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2 D. CANDELORO, A. CROITORU, A. GAVRILUŢ AND A. R. SAMBUCINI

1. I NTRODUCTION

Non-additive measures are an important field of research in measure theory. Due to its appli-
cations in economics, statistics, human decision making and medicine, the field of non-additive
measures and of fuzzy measures has been intensively studied in the last years, while the the-
ory of monotonicity is used in statistics, mathematical economy, game theory, probability and
artificial intelligence (see for example [16, 29, 35, 39, 10]). In [36] Pap has recently studied
multivalued integration, examining in particular the Gould integrability for multifunctions and
multisubmeasures. The present research could be connected to his paper as a continuation.
Concerning with the theory of integration, the existence of a Radon-Nikodým derivative is an
important tool. In fact it provides conditions for the existence of a certain integral represen-
tation of measures. The Radon-Nikodým theorem is used, for example, for converting actual
probabilities into those of the risk neutral probabilities. Moreover it was approached by many
authors in several different settings (e.g. [32, 30, 27, 28, 25]). In particular, in [12] an outline
of the previous results is presented, together with quotations of the papers in this topic which
have appeared since the late 60’s. Similar problems were studied afterwards, e.g. in [33, 38]
as an extension of [24, 34], later in [4, 5], and also recently deeply examined in [14, 18] both
in the countably and the finitely additive case using different notions of integrals. Here we will
undertake a similar investigation and we will consider fuzzy multisubmeasures defined on an
algebra and taking compact and convex values in an arbitrary Banach spaceX.
In this paper essentially a Radon-Nikodým theorem is established, in order to represent a set-
valued additive measure as the Gould type integral of a suitable real-valued function with re-
spect to a fixed fuzzy multisubmeasure. We point out that this result is new also in the finite-
dimensional case since additivity is requested only for one of the set valued measures involved.
The paper is organized as follows: in Section 2 some basic notions and results are given, while
in section 3 some results and examples regarding Gould type integrability relative to a not nec-
essarily additive measuremare obtained (see also [7, 36]). The target space form is the Banach
lattice of all real-valued continuous functions defined in a compact, Stonian spaceΩ (the space
C(Ω)). This is due to the fact that Banach lattices are often good models for applications, and
also for studying set-valued measures or functions. In effect, thanks to the Rådström embedding
Theorem, many important hyperspaces can be embedded inC(Ω) (for example the family of
compact and convex subsets of a Banach spaceX, while for an exhaustive list of such hyper-
spaces see e.g. [31] and, for various applications in Banach lattices, [1, 40, 41, 8, 9, 13]). In
section 4 a Radon-Nikodým type theorem will be obtained (Theorem 4.12) using the set-valued
integral defined in [37, 36]. According to this result, a multimeasureΓ can be expressed as
a Gould type set-valued integral of a functionf with respect to a fuzzy multisubmeasureM,
that is:Γ(E) =

∫
E f dM, for everyE ∈A , under a suitable exhaustion condition and the strong

absolute continuity ofΓ with respect toM. In this case, the construction of the Radon-Nikodým
derivative makes use of the mentioned notion of exhaustion, introduced by Maynard [34] in
the scalar case and extended by other authors to the vector-valued case: [24, 33, 38]. As an
application of the Theorem 4.12 an integration by substitution theorem is obtained for fuzzy
multimeasures.

2. BASIC FACTS AND DEFINITIONS

Unless stated otherwise, throughout this paperT is an abstract nonvoid set,P(T) the family
of all subsets ofT, A an algebra of subsets ofT andµ : A → [0,+∞) an arbitrary set function,
with µ( /0) = 0. A partition of T is a finite family of nonvoid setsP = {Ai}n

i=1 ⊂ A such that
Ai ∩A j = /0, i 6= j, and

⋃n
i=1Ai = T. Let P = {Ai}n

i=1 andP′ = {B j}q
j=1 be two partitions of

T. The partitionP′ is said to befiner than P, denoted byP≤ P′ (or, P′ ≥ P), if for every
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A MULTIVALUED VERSION OF THE RADON-NIKODÝM THEOREM 3

j ∈ {1, . . . ,q}, there existsi j ∈ {1, . . . ,n} so thatB j ⊆ Ai j . The common refinementof two
partitionsP = {Ai}n

i=1 andP′ = {B j}q
j=1 is the partitionP∨P′ = {Ai ∩B j}i∈{1,...,n}, j∈{1,...,q}.

Obviously,P∨P′ ≥ P andP∨P′ ≥ P′. The class of all partitions ofT will be denoted byP,
and if A∈ A is fixed,PA denotes the class of all partitions ofA. Given µ, we will consider
µ,µ∗ : P(T)→ [0,+∞], the variation, semivariationof µ respectively and̃µ : P(T)→ [0,+∞],
given by µ̃(E) = inf{µ(A);E ⊆ A,A∈ A }. For the properties of variation, semivariation and
µ̃ see for example [17].
Let (X,‖·‖) be a Banach space,BX its unit ball; the symbolmwill be used for vector-valued set
functions. For a vector measurem : A → X, its semivariationm∗ : P(T)→ [0,+∞] is defined
by: m∗(E) = sup{‖m(A)‖;A ∈ A ,A⊆ E}. In an analogous way we can define thevariation
m := ‖m‖. Thus, ifA∈A , then‖m(A)‖ ≤m(A), which implies thatm∗(E)≤m(E), for every
E ∈ P(T).
Let ck(X) be the family of all nonempty compact and convex subsets of a real Banach space
(X,‖ · ‖). By the symbol+ the Minkowski addition will be indicated. Leth be the Hausdorff
metric onck(X). It is well-known that(ck(X),h) is a complete metric space (see for example
[15, Theorem II-14]). Finally, for any bounded setA, |A|h denotes the distanceh(A,{0}), where
0 is the origin ofX. With the symbolM we denote a set function with values inck(X). Now,
several notions are recalled for further use.

Definition 2.1. ([24], [32, Definition 3.2]) Letµ : A → [0,∞] be finitely additive.

2.1.a): A finite or countable family of pairwise disjoint sets(Ei)i∈I ⊂ A will be called
a µ- exhaustionof E ∈ A if µ(Ei) > 0 for every i ∈ I and for eachε > 0, there is

n0(ε) = n0 ∈ N such thatµ(E\
n0⋃

i=1
Ei) < ε.

