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2 JOHNNY HENDERSON ANDABDELGHANI OUAHAB

1. INTRODUCTION

This paper is concerned with the existence of solutions to second and higher order impulsive
functional and neutral functional differential equations with infinite delay. In particular, in
Section[ B, we will consider the class of second order functional differential equations with
impulsive effects,

(1.1) V() = Fltyn), aect € Ji=[08], t #tp, k=1,...,m,
(1.2) y(t) —yty) = I(y(ty), t="tr, k=1,...,m,
(1.3) Y6 =y () = Le(y(ty), t=ti, k=1,....m,
(1.4) y(t) = o(t), te(—o0,0], ¥(0)=n,

wheren € R", 0 = tp < t1 < ... < t, <tmp1=0bf:JxB— R" (B is called
a phase spacéhat will be defined later)I;, I, € C(R",IR"), k = 1,2,...,m, are given
functions satisfying some assumptions that will be specified latgr) = hlirél+ y(tx + h) and

y(t,) = hlirgl_ y(tr — h) represent the right and left limits gf¢) att = t;, and¢ € B.

For any functiony defined on(—oo, b] and anyt € [0, o), we denote by, the element o3
defined byy:(0) = y(t + 6), 6 € (—o0,0]. Herey(-) represents the history of the state from
timet — 0 up to the present time

Sectiorj 4 is devoted to second order impulsive neutral functional differential equations,

(15) %[y/(t) - g(t7yt)] = f(tvyt>’ te J’ 13 7& tka k= 1: ey M,
(1.6) y(t) —yty) = L(y(ty), t=ts, k=1,....m,
(1.8) yo=0¢€B, y(0)=n,

where 1), f, I, T, B are as in problen] (111)-(1.4), apd J x B — IR" is a given function.
In the least section, for > 2, we consider the higher order problem,

(1.9) y () = f(t,y), ae.t € J=[0,b], t #ty, k=1,...,m,

(1.10) y D) =y (t) = Luly(ty)), t=te, k=1,...,m,i=1,...,n—1,
(1.11) y0) =y, i=1,2,...,n—1,

(1.12) y(t) = ¢(t), t € (—o0,0],

where f and ¢ are as in problen] (1l1}~(1.4), add; € C(R",IR"), k = 1,...,m, i =

1,...,n — 1. In the literature devoted to equations with finite. delay, the state space is much
of the time the space of all continuous function e, 0], » > 0, endowed with the uniform

norm topology; see the book of Hale and Lunell[22]. When the delay is infinite, the selection
of the stateB (i.e. phase space) plays an important role in the study of both qualitative and
guantitative theory. A usual choice is a semi-normed space satisfying suitable axioms, which
was introduced by Hale and Kato [21] (see also Kappel and Schappacher [24] and Schumacher
[31]) and the papers of Hale [19,]20] and Saweno [30]. For a detailed discussion on this topic
we refer the reader to the book by Hirbal [23]. For the case where the impulses are absent,

an extensive theory for first order functional differential equations has been developed. We refer
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to Hale and Kato [21], Hale and Lunél [22], Corduneanu and Lakshmikantham [11] gtado
[23], Lakshmikanthanet al [26] and Shin[[32].

Impulsive differential equations have become more important in recent years in some math-
ematical models of real processes and phenomena studied in control, physics, chemistry, pop-
ulation dynamics, biotechnology and economics. There has been a significant development in
impulse theory, in recent years, especially in the area of impulsive differential equations with
fixed moments; see the monographs of Bainov and Simeaonov [3], Lakshmikastrafi25]
and Samoilenko and Perestyuk [29] and the papers of Agat [1], Ballinger and Liu [4],
Benchohraet al [5) 6], Franceet al[13] and the references therein.

The goal of this paper is to give existence and uniqueness results for higher order impulsive
functional differential equations with infinity delay. Very recently, Benchodtral, [7,8,9]
studied local and global existence for first order impulsive functional differential equations with
infinite delay. The mains theorems of this paper extend to the infinite delay problems consider
by Benchohraet al [5, [6]. Our approach here is based on the Leray-Schauder alternative [12],
Banach fixed point theorem and a recent Frigon and Gransas nonlinear alternative of Leary-
Schauder type in Fréchet spades [14].

2. PRELIMINARIES
In this short section, we introduce notations and definitions which are used throughout the
paper.
C(]0,b],IR™) is the Banach space of all continuous functions friomd] into IR with the
norm

[Yllec = sup{lly(£)[| : 0 < < b}.

L([0, ], R™) denotes the Banach space of measurable functions, o] — IR™ which are
Lebesgue integrable and normed by

b
Hmp:/meWﬁfmmlyeLwaRﬂ.
0

Definition 2.1. The mapf : [0,4] x B — IR" is said to bel.'-Carathéodory if

(i) t — f(t,z) is measurable for eachec B;
(i) @ — f(t,z) is continuous for almost atl € [0, b};
(iii)y For eachq > 0, there exists:,, € L*(]0,b], IR) such that

| f(t,z)]| < hy(t) forall ||z||z < ¢ and foralmostallt € [0,b].

3. LocAL EXISTENCE AND UNIQUENESS RESULT
In order to define the phase space and the solutign df (L.I)—(1.4) we shall consider the space

I%Y:{y%—wﬁheRﬂy@ﬁw@@ﬁ%ﬁwmymgzmgh

y(t) = 6(),t 0,y € C(J R},
wherey, is the restriction of) to J, = (¢, tx+1], £k =0,...,m. Let| - || pc be the norm inPC
defined by
[yllpc = sup{[ly(s)]| : 0 < s < b}, y € PC.
We will assume thaB satisfies the following axioms:
(A) If y : (—o0,b] — IR™b > 0andy, € B, andy(t;), y(t}), exist withy(t;) =
y(t,), k = 1,...,m then for everyt in [0,0)\{t;...,t,} the following conditions
hold:
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(i) y: isin B; andy; is continuous on0, b|\{t1,...,tm}
() [l < K (&) sup{[ly(s)[| : 0 < s <t} + M(#)l|yoll5,
(i) fly@®)l < Hlly:ll
whereH > 0 is a constanti : [0,00) — [0, 00) is continuousM : [0,00) — [0, 00)
is locally bounded and?, K, M are independent af(-).
(A-1) For the functiony(-) in (A), y; is aB-valued continuous function df, b)\{t1, ..., ¢t}
(A-2) The space3 is complete.

