the boundary ofY n with respect to‖ · ‖n in Xn. We assume that the family of
semi-norms{‖ · ‖n} verifies

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ . . . for every x ∈ X.

Definition 3.2. A functionf : X → X is said to be a contraction if for eachn ∈ IN there exists
kn ∈ (0, 1) such that

‖f(x)− f(y)‖n ≤ kn‖x− y‖n for all x, y ∈ X.

Theorem 3.4. (Nonlinear Alternative,[14]). LetX be a Fréchet space andY ⊂ X a closed
subset inY and letN : Y → X be a contraction such thatN(Y ) is bounded. Then one of the
following statements holds:

(C1) N has a unique fixed point;
(C2) there existsλ ∈ [0, 1), n ∈ IN, andx ∈ ∂nY

n such that‖x− λN(x)‖n = 0.

Definition 3.3. The mapf : [0,∞)×B −→ IRn is said to beL1-Carathéodory if

(i) t 7−→ f(t, x) is measurable for eachx ∈ B;
(ii) x 7−→ f(t, x) is continuous for almost allt ∈ [0,∞);

(iii) For eachq > 0, there existshq ∈ L1([0,∞), IR+) such that

‖f(t, x)‖ ≤ hq(t) for all ‖x‖B ≤ q and for almost allt ∈ [0,∞).

In order to define the phase space and the solution of (3.15)–(3.18) we shall consider the
space

AJMAA, Vol. 4, No. 2, Art. 6, pp. 1-26, 2007 AJMAA

http://ajmaa.org


12 JOHNNY HENDERSON ANDABDELGHANI OUAHAB

PC∗ =
{
y : (−∞,∞) → IRn | y(t−k ), y(t+k ) exist with y(tk) = y(t−k ),

y(t) = φ(t), t ≤ 0, yk ∈ C(Jk, IR
n), k = 1, . . .

}
,

whereyk is the restriction ofy to Jk = (tk, tk+1], k = 0, . . . .
We will assume thatB satisfies the following axioms:

(A) If y : (−∞,∞) → IRn, andy0 ∈ B, then for everyt in [0,∞) the following conditions
hold:
(i) yt is inB;

(ii) ‖yt‖B ≤ K(t) sup{|y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖B,
(iii) |y(t)| ≤ H‖yt‖B

whereH ≥ 0 is a constant,K : [0,∞) → [0,∞) is continuous,M : [0,∞) → [0,∞)
is locally bounded andH,K,M are independent ofy(·).

(A-1) For the functiony(·) in (A), yt is a
B-valued continuous function on[0,∞)\{t1, . . . ..}.

(A-2) The spaceB is complete.

Set
B∗ = {y : (−∞,∞) → IRn : y ∈ PC∗ ∩B}

we consider
Bk = {y ∈ B∗ : sup

t∈J∗k

|y(t)| <∞}, J∗k = (−∞, tk],

let ‖ · ‖k be the seminorm inBk defined by

‖y‖k = ‖y0‖B + sup{|y(t)| : 0 ≤ s ≤ tk}, y ∈ Bk.

Let us start by defining what we mean by a solution of problem (3.15)–(3.18).

Definition 3.4. A functiony ∈ B∗, is said to be a solution of (3.15)–(3.18)
if y satisfies (3.15)–(3.18).

Theorem 3.5.Assume that:

(H2) There exist constantsdk, d̄k > 0, k = 1, 2, . . . , such that for allx, x ∈ IRn,

‖Ik(x)− Ik(x)‖ ≤ dk‖x− x‖, ‖Ik(x)− Ik(x)‖ ≤ d̄k‖x− x‖, for eachk = 1, . . . ;

(H3) For all R > 0 there existlR ∈ L1
loc([0,∞), IR+) such that

‖f(t, x)− f(t, x)‖ ≤ l(t)‖x− x‖B,

for eacht ∈ [0,∞), and allx, x ∈ B with ‖x‖, ‖x‖ ≤ R; for a.e.t ∈ [0,∞J∗.;
(H4) There exist a continuous non-decreasing functionψ : [0,∞) −→ (0,∞),

p ∈ L1([0,∞), IR+) such that

‖f(t, u)‖ ≤ p(t)ψ(‖u‖B) for each(t, u) ∈ [0,∞)×B,

Kk

∫ ∞

0

p(t)dt <

∫ ∞

0

du

ψ(u)
,

where
Kk = sup{|K(t)| : t ∈ [0, tk]}, k = 1, . . . , .