2.1.b): A set propertyP is said to beµ-exhaustiveonE∈A if there exists aµ-exhaustion
(Ei)i of E, such that everyEi hasP.

2.1.c): A set propertyP is calledµ-null differenceif wheneverA,B∈A with µ(A) > 0
andµ(B) > 0, from µ(A4B) = 0, it follows that eitherA andB both haveP or neither
does.

2.1.d): A propertyP about the points ofT holdsµ̃-almost everywhere(denoted µ̃-a.e.)
if there existsA∈ P(T) so thatµ̃(A) = 0 andP holds onT\A.

For an arbitrary real functionf : T → R, the symbolσm( f ,P) (or, if there is no doubt,σ( f ,P),
σm(P) or σ(P)) denotes the sum∑n

i=1 f (ti)m(Ai), for every partition ofT, P = {Ai}n
i=1 and

everyti ∈Ai , i ∈ {1, . . . ,n}. With the same meaning we defineσM( f ,P), for non-negativef and
ck(X)-valuedM.

3. GOULD INTEGRAL

We now introduce the definition of Gould integrability. The Gould integral was defined
in [22] for real functions with respect to a finitely additive vector measure taking values in a
Banach space. Different generalizations and topics were introduced and studied in [17, 19, 20,
37, 7, 36].
Moreover, since we want to study and consider mainly the multivalued case (i.e. set functions
taking values in some space of bounded convex sets) we focus our attention on the Banach space
(C(Ω),‖ · ‖∞). This is due to the fact that, thanks to the Rådström Embedding Theorem, many
important hyperspaces can be embedded inC(Ω) (for a list of such hyperspaces see e.g. [31]).
We remember moreover thatC(Ω) is also a Banach lattice in which the symbol| · | denotes the
modulus. So, rather than considering a general Banach space(X,‖ · ‖), or a Banach lattice,
from now on we restrict ourselves toC(Ω) and to mappingsm : A →C(Ω), with Ω compact,

AJMAA, Vol. 15, No. 2, Art. 9, pp. 1-16, 2018 AJMAA

http://ajmaa.org
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Hausdorff and we can give the notion of subadditivity forC(Ω)-valued set functions in the usual
way: m( /0) = 0 andm(A∪B)≤m(A)+m(B) holds, whenA,B∈A , A∩B = /0

Definition 3.1. A real function f : T → R is said to be

3.1.a) (Gould) m integrable on Tif the net(σ(P))P∈(P,≤) is convergent inC(Ω), whereP
is ordered by the relation≤. If (σ(P))P∈(P,≤) is convergent, then its limit is calledthe
Gould integral of f on T with respect to m, denoted by(G)

∫
T f dm(shortly

∫
T f dm).

3.1.b) m integrable on B∈A if the restrictionf |B of f to B is m integrable on(B,AB,mB).

Remark 3.1. Thus f is m integrable onT if and only if there existsg∈C(Ω) such that for every
ε > 0, there exists a partitionPε of T, so that for every other partition ofT, P = {Ai}n

i=1, with
P≥ Pε and every choice of pointsti ∈ Ai , i ∈ {1, . . . ,n}, one has‖σ(P)−g‖∞ < ε. Moreover
if f1, f2 are m integrable andα is any real constant, thenα f1 is m integrable, f1 + f2 is m
integrable, and the integral is linear.

Proposition 3.1. Let f : T → R be any Gould integrable mapping with respect to m. Then, if A
is any fixed element ofA , the mapping f1A is integrable too.

Proof. GivenPA, it is not difficult to prove that the sums{σ( f ,P) : P∈PA} satisfy a Cauchy
principle inC(Ω); since this space is complete with respect to its norm, the assertion follows.

Example 3.1.Some examples of Gould integrable functions with respect tom are given here:

3.1.a) LetT be a finite set,A = P(T), m : A →C(Ω) and f : T → R be arbitrary. Thenf is
Gouldm integrable and

∫
T f dm= ∑

t∈T
f (t)m({t}).

3.1.b) If m : A →C(Ω) is finitely additive andf : T → R is simple, f = ∑n
i=1ai1Ai , then f is

Gouldm integrable and
∫

T f dm= ∑n
i=1aim(Ai).

Moreover the previous example 3.1.b) can be improved as follows.

Proposition 3.2.LetA be aσ -algebra, and m: A →C(Ω) be finitely additive, and assume that
(An)n∈N is a countable family of pairwise disjoint elements ofA , such thatlimnm(∪ j>nA j) =
0. Then, the function f: T → R defined as f= ∑ncn1An is Gould integrable as soon as the
sequence(cn)n is bounded inR; in this case,

∫
T f dm= ∑ncnm(An).

Proof. Under these assumptions, it is clear that the real-valued series∑n |cn|m(An) is conver-
gent, hence the series∑ncnm(An) is convergent inC(Ω). We will show that f is integrable
and its integral coincides with∑ncnm(An). Define nowS :=

⋃
nAn, and fix ε > 0. Then

there existsN ∈ N such thatm(∪ j>NA j) < ε. Therefore∑ j>N |c j |m(A j) ≤ Kε whereK is
any bound for|cn|, n∈ N. Now setF :=

⋃
j≤N A j , and choose any partitionP of T, finer than

{F,S\F,T \S}. SettingP = {(Bi , ti), i = 1..,k}, one then hasσ( f ,P) := ∑k
i=1 f (ti)m(Bi) =

∑i∈I1 f (ti)m(Bi)+∑i∈I2 f (ti)m(Bi), whereI1 = {i : Bi ⊂ F}, I2 = {i : Bi ⊂ S\F}.
Of course∑i∈I1 f (ti)m(Bi) = ∑N

j=1c jm(A j) and‖∑i∈I2 f (ti)m(Bi)‖∞ ≤ Km(∪ j>NA j))≤ Kε.

So,‖σ( f ,P)−∑ncnm(An)‖∞ ≤‖∑i∈I2 c jm(A j)‖∞ +∑ j>N |c j |m(A j)≤ 2Kε. This concludes the
proof.