Set
By={y:(—00,b] - R"y € PCN B},
and let|| - ||, be the seminorm i, defined by
1l := llwolls +sup{lly(£)]| : 0 < s < b}, y € B,
Let us start by defining what we mean by a solution of problen} (1.1}-(1.4).
Definition 3.1. A functiony € B,, is said to be a solution df (1.1)—(1.4)isatisfies[(1]1){(1]4).
We will need the following auxiliary result in order to prove our main existence theorems.

Lemma 3.1. y is the unique solution of the problefm (1.[[)-{1.4) if and only i§ a solution of
the problem,

(3.1) y'(t) = n—ir/o f(s,ys)ds + Z I(y(ty)), te J t£t, k=1,...,m,

0<tr<t
(3.2) y(ty) —y(ty) = L(y(ty)), k=1,....m,
(3.3) y(t) = o(t), te (—00,0].

Proof. Lety be a solution of the probleryi (1.1)—(1L.4). Then

y'(t) = f(t,y) for t € [0,6]\{t1...,tm}-
An integration from0 to ¢ (heret € (0, t;]) of both sides of the above equality yields

[vwas = [ it

y(t) —y(0) = / F(s.y2)ds.

Thus fort € [0, ¢,], we have

If t € (t1,t2], then we have

[ = [ s

/0t1 v'(s)ds + /t:y"(s)ds = /0 ' Fls.p.)ds

YD) — oy (0) + /() — () = / £(s,y2)ds
y(t) - Ti(y(tr) -y = / F(s,9.)ds.
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Thus fort € (¢1,t5] we have

/) =0+ Tluter) + [ ' Fls,y)ds.

Continue to obtain fot € [0, b] that

Jo=n+ [ lewds+ Y Tl

0<ti <t

Conversely, we prove that ij satisfies the problem (3.1)—(B.3), theris a solution of the

problem [L.1){(L}4). Firsty(t) = ¢(t) t € (—00,0] andy(t;) — y(t;) = L(y(t;)). k =
L,...,m.Lett € [0,0]\{t1,...,t,} and

vi=n+ [ lewds+ Y T,

0<ti <t
Then,
y'(t) = f(t,ye), t€[0,b]\{tr,.. tm}
|

Theorem 3.2.Let f : J x B — IR™ be anL!-Carathéodory function. Assume the condition,

(H1) There exist a continuous nondecreasing function [0,00) — (0,00) andp €
L([0,0], R,) such that

lf(t,z)]| < p(t)Y(|z|p) fora.e.t € [0,b] and eachr € B,

with .
> dx
Kb/o p(s)ds < C M,
whereK,, = sup{|K (¢)| : t € [0,b]}, M, = sup{|M(¢)| : t € [0,b]} andc = M,||¢||z+
K[[¢(0)].

Then the initial value problen (1.1)-(1.4) has at least one solution.

Proof. The proof will be given in several steps.
Step 1 Consider the problem,

(3.4) y'(t)=n +/0 f(s,ys)ds, a.e. t € [0,ty],

(3.5) y(t) = ¢(t)7 te (_0070]'

Transform the problen (3.4]—(3.5) into a fixed point problem. Consider the opeYatds N
C([0,t1], R") — BN C(]0,t], R™) defined by,

o(t),
N(y)(t) = e

Letz(-) : (—oo,t;] — IR™ be the function defined by

#(0), if ¢e€]0,t],
{ o(t), if te(—00,0].

t € (—o0,0],

x(t) =
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Thenz, = ¢. For each: € C([0, ], R™) with z, = 0, we denote by the function defined by
2(t), if ¢t €[0,¢],

{ 0, if ¢t € (—o0,0].

If y(-) satisfies the integral equation,

y(t) = 3(0) + tn + / / " flu, ya)duds,

we can decomposg-) asy(t) = z(t) + z(t),0 < t < t;, which impliesy, = z, + x, for every
0 <t <y, and the function(-) satisfies

t s
(3.6) z(t) =tn+ / / f(u, Z, + x,)duds.
0o Jo
Set
CO = {Z S O([O,tl], IRn) LRy = O}
Let the operator : Cy — C be defined by

(Pz)(t)—thr/o/Osf(u,2u+xu)duds, te0,h).

Obviously, that the operata¥ has a fixed point is equivalent 1 has a fixed point, and so we
turn to proving thatP has a fixed point. We shall use the Leray-Schauder alternative to prove
that P has fixed point.

Claim 1: P is continuous.

Let {z,} be a sequence such that— z in Cy. Then

[(Pzn)(t) = (P2)(1)]] < tl/olHf(&zns+$s)—f($>zs+3?s)Hd8-

Sincef is L!-Carathéodory, then we have
1P(20) = P(2)lloc < tallf (20, +20)) = (5 20) +20)) 22 — 0 @sn — oo.

Claim 2: P maps bounded sets into bounded setSjn
Indeed, it is enough to show that for aqy> 0, there exists a positive constahsuch that for
eachz € B, = {z € () : ||z|l« < ¢} one has|P(z)||. < ¢. Letz € B,. Sincef is an
L'-Carathéodory function, we have for each [0, /]

t1
[(P2)]e < t1||n||+t1/ hg. (s)ds := 0,
0

where
12s + 23|l < ||Z:]| B + |2s]| B < Kpq + Kip||#(0)]] + My||@]| B := ..
Claim 3: P maps bounded sets into equicontinuous sefs,of
Letly,ly € [0,t1], 1 < I, and letB3, be a bounded set @f;, as in Claim 2. Let: € 3,. Then
for eacht € [0,t;] we have

1(P2)(1) — (P2 < | — baljn] + / 2 / s 2o )| dsdl

< |l = blln| + |la = L] he. || 22

We see thali (Pz)(l2) — (Pz)(l;)|| tends to zero independently ofc B,, asl; —[; — 0. As
a consequence of Claims 1 to 3, together with the Arzel4-Ascoli theorem, we can conclude that
P : Cy — (Y is continuous and completely continuous.
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Claim 4: There exist a priori bounds on solutions.
Let = be a possible solution of the equatior- A\P(z) andz, = \¢, for somel € (0,1). Then

B.7) =@l < talnf + /Ot 1/ (s, 25 + o) lds < tafn| + 1y /Otp(S)w(llzs + 25l B)ds.
But
1Zs + zalls - < |2l 5 + ll2sll 5
< K(t)sup{[[z(s)][ - 0 < s <t} + M (1) 2] 5
+K(8) sup{|[z(s)]| : 0 < s <t} + M(t)]|l2o] 5

< Kpsup{|z(s)]| : 0 < s <t} + My|9l 5 + KpM]|p(0)]]

If we nameuw(t) the right hand side of (38), then we have
125 + 25l B < w(?),

(3.8)

and thereforg (3]7) becomes

t
39) I < il + 6 [ plepwishds, te fo.n)
0
Using (3.9) in the definition ofv, we have that

w(t) < thb/O p(s)i(w(s))ds + ti[n| + Mol|]| 5 + Kbl 9(0)[], ¢ € [0,41].