If
∞∑

k=1

dk < 1,
∞∑

k=1

d̄k <∞, then the initial value problem (3.15)–(3.18) has unique solution.
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Proof. We consider the problem,

(3.19) y′(t) = η +

∫ t

0

f(s, ys)ds+
∑

0<tk<t

Ik(y(t
−
k ) a.e. t ∈ J∗ := [0,∞)\{t1, t2, . . .},

(3.20) y(t+k )− y(t−k ) = Ik(y(t
−
k )), k = 1, . . . ,

(3.21) y(t) = φ(t), t ∈ (−∞, 0].

Remark 3.1. We can easily prove that ify is a solution of the problem (3.19)–(3.21) if and only
if y is a solution of (3.15)–(3.18).

Transform the problem (3.19)–(3.21) into a fixed point problem. Consider the operatorN :
B∗ −→ B∗ defined by,

N(y)(t) =


φ(t), t ∈ (−∞, 0],

φ(0) + tη +

∫ t

0

∫ s

0

f(u, yu)ds

+
∑

0<tk<t

[Ik(y(t
−
k )) + (t− tk)Ik(y(t

−
k ))], t ∈ [0,∞).

Let x(·) : (−∞,∞) → IRn be the function defined by

x(t) =


φ(0), if t ∈ [0,∞),

φ(0) +
∑

0<tk<t

[Ik(x(t
−
k )) + (t− tk)Ik(x(t

−
k ))], if t ∈ (−∞, 0].

Thenx0 = φ(0). For eachz ∈ C([0,∞), IRn) with z(0) = 0, we denote bȳz the function
defined by

z̄(t) =

{
z(t), if t ∈ [0,∞),

0, if t ∈ (−∞, 0].

If y(·) satisfies the integral equation,

y(t) = φ(0) +
∑

0<tk<t

[Ik(y(t
−
k )) + (t− tk)Ik(y(t

−
k ))] +

∫ t

0

∫ s

0

f(u, yu)duds,

we can decomposey(·) asy(t) = z̄(t)+x(t), 0 ≤ t <∞, which impliesyt = z̄t +xt, for every
0 ≤ t <∞, and the functionz(·) satisfies

(3.22)
z(t) = tη +

∫ t

0

∫ s

0

f(u, z̄u + xu)duds

+
∑

0<tk<t

[Ik(z̄(t
−
k ) + x(t−k )) + (t− tk)Ik(z̄(t

−
k ) + x(t−k ))].

Let
Bk
∗ =

{
z : (−∞, tk] → IRn | z(t−i ), z(t+i ) exist with z(ti) = z(t−i ),

zk ∈ C(Ji, IR
n), i = 1, . . . , k − 1, andz0 = 0

}
.

For anyz ∈ Bk
∗ we have

‖z‖k = ‖z0‖B + sup{‖z(s)‖ : 0 ≤ s ≤ tk} = sup{‖z(s)‖ : 0 ≤ s ≤ tk}.
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Thus(Bk
∗ , ‖ · ‖k) is a Banach space. Set

C0 = {z ∈ B∗ : z0 = 0}.

C0 is a Fréchet space with a family of semi-norms‖ · ‖k. Let the operatorP : C0 → C0 be
defined by

(Pz)(t) =


0, t ∈ (−∞, 0],

tη +

∫ t

0

∫ s

0

f(u, z̄u + xu)duds

+
∑

0<tk<t

[Ik(z̄(t
−
k ) + x(t−k )) + (t− tk)Ik(z̄(t

−
k ) + x(t−k ))], t ∈ [0,∞).

Obviously, that the operatorN has a fixed point is equivalent toP has a fixed point, and so we
turn to proving thatP has a fixed point. We shall use the alternative to prove thatP has fixed
point.
Let z be a possible solutions of the problem,z = γP (z) for some0 < γ < 1. This implies by
(H4) that for eacht ∈ [0, t1] we have

z(t) = γ
[
tη+

∫ t

0

∫ s

0

f(u, z̄u+xu)duds+
∑

0<tk<t

[Ik(z̄(t
−
k )+x(t−k ))+(t−tk)Ik(z̄(t

−
k )+x(t−k ))].

]
.

As in Theorem 3.2 we can show that there existsM1 > 0 such that‖z‖1 ≤ M1. Now if
t ∈ (t1, t2], then

z(t) =
[
tη +

∫ t

0

∫ s

0

f(u, z̄u + xu)duds+ I1(z(t
−
1 ) + x(t−1 )) + (t− t1)I1(z(t

−
1 ) + x(t−1 ))

]
.

Note that

|I1(z(t−1 ) + x(t−1 )) + (t− t1)I1(z(t
−
1 ) + x(t−1 ))| ≤ sup

x∈B(0,M1)

[|I1(x)|+ (t2 − t1)I1(x)] := M,

where
B(0,M1) = {x ∈ IRn : ‖x‖ ≤M1}.