For more general functions, proceeding as in the proof of [6, theorem 1.4] and [11, Proposi-
tion 6], one can deduce the following proposition and the subsequent corollary. In this situation
the absolute value replaces the norm ofC(Ω) andu denotes an order unit.

AJMAA, Vol. 15, No. 2, Art. 9, pp. 1-16, 2018 AJMAA

http://ajmaa.org


A MULTIVALUED VERSION OF THE RADON-NIKODÝM THEOREM 5

Proposition 3.3. Let f : T →R be any integrable function. Then there exists a sequence(Πn)n

of partitions such that, for every n it is∑E∈Πn
Ob( f ,E)≤ u

n
, where

Ob( f ,E) = sup
Π′

E,Π′′
E


∣∣∣∣∣∣ ∑
F ′′∈Π′′

E

f (t)m(F ′′)− ∑
F ′∈Π′

E

f (s)m(F ′)

∣∣∣∣∣∣ , ∀ t ∈ F ′′,s∈ F ′

 ,

andΠ′
E,Π′′

E run along all partitions of E.

Proof. First observe that, thanks to the Cauchy criterion, a sequence(Πn)n of partitions exists,
such that, for every integern∣∣∣∣∣ ∑

F ′∈Π′
f (s)m(F ′)− ∑

F ′′∈Π′′
f (t)m(F ′′)

∣∣∣∣∣≤ u
n

(3.1)

(with obvious meaning of symbols) holds, for all partitionsΠ′, Π′′ finer thanΠn. Now, take
any integern and, for each elementE of Πn, consider two arbitrary partitionsΠ′

E andΠ′′
E of E.

Then, taking theunionof the partitionsΠ′
E asE varies, and making the same operation with the

partitionsΠ′′
E, two partitions ofT are obtained, finer thanΠn, for which (3.1) holds true. From

(3.1), obviously it follows

∑
F ′∈Π′

f (s)m(F ′)− ∑
F ′′∈Π′′

f (t)m(F ′′)≤ u
n
.(3.2)

Now, letE1 be the first element ofΠn. In the summation at left-hand side, fix all theF ′sand the
F ′′s that are not contained inE1. Taking the supremum when the remainingF ′s andF ′′s vary
in all possible ways, it follows

sup
Π′

E1

σ( f ,Π′
E1

)− inf
Π′′

E1

σ( f ,Π′′
E1

)+ ∑
F ′∈Π′,
F ′ 6⊂E1

f (s)m(F ′)− ∑
F ′′∈Π′′,
F ′′ 6⊂E1

f (t)m(F ′′)≤ u
n
,

namely

Ob( f ,E1)+ ∑
F ′∈Π′,
F ′ 6⊂E1

f (s)m(F ′)− ∑
F ′′∈Π′′,
F ′′ 6⊂E1

f (t)m(F ′′)≤ u
n
.

In the same way , fixing all theF ′s andF ′′s that are not contained in the second subset ofΠ,
(sayE2), and making the same operation, it follows

Ob( f ,E1)+Ob( f ,E2)+ ∑
F ′∈Π′,

F ′ 6⊂E1∪E2

f (s)m(F ′)− ∑
F ′′∈Π′′,

F ′′ 6⊂E1∪E2

f (t)m(F ′′)≤ u
n

Now, it is clear how to deduce the assertion.

Concerning the previous Proposition, we remark that, unless the spaceX is finite-dimensional,
a similar conclusion fails to hold if the absolute value is replaced by the norm: this is noteworthy
if one considers its consequences, in particular the corollary 3.6.

The following result states an easy consequence of Proposition 3.3 and it can be viewed as a
Henstock Lemma result.

Corollary 3.4. Let g: T → R be any mapping, then g is Gould integrable if and only if there
exists a sequence(Πn)n of partitions, such that, for every n and every partitionΠ finer thanΠn

3.4.1): ∑E∈Π |g(τE)m(E)−
∫

E gdm| ≤ u
n
, whereτE is any point in the set E.
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6 D. CANDELORO, A. CROITORU, A. GAVRILUŢ AND A. R. SAMBUCINI

Proof. The "if part" is a consequence of Proposition 3.3.

Now we want to focus our attention on a particular type of set valued mappingsm which
will be useful in the last section, i.e. theGould integrableones. A similar notion was also
given in [6, Definition 1.1], though for set functions taking values more generally in a vector
lattice. Notice that we will use the symbol1 to denote the real-valued function onT, defined by
1(t)≡ 1, while the symbolu denotes the element ofC(Ω) constantly equal to 1. We remember
also that it is well-known that the norm‖ · ‖∞ coincides with theunit norm‖ · ‖u.

Definition 3.2. Given a mappingm : A →C(Ω), such thatm( /0) = 0, m is said to beGould
integrable if the mapping1 : T → R is Gould integrable with respect tom. We denote by
υm(T) :=

∫
T 1dm its integral.

By Proposition 3.1, ifm is Gould integrable, thenm is integrable in every measurable set
A⊂ T. Moreover, denoting byυm(A) the integral ofm in A, the mappingA 7→ υm(A) is finitely
additive, as will be proved in the Proposition 3.5. In other words,m is Gould integrable if and
only if there existsυm : A →C(Ω) such that, for every setA∈A and for everyε > 0 a partition
P∈P can be found, such that‖∑I∈P′ m(I ∩A)−υm(A)‖∞ ≤ ε holds, as soon asP′ is finer than
P. When this is the case, thenυm is called theintegral functionof m.

Examples of non-additive set functions that are Gould integrable could be the following:

Example 3.2.Let T = [0,1] endowed with the usual Borelσ -algebraΣ and Lebesgue measure
λ .

3.2.a) Letm(A) = λ
2(A) · u for everyA ∈ Σ. Clearly m is not additive (it is superadditive),

but it has null integral: indeed, for anyε > 0 take any partitionP of [0,1] consisting of
pairwise disjoint measurable setsAi , each with measure less thanε. Then‖∑i m(Ai)‖∞ =
∑i λ (Ai)2≤∑i λ (Ai)ε = ε. Of course, the same happens for every partition finer thanP.