Denoting byj(t) the right hand side of the last inequality we have
w(t) < B(t), tel0,t],
B(0) = taln| + My[|¢l| 5 + Kbllp(0)],
and
B(t) = tKyp(t)p(w(t))
< tKyp@)Y(B(t), te0,h]
This implies that for each e [0, ¢,]
A s h > ds
<t K / p(s)ds < :
/B(O) P(s) e 0 (s) e W(s)

Thus from (H1) there exists a constaflit. such thats(t) < K., t € [0,t], and hence
12 + 24|l p < w(t) < K., t €0,#]. From equation[(3]9) we have that

t1 "
[E2 g/ p(s)h(K,)ds :== K.
0
Set )
Up={2€Co:sup{fl2(t)| : 0 <t <t} < Ky + 1}

P : U, — C, is continuous and completely continuous. From the choicEypthere is no

z € 0U, such that: = AP(z), for some\ € (0,1). As a consequence of the nonlinear
alternative of Leray-Schauder type [12], we deduce thaias a fixed point in U,. HenceN
has a fixed poiny which is a solution to problen (3.4)—(3.5). Denote this solutionydy

Step 2: Consider now the problem,

AJMAA Vol. 4, No. 2, Art. 6, pp. 1-26, 2007 AIJMAA


http://ajmaa.org

8 JOHNNY HENDERSON ANDABDELGHANI OUAHAB

(3.10) y'(t) = /1t F(s,ys)ds + yo(tr) + Ti(yo(ty), a.e.t € (ty,to],
(3.11) y(t1) = wo(ty) + Li(yo(t1)), y(t) = wo(t), t € (—oo,ty].
Let

Cy ={y € C((t1,b], R™) : y(t]) exists.
SetC, = BN C([0,t],IR™) N C,. Consider the operatay¥, : C, — C., defined by:

bo(t), (=00, 1],
Ni(y)(t) = yo(tft) +5[1(y0(t1_)) + (t —t)[wo(t7) + Ti(yo(t))]
—|—/ f(u, Z, + x,)dsdu, te (t, b,

Letxz(-) : (—oo,ts] — IR™ be the function defined by
{ Yo(ty) + Li(yo(th)), if t e (t,ta],

yo(t)7 |f t e (—OO,tl].
Thenz,, = y,. For eache € C, with z;, = 0, we denote by the function defined by

Z(t), |ft€ [tl,tg],
(t) = :

0, if t € (—o0,ty].
If y(-) satisfies the integral equation,

x(t) =

u(t) = woltT) + Lwo(t)) + (¢ — ) (1) + Ta(wo(£7)) / / F(u, y)duds,

we can decompose it @$t) = z(t) + z(t),t, < t < t9, Which impliesy; = z; + z,, for every
t; <t < t,, and the function(-) satisfies

(3.12) 2(t) = (t — t)[yo(ty) + Li(yo(t))) / / f(u, Zy + zy)dsdu.

Set
Cy, ={z € C,:z2(t1) = 0}.
Let the operatof, : C;, — C,, be defined by,

0, t € (—oo,ty],
e { (¢ = t)[yo(tr) + Tr(yo(ty)) / / F 2t wu)dsdu, 1 € [t o).

As in Step 1 we can show th&} is continuous and completely continuous, andig a possible
solution of the equations = AP;(z) and z, = Ay, for some\ € (0, 1), there existg<,, > 0
such that
12][o < K-

Set

Uy ={z€Cy :sup{||z(t)]| : t1 <t <ty} < K,, +1}.
As a consequence of the nonlinear alternative of Leray-Schauder type [12], we deduée that
has a fixed point in U;. ThusN; has a fixed poiny which is an solution to problen (3./L0)—
(3.11). Denote this solution by .
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Step 3:We continue this process and taking into accountghat= y Is a solution to the
problem
t
(3.13) y'(t) = / f(s:ys)ds + Y1 (t) + L1 (y(t,))s ace. t € (tn, b,
tm
(3.14) Y(tm) = Ym-1(tp1) + In(Ym-1(t)), Y(t) = Ym-1(t), t € (=00, 1.

The solutiony of the problem[(1]1)F(1]4) is then defined by
(yo(t), ifte (—oo,t1],

y(t) _ Y1 (t), |f t e (tl, tg],

( Ym(t), L€ (tn, 0]
The proof is completey

We next introduce some additional conditions that lead to uniqueness of the solufion of (1.1)—-

@.4).
(A1) There exists € L'([0, 5], IR ) such that

1f(t,z) — f(t,7)|| < (t)||z —Z||p forallz, T € Bandt € J.
(A2) There existconstant8 < ¢, <1, 0 <d, <1, k=1,...,m,such that
I (y) — I(@)|| < crllz = 7|,  |Tx(y) — Ix(z)] < di]|z —7Z||, foreach z,7 € IR™.

Theorem 3.3. Assume that hypotheses (A1)-(A2) hold. Then the[I[VP (L.I)—(1.4) has a unique
solution.

Proof. The proof will given in several steps.