Hence

‖z(t)‖ ≤ M1 +M + t2

∫ t

t1

p(s)ψ(‖z̄s + xs‖B)ds,

where
‖z̄s + xs‖B ≤ K2 sup

s∈[0,t]

‖z(s)‖+K2 sup
s∈[0,t]

‖x(s)‖+M2‖x0‖B := h(t)

h(t∗) = K2 sup
s∈[0,t∗]

‖z(s)‖ +K2 sup
s∈[0,t∗]

‖x(s)‖ +M2‖x0‖B. By the previous inequality we have

for t ∈ [0, t2]

h(t) ≤ K2t2

∫ t

0

p(s)ψ(h(s))ds+K2[M1 + (t2 − t1)M ] +K2 sup
s∈[0,t∗]

‖x(s)‖+Mk‖x0‖B.

Let us take the right-hand side of the above inequality asv(t). Then we have

v(0) = K2[M1 + (t2 − t1)M ] +K2 sup
s∈[0,t∗]

‖x(s)‖+M2‖x0‖B

and
v′(t) = K2t2p(t)ψ(h(t)), a.e.t ∈ [0, t2].
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Using the increasing character ofψ we get

v′(t) ≤ K2t2p(t)ψ(h(t)) a.e. t ∈ [0, t2].

Then for eacht ∈ [0, t2] we have∫ h(t)

v(0)

du

ψ(u)
≤ K2t2

∫ ∞

0

p(s)ds < +∞.

Consequently, by(H4), there exists a constantM∗ such thatv(t) ≤M∗, t ∈ [0, t2], and hence

‖z‖2 ≤M∗/K2 := M2.

We continue this process and also take into account thatt ∈ [tk, tk+1], k > 2.
Then

z(t) = γ
[
tη+

∫ t

tk

∫ s

tk

f(u, z̄u+xu)duds+
∑

0<tk<t

[Ik(z(t
−
k )+x(t−k )+(t−tk)Ik(z(t

−
k )+x(t−k ))

]
.

We obtain that there exists a constantMk+1 such that

sup{‖z(t)‖ : t ∈ [0, tk+1]} ≤Mk+1.

Y = {z ∈ C0 : sup{‖z(t)‖ : 0 ≤ t ≤ tk} ≤Mk + 1 for all k ∈= 1, 2, . . .}.
Clearly,Y is a closed subset ofC0. We shall show thatP : Y → Bk

∗ is a contraction maps.
Indeed, considerz, z∗ ∈ Y. Then we have for eacht ∈ [0, tk] andk ∈ {1, 2, . . . , }

‖P (z)(t)− P (z∗)(t)‖ ≤
∫ t

0

‖f(s, z̄s + xs))− f(s, z̄∗s + xs)‖ds

+
i=k∑
i=1

‖Ii(z̄(t−i ) + x(ti))− Ii(z̄
∗(t−i ) + x(t−i )))‖

+
i=k∑

0<tk<t

(t− tk)‖Ii(z̄(t−i ) + x(ti))− Ii(z̄
∗(t−i ) + x(t−i )))‖

≤
∫ t

0

l(s)‖z̄s − z̄∗s‖Bds+
i=k∑
i=1

di‖z(t−i )− z∗(t−i )‖

+
∑

0<tk<t

(t− tk)dk‖z(t−i )− z∗(t−i )‖

≤
∫ t

0

l(s)Kk sup
s∈[0,t]

‖z(s)− z∗(s)‖ds+
i=k∑
i=1

di‖z(t−i )− z∗(t−i )‖

+
∑

0<tk<t

(t− tk)dk‖z(t−i )− z∗(t−i )‖

≤
∫ t

0

1

τ
L̂(s)eτ bL(s)e−τ bL(s) sup

s∈[0,t]

‖z(s)− z∗(s)‖ds

+
i=k∑
i=1

die
τ bL(t)e−τ bL(t) sup

s∈[0,tk]

‖z(s)− z∗(s)‖
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+
∑

0<tk<t

(t− tk)dke
τ bL(tk)e−τ bL(tk) sup

s∈[0,tk]

‖z(s)− z∗(s)‖.

Since(t− s) ≤ e(t−s) for 0 ≤ s ≤ t, we find(t− s)es ≤ et. Assume thatτ is sufficient large

t− s =

∫ t

s

dξ ≤
∫ t

s

l∗(ξ)dξ = L̂(t)− L̂(s).

Then
τ(t− s) ≤ τL̂(t)− τL̂(s).

This implies that

τ(t− s)eτ bL(s) ≤ eτ bL(t) =⇒ (t− s)eτ bL(s) ≤ eτ bL(t)

τ

whereL̂(t) =

∫ t

0

l∗(s)ds and

l∗(t) = max(1, Kkl(t)).