3.2.b) Letγ(A) = (λ (A)−λ
2(A)) ·u, thenγ is non-additive (it is subadditive) and integrable

too.
3.2.c) LetX be any finite-dimensional Banach space. Let(Wt)t denote the standard scalar

Brownian motion,t ∈ [0,T?], and set(Bt)t = (WtBX)t , t ∈ [0,T?]. This clearly defines a
set-valued process. IfU denotes the Rådström embedding of the family of compact and
convex subsets ofX intoC(Ω), as we will recall in Theorem 4.2, thenU(BX) = u, where
u is the element ofC(Ω) constantly equal to 1. Therefore,t 7→Wtu defines aC(Ω)-valued
process. Now, letA be the algebra in[0,T?] generated by all (half-open) subintervals,
and definem : A →C(Ω) in the following way:

m(A) =

 (Wb−Wa)2 ·u A=]a,b]
∑i(Wbi −Wai)

2 ·u A is the finite union of (maximal) disjoint intervals
]ai ,bi ].

Then, for any partitionP of [0,T?], P := {I1, ..., Ik} into pairwise disjoint elements of
A , defineS(P) = ∑k

j=1m(I j) and observe that, thanks to well-known properties of the
Brownian motion, this quantity tends toT? ·u in L2 when the maximum length of the
partitions tends to 0. Therefore, at least for this type of convergence, the measurem has
integralT? ·u, and in every interval[a,b]⊂ [0,T?] the integral is(b−a) ·u.

Proposition 3.5. If m is Gould integrable then its integral functionυm, defined inA asυm(A) =∫
T 1Adm, is additive.

Proof. It follows immediately from the Remark 3.1.
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So the Gould integrability ofm allows to link m with υm which is an additive set function
and clearly,m is additive if and only if it is integrable andm = υm. Moreover, for bounded
functions, the following characterization can be given:

Corollary 3.6. Assume that m is integrable. Then a bounded function f: T → R is Gould
integrable with respect to m if and only if it is with respect toυm, and the two integrals agree.

Proof. Assume thatf is integrable with respect tom, and denote byK any majorant for| f |.
Now, fix arbitrarilyε > 0: correspondingly, there exists a partitionP1 such that∥∥∥∥∥∑

I∈P
f (tI )m(I)−

∫
T

f dm

∥∥∥∥∥
∞

≤ ε i.e.

∣∣∣∣∣∑I∈P
f (tI )m(I)−

∫
T

f dm

∣∣∣∣∣≤ εu

holds, for every partitionP, finer thanP1. Let n be such that 1/n≤ ε, by the Corollary 3.4,
for g = 1, there exists also a partitionP2 such that∑E∈Π |m(E)−υm(E)| ≤ εu holds, for every
partitionΠ finer thanP2. So, ifP is any partition finer thanP1∨P2, one gets∣∣∣∣∣∑I

f (tI )υm(I)−
∫

T
f dm

∣∣∣∣∣≤
∣∣∣∣∣∑I

[ f (tI )υm(I)− f (tI )m(I)]

∣∣∣∣∣+
∣∣∣∣∣∑I

f (tI )m(I)−
∫

T
f dm

∣∣∣∣∣≤
≤∑

I
| f (tI )(υm(I)−m(I))|+ εu≤ K ∑

I
|m(I)−υm(I)|+ εu≤ (1+K)εu.

So‖∑I f (tI )υm(I)−
∫

T f dm‖∞ ≤ (1+K)ε. This clearly suffices to conclude thatf is integrable
with respect toυm and the two integrals agree. A similar argument can be used to prove also
the reverse implication. Hence the proof is finished.

We remark that, for bounded functions, the Corollary 3.6 allows to deal with the non-additive
case by means of the additive one, similarly as the Stone estension Theorem which connects
L1(m), whenm is finitely additive, withL1(ν), whereν is the countably additivetransformof
m.

We can observe that the results obtained in Propositions 3.1, 3.2 and 3.5 are still valid in an
arbitrary Banach space and not only inC(Ω) and we remember also that notions of order-type
integrals have also been investigated, for functions taking their values in ordered vector spaces,
and in Banach lattices: see for example [20, 11, 2].

4. A RADON-NIKODÝM TYPE THEOREM

This section deals with a Radon-Nikodým type theorem for multimeasures using the notion
of exhaustion, following a method of Maynard [34, 24, 33, 38]. We recall that, givenA and
B nonempty sets inX, the Hausdorff distanceh is defined byh(A,B) = max{e(A,B),e(B,A)},
where theexcess e(A,B) is defined ase(A,B) := supa∈Ad(a,B) := supa∈A infb∈B‖a− b‖. In
particular

Remark 4.1. If A⊂ B, thene(A,B) = 0 andh(A,B) = e(B,A). Moreover, observe that for any
nonempty bounded setA⊂ X, and any pairt,s of elements ofX, |d(t,A)−d(s,A)| ≤ ‖s− t‖.
Indeed, fix arbitrarilyε > 0, then there existsa∈ A such thatd(t,A)≥ ‖t−a‖− ε ≥ ‖s−a‖−
‖s− t‖− ε ≥ d(s,A)− ε −‖s− t‖. By the arbitrariness ofε, it follows thatd(t,A)−d(s,A) ≥
−‖s− t‖, i.e. d(s,A)− d(t,A) ≤ ‖s− t‖. Exchanging the roles betweent ands, one obtains
d(t,A)−d(s,A)≤ ‖s− t‖ and therefore|d(t,A)−d(s,A)| ≤ ‖s− t‖. Another useful fact is the
following: for every pair of bounded subsetsA,B⊂ X, e(B,A) = e(cl(B),A). Of course, since
B⊂ cl(B), it is clear thate(B,A)≤ e(cl(B),A).
Viceversa, fixε > 0: then j ∈ cl(B) exists, such thatd( j,A) ≥ e(cl(B),A)− ε/2. Now, let
b∈ B be such that‖b− j‖ ≤ ε/2: then|d(b,A)−d( j,A)| ≤ ε/2, and soe(B,A) ≥ d(b,A) ≥
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d( j,A)− ε/2≥ e(cl(B),A)− ε. By the arbitrariness ofε, this gives the reverse inequality and
the proof is complete.

By [26, Proposition 1.19 Chapter 7] we have that

Proposition 4.1.Let(An)n be any increasing sequence of compact and convex subsets of X, and
assume that a compact and convex set K exists, such that An⊂ K for all n. Thenlimnh(An,J) =
0, where J:= cl(

⋃
nAn).