Step 1We prove that the problem (3.4)—(B.5) has unique solution. Then we prove only that
the operatorP defined in Theorer 3.2 has a unique fixed point. We shall showthata
contraction operator. Indeed, considet* € Cy,. Thus for eaclt € [0, ¢,],

(P2)(t) =tn +/0 /0 f(u, 2, + x,)duds.
Then,

1P()(E) - P()B)| < ALKwawu+%»—waz+amuww

IN

/iwwm—imw

0

< Aumnpr®—f@Ws

s€[0,t]

t
1~ ~ ~
< / L7)e e~ gup [12(s) — 2*(s)|ds
o T s€[0,t]
t 1~ =N
< / L0 ds|z — 2.
0 T
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t
1/ (eTl(S)>/
T Jo

1 ~
—e™Wds||z — 2¥|
-

IN

B*'
Thus
—TA * ]' *
e O P(2)(t) = P(z) ()| < —llz =2l

Therefore,
1

B. < =z — 2
-

1P(2) = P(z%)|

B

t~ ~
wherel(t) = / l(s)ds, l(t) = t1 Kpl(t) and|| - || 5, is the Bielecki-type norm on, defined
0

by
2]l 5. = max{||z(t)]le™" : t € [0, 1]}
As a consequence of the Banach fixed point theorem, we dedude ttest a unique fixed point
which is a solution tg (3]4)F(3.5). Denote this solutionggy
Step 2By analogies of Step 1 we can prove that the problem[3.[L0)4(3.11) has a unique solution.
We denote this solution by .
We continue this process and taking into accountghas the unique solution of the problem

(3.13){3.14). The solutiop of the problem[(T]1)F(1]4) is then defined by
(yo(t), ifte(—oo,t],

y(t) _ Y1 (t), |f t < (tl, tz],

\ ym(t), if t € (tm7b]-
Let z, y be a two solutions of the problefm (IL.1)—(1.4)£ I& (¢, tx1], £ = 0,...,m, then
z(t) =y(t). ft =t} k=1,...,m,then from (A2) we have
[ e(z(te)) — Le(y(te)| < culz(te) — y(te)]

and B B
[Te(z(tr) — Te(y(te))| < difo(te) — y(te)l-

(X)) =y <0, 2 (t0) — o' ()] <
and these inequalities imply thatt;) = y(¢}) anda/(¢)) = v/ (¢} ) Thus, there is a unique
solution of the probleni (T} 1)—(1.4j.

3.1. Global Existence and Uniqueness Resultin this subsection, we are concerned with an
application of a recent nonlinear alternative for contraction maps in Fréchet spaces, due to
Frigon and Granas [14], to the existence and uniqueness of a problem, with infinitely many
impulses and infinit delay. More precisely we consider the problem,

Then

(3.15) V(1) = f(t,y) ace. t € J, = [0,00)\{t1,ta, ...},
(3.16) y(th) —y(ty) = L(y(ty)), k=1,...,
(3.17) y(t5) — v () = Te(y(ty)), k=1,...,
(3.18) y(t) = o(t), t € (—o00,0], y'(0) =n,
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wheref : J, x B — R"™andl}, I, € C(R",R"), k=1,...,and0 =ty < t; < ... <1, <
.., lim t, = oo, y(tb = hlim+ y(ty + h) andy(t, ) = hlim y(t, — h) represent the right and
n—oo —0 —0—

left limits of y(¢) att = t,. For any functiorny defined on(—oc, o0) and anyt € [0, o), we
denote byy, the element of3 defined byy, () = y(t + 0), 6 € (—0,0].

As we know, investigation of many properties of solutions for a given equation, such as stability,
oscillation, needs its guarantee of global existence. Thus it is important and necessary to estab-
lish sufficient conditions for global existence of solutions for impulsive differential equations.
The global existence results for impulsive differential equations with different conditions were
studied by Cheng and Yan [10], Graef and Oualab [15], Gua [16, 17], Guo and Liu [18], Oua-
hab [28], Marincet al[27], Stamov and Stamova [33], Werig [34], Yan|[35] 36]. Very, recently
this alternative was applied by Araeaal [2] for controllability of functional semilinear differ-
ential equations, and by Graef and Ouahab [15] for functional impulsive differential equations
with variable times. In[[8] Benchohrat al, obtained some results on global existence of first
order impulsive functional differential equations with infinity delay and boundary conditions.
For more details on the following notions we refer [tol[14]. Létbe a Fréchet space with a
family of semi-norms{|| - ||.), » € IN}. LetY C X. We say that” is bounded if for every

n € IN, there exists\/,, > 0 such that

lyll. < M, forall y €Y.

To X, we associate a sequence of Banach spécEs, || - ||..)} as follows. For every. € IN,
we consider the equivalence relatiery defined byz ~,, y if and only if |z — y||, = 0 for
all z,y € X. We denoteX™ = (X/ ~,, | - |) the quotient space, the completionf with
respect to|| - ||,. To everyY C X, we associate a sequenfE”} of subsetsy™ C X" as
follows. For everyr € X, we denote byz|,, the equivalence class ofof subsetsX”, and we
defineY™ = {[z], : € Y'}. We denote by, int,(Y™) andd, Y™, respectively, the closure,
the interior and the boundary &f"* with respect tq| - ||, in X™. We assume that the family of
semi-normg{|| - ||, } verifies

)]s < |lz|l2 < ||lz]|s < ... foreveryz e X.

Definition 3.2. A function f : X — X is said to be a contraction if for eaeghe IN there exists
k. € (0,1) such that

1f(2) = F@)lln < knllz =yl forallz,y € X.

Theorem 3.4. (Nonlinear Alternative[14]). Let X be a Fréchet space and C X a closed
subset iny” and letN : Y — X be a contraction such thaV¥(Y") is bounded. Then one of the
following statements holds:

(C1) N has a unique fixed point;
(C2) there exists\ € [0,1), n € IN, andz € 9,Y" such that|z — AN (x)]],, = 0.
Definition 3.3. The mapf : [0,0) x B — IR™ is said to bel.!-Carathéodory if

(i) t — f(t,z) is measurable for eachec B;
(i) o — f(t,z) is continuous for almost atl € [0, o0);
(i) For eachq > 0, there exists,, € L'(]0, 00), IR, ) such that

| f(t,z)]| < hy(t) forall ||z||z < ¢ and foralmostallt € [0, c0).

In order to define the phase space and the solutiof of]|(3[15)}(3.18) we shall consider the
space
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PC, = {y : (—o0,00) — IR™ | y(ty ), y(t)) exist with y(tx) = y(t;,),

wherey; is the restriction ofy to J, = (tx, tx11], =0, ....