Thus

e−τ bL(t)‖P (z)(t)− P (z∗)(t)‖ ≤ 1

τ
‖z − z∗‖Bk

∗
+

i=k∑
i=1

di‖z − z∗‖Bk
∗

+

i=k∑
i=1

di

τ
‖z − z∗‖Bk

∗

e−τ bL(t)‖P (z)(t)− P (z)(t)‖ ≤


1

τ
+

i=k∑
i=1

di +

i=k∑
i=1

di

τ

 ‖z − z∗‖Bk
∗
.

Therefore,

‖P (z)− P (z∗)‖Bk
∗
≤


1

τ
+

i=k∑
i=1

di +

i=k∑
i=1

di

τ

 ‖z − z∗‖Bk
∗
,

where‖ · ‖Bk
∗

is the Bielecki-type norm onBk
∗

defined by

‖z‖Bk
∗

= max{‖z(t)‖e−τ bL(t) : t ∈ [0, tk]}.
From the choice ofY there is noz ∈ ∂Y n such thatz = λP (z) for someλ ∈ (0, 1). As a
consequence of the nonlinear alternative type [12] we deduce thatP has a unique fixed point
which is a solution to (3.15)–(3.18).

4. NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

This section is devoted to the existence of solutions for second order neutral functional differ-
ential equations with impulses and infinite delay (1.5)-(1.8). Much of the notation and spaces,
etc., that appear in this section have been defined in previous sections.

Theorem 4.1.Letf, g : J ×B → IRn beL1-Carathéodory functions and assume the following
condition is satisfied:
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(B1) There exist a continuous nondecreasing functionψ : [0,∞) −→ (0,∞) and p ∈
L1(J, IR+) such that

‖f(t, x)‖ ≤ p(t)ψ(‖x‖B), ‖g(t, x)‖ ≤ p(t)ψ(‖x‖B)for a.e. t ∈ [0, b] and eachx ∈ B
with

(1 + tk)Kb

∫ tk

0

p(s)ds <

∫ ∞

0

dx

ψ(x)
.

Then the IVP (1.5)-(1.8) has at least one solution.

Proof. The proof will be given in several steps.
Step 1: Consider the problem,

(4.1) y′(t)− g(t, yt) = η +

∫ t

0

f(s, ys)ds, a.e. t ∈ [0, t1],

(4.2) y(t) = φ(t), t ∈ (−∞, 0].

Consider the operatorN∗ : B ∩ C([0, t1], IR
n) → B ∩ C([0, t1], IR

n) defined by,

N∗(y)(t) =


φ(t), if t ∈ (−∞, 0],

φ(0) + tη +

∫ t

0

g(s, ys)ds+

∫ t

0

∫ s

0

f(u, yu)duds, if t ∈ [0, t1].

In analogy to Theorem 3.2, we consider the operatorP ∗ : C0 → C0 defined by

(P ∗z)(t) =


0 t ∈ (−∞, 0],

tη +

∫ t

0

g(s, z̄s + xs)ds+

∫ t

0

∫ s

0

f(u, z̄u + xu)duds, t ∈ [0, t1].

In order to use the Leray-Schauder alternative, we shall obtain a priori estimates for the solutions
of the integral equation

z(t) = λ

[
tη +

∫ t

0

g(s, z̄s + xs)ds+

∫ t

0

∫ s

0

f(u, z̄u + xu)duds

]
,

wherez0 = λφ for someλ ∈ (0, 1). Then

‖z(t)‖ ≤ t1‖η‖+

∫ t

0

p(s)ψ(‖z̄s + xs‖B)ds+

∫ t

0

p(s)ψ(‖z̄s + xs‖B)ds

≤ t1‖η‖+ (1 + t1)

∫ t

0

p(s)ψ(‖zs + xs‖B)ds.

Let α = Mb‖φ‖B +Kb‖φ(0)‖+Mb‖φ‖B. We have

‖z̄t + xt‖B ≤ Kb sup
s∈[0,t]

‖z(s)‖+ α := w(t)

and

‖z(t)‖ ≤ t1‖η‖+ (1 + t1)

∫ t

0

p(s)ψ(w(s))ds.

But

w(t) ≤ Kbt1‖η‖+ α+ (1 + t1)Kb

∫ t

0

p(s)ψ(w(s))ds.

Taking the right hand side asβ(t) we have

w(t) ≤ β(t), t ∈ [0, t1],
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18 JOHNNY HENDERSON ANDABDELGHANI OUAHAB

β(0) := c̄ = Kbt1‖η‖,
β′(t) = (1 + t1)Kbp(t)ψ(w(t)) ≤ (1 + t1)Kbp(t)ψ(β(t)), t ∈ [0, t1],

and ∫ β(t)

β(0)

ds

ψ(s)
≤ (1 + t1)Kb

∫ b

0

p(s)ds <

∫ ∞

c̄

ds

ψ(s)
.