For set valued functions we recall from the following concept:

Definition 4.1. A set functionM : A → ck(X) is said to be amultisubmeasureif: M( /0) = {0}
andM(A∪B) ⊂ M(A) + M(B), for everyA,B ∈ A , with A∩B = /0. M is said to be afuzzy
multisubmeasureif moreover: M(A) ⊂ M(B), for everyA,B ∈ A , with A⊂ B (that is,M is
monotoneon A ). If M(A∪B) = M(A)+M(B), for everyA,B∈A , with A∩B = /0 thenM is
said to be amultimeasurethat is,M is finitely additive.

Examples of fuzzy multisubmeasuresM are given in [20], moreover we can consider also
M(A) = [0,λ (A)−λ

2(A)] ·u, whereλ andu are as given in Example 3.2.

Definition 4.2. Let M : A → ck(X) be a multivalued set function, withM( /0) = {0}. Consider
the following set functions associated toM:
4.2.a) |M(·)|h defined by|M(A)|h = h(M(A),{0}) = sup{‖x‖ : x∈M(A)} for everyA∈A .

4.2.b) vM(·) defined byvM(A) = sup{
n
∑

i=1
|M(Ei)|h}, for everyA∈ A , where the supremum is

extended over all finite partitions{Ei}n
i=1 of A. vM(·) is said to bethe variationof M.

The multivalued set functionM is said to beof finite variationif vM(T) < ∞.

In the sequel, letM : A → ck(X) be a fuzzy multisubmeasure andf a non negative real-
valued function. Letσ(P) = σ f ,M(P) = ∑n

i=1 f (ti)M(Ai), for every partitionP = {Ai}i=1,...,n of
T and everyti ∈ Ai , i = 1, . . . ,n. Then

Definition 4.3. A function f is said to beM-integrable (on T)if the net (σ(P))P∈(P,≤) is
convergent in(ck(X),h), whereP is the set of all partitions ofT and≤ is the order relation on
P given in Definition 3.1.a). Its limit is calledthe integral of f on Twith respect to the fuzzy
multisubmeasureM and is denoted by

∫
T f dM.

If B∈A , then f is said to beM-integrable on Bif the restrictionf |B of f to B is M integrable
on (B,AB,MB).

In other words,f is M integrable inT if there exists an elementJ∈ ck(X), such that for every
ε > 0 there exists a partitionP∈P with the property thath(σ(P′),J)≤ ε holds true, for every
partitionP′ finer thanP.

As well highlighted in [31] the spaceck(X) is a sub-near vector lattice ofcwk(X) (non-
empty, weakly compact and convex subsets ofX) with respect to the operations of additions
and multiplication by positive scalars and to order induced bycwk(X); moreover ifX is not
finite dimensional, this hyperspace can be considered as a subset ofS1 = cb f(X) (nonempty,
convex, closed, bounded subset ofX) and it can be embedded, using the structure ofS1, pro-
vided thatu = BX, ~0 = {0}, in such a way that the norm of the embedding space is a Riesz
norm. So, using Kakutani’s M-space representation theorem, the near vector latticeck(X) with
order units, endowed with the Hausdorff metric can be represented in terms ofC(Ω) spaces, as
shown in:

Theorem 4.2. ([31, Theorem 5.7]).Let X be any Banach space. Then there exist a compact,
Stonian, Hausdorff spaceΩ and an isometry U: ck(X)→C(Ω) such that
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4.2.1) U(αA+βC) = αU(A)+βU(C) for all α,β ∈]0,∞[ and A,C∈ ck(X).
4.2.2) h(A,C) = ‖U(A)−U(C)‖∞ for all A,C∈ ck(X).
4.2.3) U(ck(X)) is norm-closed in C(Ω).
4.2.4) U(co(A∪C)) = max{U(A),U(C)}, for all A,C∈ ck(X).

Observe now that the embedding theorem can be used in order to replace the multivalued
integral above with a single-valued one, at least forpositive integrandsf . This leads to the
following

Definition 4.4. DefineUM : A →C(Ω) asUM(E) =U(M(E)) for all E ∈A . The mappingUM
will be called theembeddedmapping ofM. Moreover, thanks to4.2.4), the embedded mapping
UM is a fuzzy submeasure ifM is a fuzzy multisubmeasure.

Thanks to the Theorem 4.2, it is clear that‖UM(E)‖∞ = |M(E)|h for everyE ∈A , and soM
is of bounded variation if and only ifUM is, as aC(Ω)-valued set function.

Since we can consider also Gould integrability with respect toUM (according to Definition
3.1) for mappingsf : T → R+

0 , then the following result holds:

Theorem 4.3. A function f is M integrable, if and only if it is Gould integrable with respect to
UM. Moreover if we denote by J and j the M integral and the UM integral of f respectively, then
U(J) = j. Finally, in these cases, f1A is integrable for every A∈A .

Proof. First, assume thatf is Gould integrable with respect toUM, and denote byj its integral.
This means that the filtering net(U(σM( f ,P))P∈P is convergent toj. Hence it is Cauchy in
C(Ω). Then, also the net(σM( f ,P))P∈P is Cauchy inck(X): by completeness of this space,
(σM( f ,P))P∈P has limitJ in ck(X). By continuity ofU , it is then clear thatU(J) = j.
A similar argument can be used to prove the converse implication. So to conclude the proof it
only remains to deduce integrability off in every subsetA∈ A , and this is a consequence of
integrability of f with respect toUM: indeed, fixing any subsetA ∈ A and any positiveε in
R, a partitionP exists, finer than{A,T \A}, such that‖σUM( f ,P′)−σUM( f ,P′′)‖∞ ≤ ε holds,
for all partitionsP′ andP′′ finer thanP. So, choosing two partitions ofA, sayΠ′

A andΠ′′
A, both

finer thanPA (i.e. P restricted toA), andextendingthem toAc with a unique partition finer than
PAc, then two partitions,P′ andP′′, can be found, both finer thanP, and coincident in the setAc:
these partitions satisfyε > ‖σUM( f ,P′)−σUM( f ,P′′)‖∞ = ‖σUM( f ,Π′

A)−σUM( f ,Π′′
A)‖∞. By

the completeness ofC(Ω), this is enough to deduce integrability off 1A.