We will assume thaB satisfies the following axioms:

(A) If y: (—o00,00) — IR", andy, € B, then for everyt in [0, co) the following conditions
hold:

() y;isin B;
() [lyells < K(t) sup{ly(s)| : 0 < s <t} + M ()]l
(i) |y(t)] < Hllyells
whereH > 0 is a constantK : [0,00) — [0, 00) is continuousM : [0,00) — [0, 00)
is locally bounded andi, K, M are independent of(-).
(A-1) For the functiory(-) in (A), y; is a

B-valued continuous function df, co)\{#1, ... .. }.
(A-2) The space3 is complete.
Set
B, ={y:(—00,00) = IR":y € PC, N B}
we consider

Bk = {y € B* : SU}Z) |y(t)| < OO}: ‘]l: - (—OO,tk],
te,;*

let|| - ||, be the seminorm i, defined by
yllx = llwollz +sup{ly(t)] : 0 < s <y}, y € By
Let us start by defining what we mean by a solution of prob[em [3.A5)4(3.18).
Definition 3.4. A functiony € B,, is said to be a solution df (3.1L5)—(3]18)
if y satisfies|(3.15)£(3.18).
Theorem 3.5. Assume that:
(H2) There exist constantg,, d, > 0,k = 1,2, ..., such that for allz, = € IR",

[ x(2) = Le@)|| < dillz =], [Te(2) — Tu(@)|| < di|l — 7|, foreachk =1,..;
(H3) For all R > 0 there exisiy € L},.([0,), IR ) such that

loc

Lt x) = D) < UH)le — 7|8,

for eacht € [0,00), and allz,Z € B with ||z||, ||| < R; fora.e.t € [0, coJ,.;
(H4) There exist a continuous non-decreasing function0, o) — (0, 00),
p € L'([0,00),IR,) such that

178wl < p(t)(l[ullz) foreach(t, u) € [0,00) x B,

00 ©  du
Kk/o p(t)dt< ; m,

where
Kp=sup{|K(t)|: t €[0,t]}, k=1,...,.

If > "di <1, dy < oo, then the initial value problen’v (3.5)—(3/18) has unique solution.

k=1 k=1
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Proof. We consider the problem,

(3.19) (1) —77+/ f(s,ys)ds + Z Ii(y(ty) ae. t € J, == [0,00)\{t1, 12, ...},

O<tp<t
(3.20) y(tr) —ylty) = Lly(ty)), k=1,...,
(3.21) y(t) = o(t), t € (—o0,0].
X

Remark 3.1. We can easily prove thatifis a solution of the problem (3.19)—(3]21) if and only
if y is a solution of[(3.15)+(3.18).

Transform the problenj (3.19)—(3]21) into a fixed point problem. Consider the opéfator
B, — B, defined by,

(b(t)? te (_0070]7

N(y)(t): ¢(0)+t77+/0 /0 f(uva)df
+ 3 Ily(t) + (= t)Tu(y(t;)], te[0,00).

Letz(-) : (—oo,00) — IR™ be the function defined by
#(0), if ¢te]0,00),
() =19 4(0)+ D Ielw(te) + (= t)Tu(x(t;))), i € (—o00,0].

Thenz, = ¢(0). For eachz € C([0,00),IR") with z(0) = 0, we denote by the function

defined by
{ 2(t), if ¢ €0, 00),
Z(t) =
0, if t € (—o0,0].
If y(-) satisfies the integral equation,
y(t) = 0(0) + 57 [ly(ty)) + (¢ — t)Tily / / F(usya)duds,

O<tp<t

we can decomposg-) asy(t) = z(t) +x(t),0 < t < oo, which impliesy; = z; + x, for every
0 <t < oo, and the functiorx(-) satisfies

z(t) = t77—|—//fuzu+xududs

(3.22) _ B
(Z(tg) +a(ty)) + (¢ = ti) Te(2(t; ) + (t;))).

0<tk<t
Let
BF = {z L (—oo,t] — R™ | 2(7), 2(tF) exist with z(t;) = 2(t7),

2 € C(Ji, R, i=1,... .k —1, andz, = 0}.
For anyz € B* we have
121l = llz0ll B + sup{l|lz(s)]| : 0 < s <t} = sup{]|z(s)[ : 0 < s < tx}.

AJMAA Vol. 4, No. 2, Art. 6, pp. 1-26, 2007 AJMAA


http://ajmaa.org

14 JOHNNY HENDERSON ANDABDELGHANI OUAHAB

Thus(B*, || - ||x) is a Banach space. Set
Co=1{z€ B, :z =0}

C\ is a Fréchet space with a family of semi-norins||;. Let the operato®® : Cy — C, be
defined by

t € (—o0,0],

(P2)(1) = tn+//fuzu+xududs
Te(2(t,) +2(t) + (= ) In(2(t) + 2(t)], - t€[0,00).

0<tk <t

Obviously, that thegperatd_v has a fixed point is equivalent 1@ has a fixed point, and so we
turn to proving thatP has a fixed point. We shall use the alternative to prove khhas fixed
point. B

Let z be a possible solutions of the problems= ~P(z) for some0 < v < 1. This implies by
(H4) that for eacht € [0, ¢;] we have

= tn+/ / f(u, Z,+x,)duds+ Z [Ip(z ))+(t—tk).7k(2(t,;)+x(t,;))].}.

O<trp<t

As in Theoren] 32 we can show that there exisfs > 0 such that||z||, < ;. Now if
te (tl,tg], then

)= i+ /O /0 Pl 7+ mduds + L((7) + (7)) + (6~ T () + (7))
Note that
L(z(t7) +2(t) + (¢ —t) L (z(t)) +2(t)| < sup  [[Li(2)| + (t, — t) 1 (2)] == M,

LBGB(O,Ml)
where
B(0,M,) = {x € R": |z|| < 3}

Hence

t

=0l < M+ I+t / p(s)0([17s + 2. ]l5)ds

t1

where

125 + zs|lp < Ko sup ||z(s)[| + Ky sup [[2(s)| + Mal[xol|p := h(t)
s€[0,t] s€[0,t]

h(t,) = Ky sup ||z(s)| + K2 sup ||z(s)|| + Ma||zo||5- By the previous inequality we have
SE[0,t4] SE[0,t«]
fort € [0, 5]

t
h(t) < K2t2/ p(8)(h(s))ds + Ka[My + (t — t1) M] + K> sup [z (s)]l + Mol -
0 S O,t*
Let us take the right-hand side of the above inequality(as Then we have
v(0) = Ka[My + (t2 — t)) M| + Kz sup [lo(s)[| + Mal|zo| 5

S€E[0,t4]
and
V'(t) = Katap(t)y(h(t)), a.et € 0,ts).
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Using the increasing characterpfwe get
V'(t) < Katop(t)w(h(t)) a.e. t € [0,ts].
Then for eacht € [0, 5] we have

/h(t) du S) ( )d
— < Kot / p(s)ds < +oo0.
w0y Y(u) 2 Js

Consequently, byH4), there exists a constanf, such that:(t) < M,, t € [0, t,], and hence
||Z||2 S M*/K2 = MQ.