Therefore, there exists a constantK∗ such thatβ(t) ≤ K∗, t ∈ [0, t1], and hence‖z̄t + xt‖B ≤
w(t) ≤ K∗, t ∈ [0, t1], and

‖z(t)‖ ≤ Kbt1‖η‖+ α+Kb

∫ t1

0

(1 + t1)p(s)ψ(K∗)ds := K2.

Set
U1 = {z ∈ C0 : sup{‖z(t)‖ : 0 ≤ t ≤ t1} < K2 + 1}.

From the choice ofU1, there is noz ∈ ∂U0 such thatz = λP ∗(z), for someλ ∈ (0, 1). As a
consequence of the nonlinear alternative of Leray-Schauder type [12], we deduce thatP ∗ has a
fixed pointz in U0. ThenN∗ has a fixed pointy0 which is a solution to problem (4.1)–(4.2).
Step 2: Consider now the problem,

(4.3) y′(t)− g(t, yt) =

∫ t

t1

f(s, ys)ds+ y0(t
−
1 ) + I1(y0(t

−
1 ), a.e.t ∈ (t1, t2],

(4.4) y(t+1 ) = y0(t
−
1 ) + I1(y0(t1)), y(t) = y0(t), t ∈ (−∞, t1].

LetN∗
1 : C∗ → C∗ be defined by

N∗
1 (y)(t) =


y0(t), t ∈ (−∞, t1],

y0(t
−
1 ) + I1(y0(t

−
1 )) + (t− t1)[y

′
0(t1) + I1(y0(t1))]

+

∫ t

t1

g(s, ys)ds+

∫ t

t1

∫ s

t1

f(u, yu)duds, t ∈ (t1, t2].

In analogy to Theorem 3.5, we consider the operatorP ∗
1 : Ct1 → Ct1 defined by

(P ∗
1 z)(t) = (t− t1)

[
η + y′0(t1) + I1(y0(t

−
1 ))

]
+

∫ t

t1

g(s, zs + xs)ds+

∫ t

t1

∫ s

t1

f(u, zu + xu)duds,

and there existsM > 0 such that, ifz is a possible solutions of the integral equation

z(t) = λ

[
(t− t1)

[
η + y′0(t1) + I1(y0(t

−
1 ))

]
+

∫ t

t1

g(s, zs + xs)ds+

∫ t

t1

∫ s

t1

f(u, zu + xu)duds

]
,

wherez0 = λy0, for someλ ∈ (0, 1), we have

‖z‖∞ ≤M.

Set
U1 = {z ∈ Ct1 : sup{‖z(t)‖ : t1 ≤ t ≤ t2} < M + 1}.

From the choice ofU1, there is noz ∈ ∂U1 such thatz = λP ∗
1 (z), for someλ ∈ (0, 1). As a

consequence of the nonlinear alternative of Leray-Schauder type [12], we deduce thatP ∗
1 has a

fixed pointz in U1. Then the problem (4.3)-(4.4) has at least one solution. Denote this solution
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by y1.

Step 3:We continue this process and taking into account thatym := y
∣∣∣
[tm,b]

is a solution to the

problem

(4.5) y′(t)− g(t, yt) =

∫ t

t1

f(s, ys)ds+ y′m−1(t
−
m) + Im(ym−1(t

−
m), a.e. t ∈ (tm, b],

(4.6) y(t+m) = ym−1(t
−
m−1) + Im(ym−1(tm)), y(t) = ym−1(t) t ∈ [−∞, t1].

The solutiony of the problem (1.5)-(1.8) is then defined by

y(t) =



y1(t), if t ∈ (−∞, t1],

y2(t), if t ∈ (t1, t2],

. . .

ym(t), if t ∈ (tm, b].

The proof is complete.

In this second part of Section 4, the Banach fixed point theorem for principal contraction
maps is used to investigate the existence and uniqueness of second order impulsive neutral
functional differential equations with infinite delay (1.5)-(1.8).

Theorem 4.2.Assume(A1), (A2) and the condition:

(B∗1) There exists a functioñl ∈ L1([0, b], IR+) such that

‖g(t, u)− g(t, u)‖ ≤ l̃(t)‖u− u‖B, t ∈ [0, b].

are satisfied. Then the IVP (1.5)-(1.8) has unique solution.

Proof. Exactly the same ideas in Theorem 3.3 establish the result.