Following Definition 3.2, a multisubmeasureM : A → ck(X), it is said to beintegrableif the
function f (x)≡ 1A is M integrable for everyA∈A . Then the notation

M0(A) :=
∫

T
1AdM :=

∫
A

1dM,

is used, forA∈A .
This means that, for every elementA∈A there exists an elementM0(A) ∈ ck(X) such that, for
everyε > 0 a partitionP∈P can be found with the property thath(∑I∈P′ M(I ∩A),M0(A))≤ ε

holds, as soon asP′ is a partition finer thanP.

The following theorem states a necessary and sufficient condition for the integrability of a
ck(X)-valued fuzzy multisubmeasure of bounded variation. The technique takes into account
previous results and it is inspired by the notions of [2, Definition 3.4] and [3, Definition 3.13].
This equivalence could be also useful in order to study differential inclusions.
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Theorem 4.4. Let M be a fuzzy multisubmeasure of bounded variation. If M is ck(X)-valued,
then M is integrable if and only if there exists a compact and convex set K such thatσ(1,P) :=
σM(1,P)⊂ K for all partitions P∈P. When this is the case, then∫

T
M = cl

(⋃
{σ(1,P) : P∈P}

)
.

Proof. Sufficiency: first of all, thanks to bounded variation, all the sumsσ(1,P) := ∑I∈PM(I)
are compact and convex sets contained inK for all partitionsP. Moreover, thanks to subad-
ditivity, the sums above are a filtering family inck(X). In order to prove the existence of the
integral, it is enough to show that the mapP 7→ σ(1,P) is Cauchy, sinceck(X) is a complete
space with respect to the Hausdorff distance. Assume by contradiction that the Cauchy property
does not hold: then there exists a positive numberε such that, as soon asP is any partition ofT,
a couple(P′,P′′) of finer partitions exists, satisfyingh(σ(1,P′),σ(1,P′′))≥ ε. Since the refine-
ment order is filtering, there exists a sequence(Pn)n of partitions, increasing in the refinement
order, and such thath(σ(1,Pn),σ(1,Pn+1)) ≥ ε for all n. Now, sinceσ(1,Pn) is an increasing
sequence of elements ofck(X), Proposition 4.1 applies, and the limit limnσ(1,Pn) exists, with
respect to the Hausdorff distance: but this contradicts the fact thath(σ(1,Pn),σ(1,Pn+1)) ≥ ε

for all n. So this part of the theorem is proved.
Necessity: choose any partitionP of T, P= {E1, ...,Ek}, and fix arbitrarilyε > 0. By integrabil-
ity, there exists a partitionPε such that, for every finer partitionP′ it holdsh(σ(1,P′),

∫
T M)≤ ε,

from whichσ(1,P′)⊂
∫

T M +εBX. Therefore, choosingP′ := Pε ∨P, and thanks to subadditiv-
ity of M, it follows σ(1,P)⊂ σ(1,P′)⊂

∫
T M + εBX. By the arbitrariness ofP, one gets⋃

P∈P

σ(1,P)⊂
∫

T
M + εBX,

whereP ranges over all the possible partitions ofT. By the arbitrariness ofε > 0 and compact-
ness of

∫
T M, it is obvious that

⋃
P∈P σ(1,P) ⊂

∫
T M, and so the necessity is proven. Observe

that, since
∫

T M is closed, the inclusion

cl

( ⋃
P∈P

σ(1,P)

)
⊂
∫

T
M

follows from the last formula.
In order to finish the proof, it only remains to prove the reverse inclusion, assuming thatM is
Gould integrable. To this aim, fixε > 0 and any partitionP of T such that

∫
T M⊂σ(1,P′)+εBX

holds, for all partitionsP′ finer thanP. Then∫
T

M ⊂ cl

( ⋃
P∈P

σ(1,P)

)
+ εBX.

Then, by the arbitrariness ofε, the desired conclusion follows.

Now, assuming thatM is integrable, the additivity of itsintegral mapping M0 will be proven
together with the equivalence between the integrability of positive functionsf with respect to
M and with respect toM0, at least whenf is bounded. So, at least for bounded positive map-
pings f , integrability with respect toM is equivalent to integrability with respect to an additive
multimeasure (with the same integral).

Remark 4.2. Observe that, since the embedding theorem applies,M can be always identified
with UM, so thatM can be viewed as a single-valued mapping, taking values inC(Ω) and so all
the results concerning Gould integrability in Section 3 can be applied toM.
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H0): From now on the fuzzy multisubmeasureM : A → ck(X) will always be assumed
of bounded variation and satisfying the conditions in Theorem 4.4, namely there exists
a compact and convex setK such thatσ(1,P) ⊂ K for all partitionsP, so thatM is
integrable inck(X).

First of all, observe that, in those conditions,
∫

T 1AdM exists, for every setA∈A , essentially
with the same proof of Theorem 4.4. Next,

Proposition 4.5. The function M0, defined inA as M0(A) =
∫

T 1AdM, is additive.

Proof. The result is a consequence of Proposition 3.5, and Theorem 4.3.

Now, notice that, under the above conditions, theC(Ω)-valued measureUM0−UM (which is
non-negative, of course) has null integral. This almost immediately implies the following result.

Theorem 4.6. Let f : T → [0,∞[ be any bounded mapping. Then f is M integrable if and only
if it is M0-integrable, and the integrals coincide.

Proof. Assume thatf is integrable with respect toM. Then it isUM-integrable, andU (
∫

T f dM)=∫
T f dUM. Now, it is sufficient to apply Corollary 3.6 to deduce thatf is integrable also with re-

spect toUM0 with the same integral, soU (
∫

T f dM) =
∫

T f dUM =
∫

T f dUM0, which also shows
that

∫
T f dUM0 is in the range ofU . Thanks to Theorem 4.3 this is enough to conclude thatf is

integrable with respect toM0 and the two integrals agree. A reverse argument also shows the
opposite implication, so the proof is complete.

Also integrability on measurable subsets can be deduced, in the usual manner.

Proposition 4.7. Let f : T → [0,∞[ be any Gould integrable mapping with respect to M. Then,
if A is any fixed element ofA , the mapping f1A is integrable too.