We continue this process and also take into accounttadty, tx.1], k > 2.
Then

2(t) zq[tn+/t /tsf(u,zu+xu)duds+ Z [Ln(2(t;) +a(ty)+ (t—te) In(2(t,) +(t;)) |-

We obtain that there exists a constant ., such that
sup{|[z(t)[| : ¢ € [0, tys]} < M.

Y ={z€Cy:sup{|lz(t)]| : 0<t <t} < M+ 1forallk e=1,2,...}.

Clearly,Y is a closed subset @f,. We shall show thaP : Y — B is a contraction maps.
Indeed, considet, z* € Y. Then we have for eache [0, ;] andk € {1,2,...,}

PEO-PEON < [ 107+ 2) ~ 165,74 2l
SOIGEE) +2(0) — L (5) + ()]

3 (- ) + (b)) — L) + ()]

< /O l(S)HEs—ZZ“HBd8+ZdiHZ(tZ)—z*(tZ)H
+ ) (= t)dillz(t) — 2 (87|

0<tp<t

< / 1)K sup [a(s) = = (5)ds + 3 dil=(t7) = =" (&)

s€[0,t]

+ Y (= tw)dillz(t) — 2 ()

<t <t

¢
1~ - -
< / —L(s)e™ & e ™) sup ||z(s) — 2*(s) | ds
0

T s€[0,t]

i=k
+ 3 deTO O sup [2(s) - 2*(s)]
i=1 sE[O,tk]
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+ Z t —ty,)dpe” L(ts) g=rLits) sup |[|z(s) — 2"(s)||.

0<t) <t 5€[0,tx]

Since(t — s) < el for 0 < s < ¢, we find(t — s)e® < e'. Assume that is sufficient large

t—s—/d§</ €)de = L(t) — L(s).

-~

7(t —s) < 7L(t) — TL(s).

Then

This implies that

Z Z i o €V
7(t — 5)e™®) < e — (t — 5)e™H) <

-
t

whereL(t):/ l.(s)ds and
0

l.(t) = max(1, Kil(t)).
Thus

i=k Zal

=1

v
TTHOIP)() - PO < —+Zd + = [z = "]l

OB () - PO <

Therefore,

i=h
i=k Z d;

1 -
B < ;+;di+“7 2 — 2l g,

1P(z) = P(2)

where|| - || g+ is the Bielecki-type norm orfs*
defined by

2]l s = max{[|z(t) e 2O : ¢ € 0, 4]}

From the choice ol” there is noz € 9Y™ such that: = AP(z) for someX € (0,1). As a
consequence of the nonlinear alternative type [12] we deducePtihais a unique fixed point

which is a solution to[ (3.15)F(3.118).

4. NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

This section is devoted to the existence of solutions for second order neutral functional differ-
ential equations with impulses and infinite delay (1[5){(1.8). Much of the notation and spaces,
etc., that appear in this section have been defined in previous sections.

Theorem4.1.Letf, g : J x B — IR" be L!-Carathéodory functions and assume the following
condition is satisfied:
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(B1) There exist a continuous nondecreasing function [0,00) — (0,00) andp €
L'(J,IR;) such that

L7 o) < p(@)v(llells), gt )]l < p(t)¢ (x| z)for a.e. ¢ € [0,0] and each: € B

with
* dx

o U(x)

ty
(140K [ ployds <
0
Then the IVP[(1]5)-(1]8) has at least one solution.

Proof. The proof will be given in several steps.
Step 1: Consider the problem,

(4.1) y'(t)—gt,y) =n +/0 f(s,ys)ds, a.e. t € [0,t4],

(4.2) y(t) = o(t), t € (—o0,0].
Consider the operatay* : BN C([0,t],IR") — BN C([0,t], IR™) defined by,
o(t), it ¢ € (—o0,0],

N* _ t t s
(y)(¢) 6(0) + tn +/0 (s, ys)ds +/O /0 f(u, y,)duds, if t €[0,4].

In analogy to Theorein 3.2, we consider the oper&tor C, — C,, defined by

{ 0 t € (—o0,0],
(Fr2)®) = st aydst [+ e)dud 0
tn+/0 9(s,Zs + x5) s+/0 /0 flu, Z, + x,)duds, t € [0,t].

In order to use the Leray-Schauder alternative, we shall obtain a priori estimates for the solutions
of the integral equation

z(t) = A [tn —|—/0 g(s,zZs + x4)ds —l—/o /Os flu, z, + xu)duds} :

wherez, = \¢ for somel € (0,1). Then

Iz < tl!lan/Op(S)w(HEer%HB)dSJr/O p(s)P(l|2s + sl 5)ds

< t1!|n|\+(1+t1)/0p(S)w(H?erfvsHB)dS-

Leta = M,||9|| 5 + Kb||#(0)|| + M| 6| 5. We have

|2 + x4lls < K, s?p} |2(s)|| + o == w(t)
s€(0,t

and .
=01 < tllall + (1 +2) [ pleyiu(s))as.
But ,
w(t) < Kytq||n|| + o+ (1 + tl)Kb/O p(s)(w(s))ds.
Taking the right hand side &Xt) we have
w(t) < B(t), tel0,t],
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B(0) := ¢ = Kyta|n]l,
B(t) = (L+ ) Kpp(t)h(w(t)) < (1+ t) Kep(t)p(B(1)), ¢ €0, 4],

and

O s b > ds
- 1 K d .
§@m¢@>§(+“)bop“)“<c o)

Therefore, there exists a constdnt such that(t) < K., t € [0,t,], and hencé{z; + z;||p <
w(t) < Ky, t €10,], and

wasmmw+a+mﬁkuﬁm@wmwa:m.