4.1. Global Existence and Uniqueness Result.In this subsection, we present an existence
and uniqueness result for second order neutral impulsive functional differential equations with
infinite delay. More precisely we consider the problem,

(4.7)
d

dt
[y′(t)− g(t, yt)] = f(t, yt), t ∈ [0,∞), t 6= tk, k = 1, . . . ,

(4.8) y(t+k )− y(tk) = Ik(y(tk)), t = tk, k = 1, . . . ,

(4.9) y′(t+k )− y′(tk) = Ik(y(tk)), t = tk, k = 1, . . . ,

(4.10) y0 = φ ∈ B, y′(0) = η.

where Ik, Ik, B are as in problem (1.1)-(1.4), andf, g : J ×B → IRn are given functions.

Theorem 4.3.Assume that(H2), (H3) and the following conditions are satisfied:

(M1) For all R > 0 there existslR ∈ L1
loc([0,∞), IR+) such that

‖g(t, u)− g(t, u)‖ ≤ lR(t)‖u− u‖B, t ∈ [0,∞), ‖u‖ ≤ R, ‖u‖ ≤ R.
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(M2) There exist a continuous nondecreasing functionψ : [0,∞) −→ (0,∞) and p ∈
L1(J, IR+) such that, for eachx ∈ B,

‖f(t, x)‖ ≤ p(t)ψ(‖x‖B), ‖g(t, x)‖ ≤ p(t)ψ(‖x‖B) for a.e. t ∈ [0,∞),

with

(1 + tk)Kb

∫ tk

0

p(s)ds <

∫ ∞

0

dx

ψ(x)
.

Then the IVP (4.7)-(4.10) has unique solution.

Proof. Essentially the same reasoning as in Theorem 3.5 can be used to establish the uniqueness
result for problem (4.7)-(4.10).

5. H IGHER ORDER I MPULSIVE FDI S

Let us start by defining what we mean by a solution of problem (1.9)–(1.12).

Definition 5.1. A function y ∈ Bb, k = 0, . . . ,m, i = 1, . . . , n − 1, is said to be a solution
of (1.9)–(1.12) ify satisfies the equationy(n)(t) = f(t, yt) a.e. onJ, t 6= tk, k = 1, . . . ,m,
and the conditionsy(i)(t+k ) − y(t−k ) = Ik,i(y(t)), t = tk, k = 1, . . . ,m, i = 1, 2, . . . , n − 1,
y(i)(0) = yi, i = 1, . . . , n− 1.

Theorem 5.1.Assume thatf isL1-Carathédory and (H1) holds. Then the IVP (1.9)–(1.12) has
at least one solution on(−∞, b].

Proof. The proof will be given in several steps.
Step 1: Consider the problem,

(5.1) y′(t) =
n−1∑
i=2

yi
ti−2

(i− 2)!
+

∫ t

0

(t− s)n−2

(n− 2)!
f(s, ys)ds, a.e. t ∈ [0, t1],

(5.2) y(t) = φ(t), t ∈ (−∞, 0].

Transform the problem (5.1)–(5.2) into a fixed point problem. Consider the operatorG : B ∩
C([0, t1], IR

n) −→ B ∩ C([0, t1], IR
n) defined by,

G(y)(t) =


φ(t), t ∈ (−∞, 0]

φ(0) +
n−1∑
i=1

yi
ti−1

(i− 1)!
+

∫ t

0

∫ s

0

(s− u)n−2

(n− 2)!
f(u, yu)duds, ∈ [0,∞).

In analogy to Theorem 3.2, we consider the operatorP∗ : C0 → C0 defined by

(P∗z)(t) =


0 t ∈ (−∞, 0],
n−1∑
i=1

yi
ti−1

(i− 1)!
+

∫ t

0

∫ s

0

(s− u)n−2

(n− 2)!
f(u, z̄u + xu)duds t ∈ [0, t1].

As in Theorem 3.2 we can prove thatP∗ is completely continuous and there existsM > 0 such
that for every solution of the problemz = λP∗(z) for someλ ∈ (0, 1),we have‖z‖∞ ≤ M.
Then by a nonlinear alternative of Leray-Schauder type [12], we deduce thatP∗ has a fixed
point z in U0. ThenG has a fixed pointy0 which is a solution to problem (5.1)–(5.2).
Step 2: Consider now the following problem,

(5.3) y′(t) =
n−1∑
i=1

[y
(i)
0 (t−1 ) + I1,i(y0(t

−
1 ))]

(t− t1)
i−2

(i− 2)!
+

∫ t

t1

(t− s)n−2

(n− 2)!
f(s, ys)ds, t ∈ [t1, t2],
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(5.4) y(t) = y0(t), t ∈ (−∞, t1].