Proof. It is analogous to Proposition 3.1.

Moreover

Proposition 4.8. M,M0 have the same variation measure.

Proof. Fix arbitrarily A∈ A , and denote byPA the family of all finite partitions ofA. Then,
thanks to Theorem 4.4,M0(A) = cl(

⋃
{∑i M(Bi) : (Bi)i ∈PA}). In particular,M(A)⊂M0(A),

and, for any partition(Bi)i in PA, one has∑i |M(Bi)|h ≤ ∑i |M0(Bi)|h ≤ vM0(A). This clearly
implies thatvM(A)≤ vM0(A).
Conversely, fix anyε > 0 andA ∈ A . For every partitionP≡ (Bi)N

i=1 ∈ PA, and every in-
dex i, sinceM is integrable, there exists a partitionPi ≡ (B′i, j) j ∈ PBi such that|M0(Bi)|h ≤
|∑ j M(B′i, j)|h+ε/N≤∑ j |M(B′i, j)|h+ε/N and so∑i |M0(Bi)|h≤∑i ∑ j |M(B′i, j)|h+ε ≤ vM(A)+
ε. By the arbitrariness ofP∈PA and ofε > 0, it follows vM0(A)≤ vM(A).

In the sequel, assume thatA is a σ -algebra. Also letΓ : A → ck(X) be any fixed fuzzy
multimeasure. Following [24, 33] forα > 0 andE ∈ A , let AΓ(E,α) be theα-approximate
rangedefined by:AΓ(E,α) = {r ∈ [0,+∞) : h(Γ(H), rM(H))≤ αvM(H), ∀H ∈A ∩E}.

Remark 4.3. Observe that, by Theorem 4.2, using the embeddingU , it is possible to formulate
theα-approximate range in the following way:

AΓ(E,α) = {r ∈ [0,+∞) : ‖UΓ(H)− rUM(H)‖∞ ≤ αm(H),∀H ∈A ∩E} ,

wherem := UM. In facth(Γ(H), rM(H)) = ‖UΓ(H)− rUM(H)‖∞ and

m(H) = sup∑
i
‖UM(Ei)‖∞ = sup∑

i
|M(Ei)|h = vM(H).
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Theorem 4.9. ([33, Lemma 3.3])Let Γ � vM (i.e. ∀ε > 0, ∃ δ (ε) = δ > 0 such that for every
E ∈A with vM(E) < δ , it follows vΓ(E) < ε). Then, for everyα > 0, the property AΓ(E,α) 6= /0
is vM-null difference.

Theorem 4.10.LetP be a vM-null difference property such thatP is vM-exhaustive on T. Then
there exists a vM-exhaustion of T ,(Bi)i , such that every Bi has P and T=

⋃
i

Bi .

Proof. SinceP is vM-exhaustive onT, there exists avM-exhaustion ofT, denoted by(Ei)i∈I ,
such that everyEi hasP. Thus

∀ε > 0,∃ n0(ε) = n0 ∈ N such thatvM(T\
n0⋃

i=1

Ei) < ε.(4.1)

Let E0 = T\
⋃
i∈I

Ei . From the previous inequality it resultsvM(E0) = 0. Let (Bi)i∈I be the family

of sets defined by:B1 = E0∪E1 ∈A ,Bi = Ei ∈A for i ≥ 2. ThenvM(B1) = vM(E1) > 0 since
vM(E1) ≤ vM(B1) ≤ vM(E1) + vM(E0) = vM(E1) andvM(Bi) = vM(Ei) > 0, for everyi ≥ 2.
Obviously,T = ∪i∈IBi . It is∪n0

i=1Bi = E0∪ (∪n0
i=1Ei). SincevM(T\∪n0

i=1Bi)≤ vM(T\∪n0
i=1Ei) <

ε, then(Bi)i∈I is avM-exhaustion ofT. Now, for everyi ≥ 2, Bi = Ei hasP. So, it only remains
to prove thatB1 hasP. By the relations:

B14E1 = (E0∪E1)4E1 = E0\E1 ⊂ E0 ⇒ 0≤ vM(B14E1)≤ vM(E0) = 0,

it follows thatvM(B14E1) = 0. SinceP is vM-null difference andE1 hasP, one concludes that
B1 hasP.

Definition 4.5. A multimeasureΓ : A → ck(X) is said to be dominated by Mif there is a
constantb > 0 such that|Γ(E)|h ≤ bvM(E), for everyE ∈A .

Observe that ifΓ is dominated byM thenΓ� vM.

Lemma 4.11.(see [32, Lemma 2.9] for semivariation). For every E∈A with vM(E) > 0, there
exists B∈A ∩E, such that vM(B) < 2|M(B)|h.

Proof. By contradiction, there exists an elementE ∈ A , with vM(E) > 0 such thatvM(B) ≥
2|M(B)|h for all measurable setsB⊂E, with vM(B) > 0. Fixε > 0 arbitrarily and pick a disjoint
family B1, ...,Bk of measurable subsets ofE, such thatvM(Bi) > 0 for all i and∑i |M(Bi)|h+ε ≥
vM(E). SincevM is additive, from the contradiction assumed we obtainvM(E) = ∑i vM(Bi) ≥
2∑i |M(Bi)|h ≥ 2vM(E)− 2ε. Sinceε is arbitrarily small it follows thatvM(E) ≤ 0, giving a
contradiction.

We state now our main theorem, which is inspired by [32, Lemma 3.1].

Theorem 4.12. [Radon Nikodým]Let M andΓ be ck(X)-valued fuzzy multisubmeasures, sat-
isfying the condition H0. Suppose moreover thatΓ is additive and

4.12.1) Γ is dominated by M;
4.12.2) for everyε > 0, the set property AΓ(E,ε) 6= /0 is vM-exhaustive on every E∈A .

Then there exists an M integrable bounded function f: T → [0,∞[ such that for every E∈A it
is Γ(E) =

∫
E f dM.