Set
Uy ={z€Cy:sup{|z(t)|| :0<t <t} < Ko+ 1}.
From the choice ot/;, there is na: € 90U, such that: = \P*(z), for some\ € (0,1). As a
consequence of the nonlinear alternative of Leray-Schauderltype [12], we dedufé kzet a
fixed pointz in Uy. ThenN* has a fixed poing, which is a solution to problen (4.1)—(4.2).
Step 2: Consider now the problem,

(4.3) y'(t) —g(t,y) = /t f(s,ys)ds + yo(ty) + Li(yo(ty), a.et € (t1,ta],
(4.4) y(t1) = yo(ty) + Li(yo(tr)), y(t) = wo(t), t € (—o0,ty].
Let Ny : C. — C., be defined by
yo(t), t € (—o0,ty],
Ni(y)(t) = yo(?ﬁ )+ Li(yo(ty)) + (= t)[wh(tr) + Ta(yo(t))]

/ 9(8,Ys ds+/ / f(u, yy)duds, t € (t1,ts).
t1

In analogy to Theorem 3.5, we consider the oper&or C,, — C, defined by

(Piz)(t) = (t—t1) [n+yo(ty) + Li(yo(t))]
+/t g(s,Zs —i—xs)dS-I—/t /t f(u,Zy + z,)duds,

and there existd/ > 0 such that, ifz is a possible solutions of the integral equation

(1) =/%ﬁ—h)h+%@0+1@dﬁm

t t s
—l—/ 9(s,Zs + xs)ds + / / flu,z, + xu)duds} ,
t1 t1 Jit1

wherez, = Ay, for some\ € (0, 1), we have
2]l < M.
Set o
Uy ={z¢€Cy sup{||z(t)]| : t1 <t <t} < M+ 1}.
From the choice ot/;, there is na: € 90U, such that: = AP (z), for some\ € (0,1). As a

consequence of the nonlinear alternative of Leray-Schauderitype [12], we dedufg Heet a
fixed pointz in U;. Then the problen] (413)-(4.4) has at least one solution. Denote this solution
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by y;.
Step 3:We continue this process and taking into accountghat= y " is a solution to the
tm,b

ms

problem

45 () —glt,y) = /t F(5,ys)ds + yp 1 (t) + T (Ym-1(t,), a-e.t € (tm, ],

(46) y(tjr_z) = ym—l(t’;z—l) + Im(ym—l(tm))7 y(t) = ym—l(t)t € [_007 tl]
The solutiony of the problem[(15)F(1]8) is then defined by
( yl(t), |f t e (—OO,tl],

y(t) _ yg(t), |f t e (tl, tg],

L (1), ift € (tm, D).
The proof is completey
In this second part of Sectigr} 4, the Banach fixed point theorem for principal contraction

maps is used to investigate the existence and uniqueness of second order impulsive neutral
functional differential equations with infinite deldy ([L.5)-(1.8).

Theorem 4.2. Assume A1), (A2) and the condition:
(B*1) There exists a functiohe L'([0, 5], IR,.) such that

lg(t,w) =gt @ < UB)[[u — Tl t € [0,0].
are satisfied. Then the IVP (1.5)-(L.8) has unique solution.
Proof. Exactly the same ideas in Theorgm|3.3 establish the rasult.

4.1. Global Existence and Uniqueness Resultln this subsection, we present an existence
and uniqueness result for second order neutral impulsive functional differential equations with
infinite delay. More precisely we consider the problem,

(@) SO — gt = F(t.), £ € 0,00), 1 £ b, k=1,
(4.8) y(t) —y(te) = Lly(te), t=1ty, k=1,...,

(4.9) y(t5) =y () = L(yte), t=te, k=1,...,
(4.10) Yo = ¢ € B, y'(0) =n.

where I;,, T, B are as in problenj (1.1)-(1.4), arfdg : 7 x B — IR™ are given functions.

Theorem 4.3. Assume thatH2), (H3) and the following conditions are satisfied:
(M1) For all R > 0 there existsr € L. .([0,00), IR, ) such that

loc

lg(t,u) = gt )| < lr(®)llu =5, € [0,00), |Jull < R, [[u]] < R.
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(M2) There exist a continuous nondecreasing function [0,00) — (0,00) andp €
L'(J,R,) such that, for each € B,
1F (& 2)l < p@)v(llzlls), gt o)l < p(t)¢(]|lx] ) fora.e. t € [0, 00),

with
*® dz

o U(x)

ti
(1+ tk)Kb/ p(s)ds <
0
Then the IVP[(4]7)-(4.10) has unique solution.

Proof. Essentially the same reasoning as in Thedrein 3.5 can be used to establish the uniqueness
result for problem[(4]7)-(4.10).

5. HIGHER ORDER IMPULSIVE FDIs
Let us start by defining what we mean by a solution of prob@ (1.9)4(1n12).

Definition 5.1. A functiony € By, k = 0, = 1,. — 1, is said to be a solution
of (1.9){1.12) ify satisfies the equatlmn t = f (t yt) ae. onJ bt k=1,...m,
and the conditiong® (t) — y(t;) = Lii(y ()) t=ty, k=1,....m, i=1,2.. n—l

yD0)=y,i=1,...,n—1.

Theorem 5.1. Assume thaf is L'-Carathédory and (H1) holds. Then the IfP (1.9)—(1.12) has
at least one solution of+oo, b].

Proof. The proof will be given in several steps.
Step 1 Consider the problem,

(5.1) (1) = Zyﬁ v %f(s,ys)d& aet€[0,h)
(5.2) y(t) = 6(t), t € (—o0,0]

Transform the problen (5.1]—(5.2) into a fixed point problem. Consider the opé&fatds N
C([0,t1], R") — BN C(]0,t], R™) defined by,

(1), t € (—o0,0]
Gy)(t) = N
) + Zyz S / / NCED)N f(u, yy,)duds, € [0, 00).
In analogy to Theorer@ 2, we consider the oper&torCy — () defined by
t € (—o0,0],

(P2)(t) = Z% - // 371__“2 Flu, 70+ z)duds € (0,4,

Asin Theoren@z we can prove th@t is completely continuous and there exigfs> 0 such
that for every solution of the problem= \P,(z) for some\ € (0,1),we have||z|. < M.
Then by a nonlinear alternative of Leray-Schauder typé [12], we deduce’thzs a fixed
point z in Uy. ThenG has a fixed poing, which is a solution to problen (5.1}—(5.2).

Step 2: Consider now the following problem,

n—1

6:3) v/(0) = L' 0) + bt + [ s, e € [t
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(5.4) y(t) = yo(t), t € (=00, t4].
Let
Cy = {y € C((ts, ), R™) : yD(¢]) existi = 1,...n — 1}.