Let
C1 = {y ∈ C((t1, t2], IR

n) : y(i)(t+1 ) exist, i = 1, . . . n− 1}.
SetC∗ = B∩C([0, t1], IR

n)∩C1. Transform the problem (5.3)–(5.4) into a fixed point problem.
Consider the operator

G1(y)(t) =



y0(t), t ∈ (−∞, t1],
n−1∑
i=1

[y
(i)
0 (t−1 ) + I1,i(y0(t

−
1 ))]

(t− t1)
i−1

(i− 1)!

+

∫ t

t1

∫ s

t1

(s− u)n−2

(n− 2)!
f(u, yu)duds, t ∈ (t1, t2]

Set
Ct1 = {z ∈ C∗ : zt1 = 0}.

Let the operatorP∗∗ : Ct1 → Ct1 defined by:

(P∗∗z)(t) =



0, t ∈ (−∞, t1],
n−1∑
i=1

[y
(i)
0 (t−1 ) + I1,i(y0(t

−
1 ))]

(t− t1)
i−1

(i− 1)!

+

∫ t

t1

∫ s

0

(s− u)n−2

(n− 2)!
f(u, z̄u + xu)duds, t ∈ [t1, t2].

As in Theorem 3.2 we can show thatP∗∗ is continuous and completely continuous, and ifz is a
possible solution of the equationsz = λP∗∗(z) and z0 = λy0, for someλ ∈ (0, 1), there exists
K∗1 > 0 such that

‖z‖∞ ≤ K∗1 .

Set
U1 = {z ∈ Ct1 : sup{‖z(t)‖ : t1 ≤ t ≤ t2} ≤ K∗1 + 1}.

As a consequence of the nonlinear alternative of Leray-Schauder type [12], we deduce thatP∗∗
has a fixed pointz in U1. ThusG1 has a fixed pointy which is an solution to problem (5.3)–
(5.4). Denote this solution byy1.

Step 3:We continue this process and taking into account thatym := y
∣∣∣
[tm,b]

is a solution to the

problem, for a.e.t ∈ (tm, b],

(5.5) y′(t) =
n−1∑
i=2

[y
(i)
m−1(t

−
m) + I1,i(ym−1(tm))]

(t− tm)i−2

(i− 2)!
+

∫ t

tm

(t− s)n−2

(n− 2)!
f(s, ys)ds,

(5.6) y(t) = ym−1(t), t ∈ (−∞, tm−1].

The solutiony of the problem (1.9)-(1.12) is then defined by

y(t) =



y0(t), if t ∈ (−∞, t1],

y1(t), if t ∈ (t1, t2],

. . .

ym(t), if t ∈ (tm, b].
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In this next part, we give sufficient conditions for local existence and uniqueness of
solutions of the problem (1.9)–(1.12).

Theorem 5.2.Assume (A1), and the condition:

(A∗1) There exist a constants0 < ck,i < 1, k = 1, . . . ,m, i = 1, . . . , n− 1, such that

‖Ik,i(y)− Ik,i(x)‖ ≤ ck,i|y − x|, for each y, x ∈ IRn.

are satisfied. Then the IVP (1.9)-(1.12) has a unique solution.

Proof. For the prove see Theorem 3.3.

5.1. Global Existence and Uniqueness Result.In this subsection, we present an existence
and uniqueness result for higher order impulsive functional differential equations with infinite
delay. More precisely, we consider the problem,

(5.7) y(n) = f(t, yt), t ∈ [0,∞), t 6= tk, k = 1, ...,

(5.8) y(i)(t+k )− y(i)(t−k ) = Ik,i(y(tk)), t = tk, k = 1, . . . , i = 1, . . . , n− 1,

(5.9) y(0) = yi, i = 1, . . . , n− 1,

(5.10) y0 = φ ∈ B,

where Ik,i, f are as in problem (1.9)-(1.12), andg : J ×B → IRn is a given function.

Theorem 5.3.Assume:

(H∗2) There exist constantsdk,i > 0, k = 1, . . . , i = 1, . . . ,such that, for allx, x ∈ IRn,

‖Ik,i(x)− Ik,i(x)‖ ≤ dk,i‖x− x‖, for each, x, y ∈ IRn

(H∗3) For all R > 0 there existlR ∈ L1
loc([0,∞), IR+) such that

‖f(t, x)− f(t, x)‖ ≤ lR(t)‖x− x‖B,

for eachx, x ∈ B with ‖x‖, ‖x‖ ≤ R; for a.e.t ∈ [0,∞);
(H∗4) There exist a continuous non-decreasing functionψ : [0,∞) −→ (0,∞),

p ∈ L1([0,∞), IR+) such that

‖f(t, u)‖ ≤ p(t)ψ(‖u‖B) for each(t, u) ∈ [0,∞)×B,∫ ∞

0

du

ψ(u)
= ∞,

where

Kk = sup{|K(t)| : t ∈ [0, tk]}, k = 1, . . . .