Proof. Thanks to Theorems 4.3 and 4.6, it will be sufficient to prove that, for the single-valued
mappingsUΓ andUM0, there exists a bounded measurable Radon-Nikodým derivativef . In-
deed, sinceΓ is dominated byM, the same property holds with respect toM0, sincevM = vM0

by Proposition 4.8. Of course, then the single-valued additive mappingUΓ is dominated byUM0.
Now, it will be proved thatΓ and M0 satisfy the condition of exhaustivity of the property
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AΓ(E,ε) 6= /0. To this aim, the notationAΓ,M(E,ε) will be used, in order to stress the role ofM in
AΓ(E,ε). Then, assuming that the setAΓ,M(E,ε) is nonempty, it also turns out thatAΓ,M0(E,ε)
is nonempty. Indeed, letρ > 0 andr ∈ AΓ,M(E,ε) be fixed. Then, for every measurableH ⊂ E,
there exists a finite partition{H1, ...,Hl} of H, such thath(rM0(H), r ∑l

i=1M(Hi)) ≤ ρ. Now,
one hash(Γ(H), rM0(H)) ≤ h(Γ(H), r ∑l

i=1M(Hi)) + ρ = h(∑l
i=1Γ(Hi), r ∑l

i=1M(Hi)) + ρ ≤
∑l

i=1h(Γ(Hi), rM(Hi))+ρ ≤ ε ∑l
i=1vM(Hi)+ρ = εvM(H)+ρ = εvM0(H)+ρ. Sinceρ is arbi-

trary, this shows thatr ∈ AΓ,M0(E,ε), and, in turn, this implies the exhaustivity of the property
AΓ(E,ε) 6= /0 also with respect toM0. Of course, sinceU is an isometric embedding, the mea-
suresUΓ andUM0 also enjoy the same properties of absolute continuity and exhaustivity.

Once a bounded measurable Radon-Nikodým derivativef has been found, forUΓ with re-
spect toUM0, then one has integrability off with respect toM0 by the Theorem 4.3 and
U (
∫

E f dM0) =
∫

E f dUM0 = UΓ(E), while
∫

E f dM0 =
∫

E f dM, holds true for every measur-
able setE thanks to Theorem 4.6.
So, for allE ∈A one hasU (

∫
E f dM) = UΓ(E) and therefore

∫
E f dM = Γ(E). So, the problem

is to find a bounded measurable mappingf , derivative ofUΓ with respect toUM0. In order
to prove this we can observe that ifM has bounded variation, thenUM0 is obviously strongly
bounded; moreover the pairUM0,UΓ satisfies the assumptions of [32, Lemma 3.1] and so an
integrable functionf in the sense of [32] can be found. Finally, since suchf is non negative,
bounded andvM0-totally measurable then, by [21, Theorem 4.9] it isM0 integrable.

We remark that the result is new even in the single-valued case, since additivity is requested
just from one of the measures involved, so Theorem 4.12 extends theorems given in [32, 33].

Moreover, as an application, we can consider a Gould integrable multifunction (in the sense
of [36, Definition 16]) ϕ : T → ck(X) with respect to a probabilityµ; let M be its Gould
integral: M : A → ck(X). Thanks to [36, Theorem 11] the set valued functionM is additive,
and satisfies the conditionH0. Observe moreover that, thanks to the Rådström’s embedding and
[36, Definition 16], an analogous version of Corollary 3.4 holds when the measure involved is
scalar and the integrand isC(Ω)-valued. Then we have

Corollary 4.13. Let Γ be any ck(X)-valued fuzzy multimeasure, satisfying H0, 4.12.1)and
4.12.2). Then there exists a scalar M integrable bounded mapping f: T → R+ such that,
for every A∈A ,

Γ(A) =
∫

A
f (t)ϕ(t)dµ.(4.2)

Proof. Thanks to Theorem 4.12, there exists a boundedM integrable mappingf : T →R+, such
that, for allA∈A ,

∫
A f (t)dM = Γ(A). By [36, Theorem 5] it is enough to prove the assertion for

A = T. Without loss of generality we also can considerϕ,M,Γ as objects with values inC(Ω),
as pointed out in Remark 4.2 and in Theorem 4.2. In this new setting, we can use Corollary
3.4 (in both versions: scalar functions andC(Ω)-valued measures and viceversa) and so, there
exists a sequence of partitions(Pn)n in T such that, for everyn∈ N and for every partitionP

finer thanPn, one has:∑J∈P |M(J)−ϕ(tJ)µ(J)| ≤ u
n
, ∑J∈P |Γ(J)− f (tJ)M(J)| ≤ u

n
for every
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choice oftJ ∈ J. Then, for everyP finer thanPn,

| ∑
J∈P

f (tJ)ϕ(tJ)µ(J)−Γ(T)| ≤ ∑
J∈P

| f (tJ)ϕ(tJ)µ(J)−Γ(J)| ≤

≤ ∑
J∈P

| f (tJ)ϕ(tJ)µ(J)− f (tJ)M(J)|+ ∑
J∈P

| f (tJ)M(J)−Γ(J)| ≤

≤ ∑
J∈P

| f (tJ)| · |ϕ(tJ)µ(J)−M(J)|+ u
n
≤ u

n
(1+sup| f |).

So(σ( f ϕ,P))P is convergent inC(Ω) to Γ(T), and sof ϕ is µ-integrable and

Γ(T) =
∫

T
f (t)ϕ(t)dµ.

The last result of Corollary 4.13 can be viewed as an integration by substitution for fuzzy
multisubmeasures and (4.2) can be written as∫

A
f dM =

∫
A

f ϕdµ, ∀A∈A .

5. CONCLUSIONS

We have studied the Gould integrability of a scalar functionf with respect to a set-valued,
non necessarily additive measurem. In particular we have focused our attention on compact and
convex-valued measures. In this case, thanks to the well-known Rådström’s embedding theo-
rem,m can be considered as a measure taking values in the Banach latticeC(Ω). In addition,
the notion ofintegrabilityhas been introduced form, with the purpose to avoid the requirement
of additivity. In fact, thanks to the Rådström’s embedding, we are able to establish a Henstock-
type theorem for this kind of integral. This, in turn, implies that anyintegrablemeasurem can
be seen as an additive measure, plus anegligibleone. Finally a Radon-Nikodým Theorem is ob-
tained in this situation which is new also in the finite dimensional case, since one of the involved
set-valued measures is non-additive. Moreover, a u-substitution result for fuzzy multimeasures
is established.
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