SetC, = BNC([0,#], R")NC. Transform the problen’[@.BA) into a fixed point problem.
Consider the operator

) e (moo,t],
Gi(y)(t) = i:1[?/0 (t7) + Lui(yo(t7))] =
[ S s, e

Set
Cy, ={z€Cy: 2z, =0}
Let the operato?’,, : C;, — C}, defined by:

( 0’ te (_Oo7tl]a
n—1 o ) (t _ tl)i—l
(Poo)(t) = { 2 w§(17) + La(yo(t ))]W
/ / (n— 2 fu, z, + x,)duds, t € [t1,ts].

As in Theorenj 32 we can show that, is continuous and completely continuous, andis a
possible solution of the equations= AP..(z) and z, = \yo, for some\ € (0, 1), there exists
K,, > 0 such that

[2]lo0 < Ky
Set
Uy ={z€Cy :sup{|lz(t)]| : t1 <t <o} < K., + 1}.

As a consequence of the nonlinear alternative of Leray-Schauder tyipe [12], we dedugg that
has a fixed point in U;. ThusG, has a fixed poiny which is an solution to problen (3.3)-
(5.4). Denote this solution by, .

Step 3:We continue this process and taking into account ghat= y)[ ] is a solution to the
tom,b
problem, for a.et € (t,,, ],

[y

5 0 =20 + s G+ [ GG
(56) y(t) = ymfl(t)a te (_Oovtmfl]'

The solutiony of the problem[(1]9)F(1.12) is then defined by
( yo(t), |f t e (—OO,tl],

y(t) _ Y1 (t), |f t e (tl, tQ],

L ym(t), iftE (t,b].
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In this next part, we give sufficient conditions for local existence and uniqueness of
solutions of the problen (1.9]—(1]12).

Theorem 5.2. Assume (Al), and the condition:
(A*1) There existaconstant8 < ¢;; <1, k=1,...,m, i =1,...,n — 1, such that
1 1e:i(y) — Iii(2)]| < cxsly — x|, foreach y,z € IR
are satisfied. Then the IVP (1.9)-(1]12) has a unique solution.
Proof. For the prove see Theor¢m[3.3.

5.1. Global Existence and Uniqueness Resultin this subsection, we present an existence
and uniqueness result for higher order impulsive functional differential equations with infinite
delay. More precisely, we consider the problem,

(5.7) Y = flt), tE[0,00), t £ b k=1,...

(5.10) Yo =¢ € B,

where I ;, f are as in problenj (1.9)-(1.12), apd J x B — IR™ is a given functiona

Theorem 5.3. Assume:

(H*2) There exist constant§,; >0, k=1,...,7=1,...,such that, for alk,z € IR",
[ 1i(2) — Iri(@)]| < diillz — 7|, foreach z,y € R”

(H*3) Forall R > 0there existr € L} ([0, 00), IR, ) such that

loc

1f(tz) = T < L)z — 75,

for eachz, 7 € B with ||z]], ||Z|| < R; fora.e.t € [0, 00);
(H*4) There exist a continuous non-decreasing function0, oo) — (0, o0),
p € L([0,00), IR ) such that

178wl < p(t)(l[ullz) foreach(t,u) € [0,00) x B,

Tdu
0 @D(U)_ 7

where
Ky =sup{|K(t)|: t€[0,tx]}, k=1,....

If de <1, and Zd,m <1, i=23,..., then the initial value proble.? -(5.10) has

k=1 ] k=1
unique solution.

Proof. By analogies of Theorefn 3.5, it can be shown that problenj ($.7)4(5.10) has unique
solution. The details are left to the readgr.
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6. EXAMPLE

In this, section we give an example to illustrate our main results.

6.1) J (1) = % ae.teJ=0,00]\{1,2,..},
(6.2) y(td) —y(ty) = bey(ty), k=1,...,

(6.3) y(t5) —y'(ty) = bey(ty), k=1,....m,

(6.4) y(t) = o(t), t € (—o0,0].

LetD = {1y : (—00,0] — IR™ | ¢ is continuous everywhere except for a countable number
of pointst at which ¢ (¢7) andy(t") exist, () = ¥(t)}, by andby, k = 1,..., are real
sequences. Let be a positive real constant and

By ={yeDNPC.: lim ey(6), existsin IR'}.

The norm ofB, is given by

lyll, = sup_e”[ly(@)].
—00<6<0
Lety : (—oo,00) — IR™ such that, € B,.
Then
elijgo e0y(0) = eh—{go oyt +0) = et gli_)rgo ey (e gli_)rgo e"%y0(0) < .
Hencey, € B,.

Finally we prove that
el < K@) sup{ [y (s)[| : 0 < 5 <} + M(#)]|woll5,

whereK =M =1, H =1, and

[y () = lly(t + 6)]|-
If 6+t <0, we get

[9:(0)]| < sup{lly(s)|| : —oo < s <0}
Yet, fort + 6 > 0, we have
[y:(O)]] < sup{[ly(s)]| : 0 <s <t}
Thus for allt + 6 € IR, we get
[y (O)[| < sup{[|y(s)[| : —o0 <'s <O} +sup{[ly(s)] : 0 <'s <t}

Then
[yelly < llyolly +sup{lly(s)]] - 0 < s <t}
Finally, we prove that
[y < H[yl,-
Lety € B,, then

Lyl = °®lly@)]] < sup{lley(t +0)] : 6 € (—o00,0]}.

Hence,
Iy < [ly:lls, -
Then,(B,, | - ||) is a Banach space. We can conclude tBats a phase space.
- e lull 5.,
With f(t,u) = M’ (t,u) € [0,00) x B,
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wherey(z) = 1+ z andp(t) =

and

1F ()]l =

JOHNNY HENDERSON ANDABDELGHANI OUAHAB

1t w)ll < p(t)d(lulls,),

et
EDEDE

e ulls,
(t+1)(t+2)

= OO dt * dx

< p®)le M lullz, + 1] = [t w)] < p®)[lluls, + 1],

Letz,y € B,, then we have

1t z) = fE )l =

e 1
— — <— |z -— :

Hence the condition$H2) and (H3) of Theore are satisfied. Assume t@: by <

1, and Z by, < co. Then by Theore5 the proble@G 6 4) has a unigue solution.
k=1
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