If
∞∑

k=1

dk,1 < 1, and
∞∑

k=1

dk,i < 1, i = 2, 3, . . ., then the initial value problem (5.7)-(5.10) has

unique solution.

Proof. By analogies of Theorem 3.5, it can be shown that problem (5.7)–(5.10) has unique
solution. The details are left to the reader.
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6. EXAMPLE

In this, section we give an example to illustrate our main results.

(6.1) y′′(t) =
e−γt‖yt‖Bγ

(t+ 1)(t+ 2)
, a.e. t ∈ J := [0,∞)] \ {1, 2, . . .},

(6.2) y(t+k )− y(t−k ) = bky(t
−
k ), k = 1, . . . ,

(6.3) y′(t+k )− y′(t−k ) = b̄ky(t
−
k ), k = 1, . . . ,m,

(6.4) y(t) = φ(t), t ∈ (−∞, 0].

Let D = {ψ : (−∞, 0] → IRn | ψ is continuous everywhere except for a countable number
of points t̄ at which ψ(t̄−) andψ(t̄+) exist, ψ(t̄−) = ψ(t̄)}, bk andbk, k = 1, . . . , are real
sequences. Letγ be a positive real constant and

Bγ = {y ∈ D ∩ PC∗ : lim
θ→−∞

eγθy(θ), exists in IRn}.

The norm ofBγ is given by
‖y‖γ = sup

−∞<θ≤0
eγθ‖y(θ)‖.

Let y : (−∞,∞) → IRn such thaty0 ∈ Bγ.
Then

lim
θ→∞

eγθyt(θ) = lim
θ→∞

eγθy(t+ θ) = eγt lim
θ→∞

eγθy(θ)eγt lim
θ→∞

eγθy0(θ) <∞.

Henceyt ∈ Bγ.
Finally we prove that

‖yt‖ ≤ K(t) sup{‖y(s)‖ : 0 ≤ s ≤ t}+M(t)‖y0‖γ,

whereK = M = 1, H = 1, and
‖yt(θ)‖ = ‖y(t+ θ)‖.
If θ + t ≤ 0, we get

‖yt(θ)‖ ≤ sup{‖y(s)‖ : −∞ < s ≤ 0}.
Yet, for t+ θ ≥ 0, we have

‖yt(θ)‖ ≤ sup{‖y(s)‖ : 0 < s ≤ t}.
Thus for allt+ θ ∈ IR, we get

‖yt(θ)‖ ≤ sup{‖y(s)‖ : −∞ < s ≤ 0}+ sup{‖y(s)‖ : 0 ≤ s ≤ t}.
Then

‖yt‖γ ≤ ‖y0‖γ + sup{‖y(s)‖ : 0 ≤ s ≤ t}.
Finally, we prove that

‖y(t)‖ ≤ H‖yt‖γ.

Let y ∈ Bγ, then

‖y(t)‖ = eγ0eγ0‖y(t)‖ ≤ sup{‖eγθy(t+ θ)‖ : θ ∈ (−∞, 0]}.
Hence,

‖y(t)‖ ≤ ‖yt‖Bγ .

Then,(Bγ, ‖ · ‖) is a Banach space. We can conclude thatBγ is a phase space.

With f(t, u) =
e−γt‖u‖Bγ

(t+1)(t+2)
, (t, u) ∈ [0,∞)×B,
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‖f(t, u)‖ ≤ p(t)ψ(‖u‖Bγ ),

whereψ(x) = 1 + x andp(t) = e−γt

(1+t)(2+t)
.

‖f(t, u)‖ =
e−γt‖u‖Bγ

(t+ 1)(t+ 2)
≤ p(t)[e−γt‖u‖Bγ + 1] =⇒ |f(t, u)| ≤ p(t)[‖u|Bγ + 1],

and ∫ ∞

0

p(t)dt ≤
∫ ∞

0

dt

(1 + t)(2 + t)
= log 2 <

∫ ∞

0

dx

ψ(x)
= ∞.

Let x, y ∈ Bγ, then we have

‖f(t, x)− f(t, y)‖ =
e−γt

(t+ 1)(t+ 2)
‖‖x‖Bγ − ‖y‖Bγ‖ ≤

1

(t+ 1)(t+ 2)
‖x− y‖Bγ .

Hence the conditions(H2) and (H3) of Theorem 3.5 are satisfied. Assume that
∞∑

k=1

bk <

1, and
∞∑

k=1

b̄k <∞. Then by Theorem 3.5, the problem (6.1)-(6.4) has a unique solution.
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