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2 D. CANDELORO, A. CROITORU, A. GAVRILUT AND A. R. SAMBUCINI

1. INTRODUCTION

Non-additive measures are an important field of research in measure theory. Due to its appli-
cations in economics, statistics, human decision making and medicine, the field of non-additive
measures and of fuzzy measures has been intensively studied in the last years, while the the-
ory of monotonicity is used in statistics, mathematical economy, game theory, probability and
artificial intelligence (see for example [16,/29, 35/ 39|, 10]). [In [36] Pap has recently studied
multivalued integration, examining in particular the Gould integrability for multifunctions and
multisubmeasures. The present research could be connected to his paper as a continuation.
Concerning with the theory of integration, the existence of a Radon-Nikodym derivative is an
important tool. In fact it provides conditions for the existence of a certain integral represen-
tation of measures. The Radon-Nikodym theorem is used, for example, for converting actual
probabilities into those of the risk neutral probabilities. Moreover it was approached by many
authors in several different settings (e.9.1[32,[30,/27| 28, 25]). In particular,lin [12] an outline
of the previous results is presented, together with quotations of the papers in this topic which
have appeared since the late 60’s. Similar problems were studied afterwards, e.g..in [33, 38]
as an extension of [24, 34], later in [4, 5], and also recently deeply examined in [14, 18] both
in the countably and the finitely additive case using different notions of integrals. Here we will
undertake a similar investigation and we will consider fuzzy multisubmeasures defined on an
algebra and taking compact and convex values in an arbitrary BanachXépace
In this paper essentially a Radon-Nikodym theorem is established, in order to represent a set-
valued additive measure as the Gould type integral of a suitable real-valued function with re-
spect to a fixed fuzzy multisubmeasure. We point out that this result is new also in the finite-
dimensional case since additivity is requested only for one of the set valued measures involved.
The paper is organized as follows: in Secf{ipn 2 some basic notions and results are given, while
in sectior] B some results and examples regarding Gould type integrability relative to a not nec-
essarily additive measumeare obtained (see alsd [7,/36]). The target spacefierthe Banach
lattice of all real-valued continuous functions defined in a compact, Stonian Spdle space
C(Q)). This is due to the fact that Banach lattices are often good models for applications, and
also for studying set-valued measures or functions. In effect, thanks to the Radstrom embedding
Theorem, many important hyperspaces can be embedde (for example the family of
compact and convex subsets of a Banach spaaehile for an exhaustive list of such hyper-
spaces see e.d. [31] and, for various applications in Banach latfices, [1,/40/ 41, 8, 9, 13]). In
sectior] 4 a Radon-Nikodym type theorem will be obtained (Thegrem 4.12) using the set-valued
integral defined in[[37, 36]. According to this result, a multimeaduan be expressed as
a Gould type set-valued integral of a functiérwith respect to a fuzzy multisubmeasuvk
thatis:I'(E) = [z fdM, for everyE € .7, under a suitable exhaustion condition and the strong
absolute continuity of with respect taVl. In this case, the construction of the Radon-Nikodym
derivative makes use of the mentioned notion of exhaustion, introduced by Maynard [34] in
the scalar case and extended by other authors to the vector-valuedi casel [24, 33, 38]. As an
application of the Theorein 412 an integration by substitution theorem is obtained for fuzzy
multimeasures.

2. BASIC FACTS AND DEFINITIONS

Unless stated otherwise, throughout this papés an abstract nonvoid sék(T) the family
of all subsets of, .7 an algebra of subsets dfandu : &7 — [0,+o) an arbitrary set function,
with 1 (0) = 0. A partition of T is a finite family of nonvoid set® = {A }I' ; C ./ such that
ANA;=0,i #j, andUL;A =T. LetP={A}L, andP = {Bj}?zl be two partitions of
T. The partitionP’ is said to befiner than P denoted byP < P’ (or, P" > P), if for every
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j €{1,...,q}, there existdj € {1,...,n} so thatB; C A;;. Thecommon refinemerdf two
partitionsP = {A}]' ; andP’ = {BJ-}‘J?':1 is the partitionP v P = {ANBj}ic(1,..n}jefL,...a}-
Obviously,PV P > P andPV P > P. The class of all partitions of will be denoted by#?,
and if A € &7 is fixed, Za denotes the class of all partitions Af Given u, we will consider
w,u*: P(T) — [0,+e0], the variation, semivariationf u respectively angi : P(T) — [0, +oo],
given byu(E) =inf{i(A);E C A/A € &/}. For the properties of variation, semivariation and
i see for examplé [17].

Let (X,] - ||) be a Banach spacBy its unit ball; the symboinwill be used for vector-valued set
functions. For a vector measume: o — X, its semivariatiorm™ : P(T) — [0, +o0] is defined
by: m*(E) = sup{||m(A)||;A € «/,A C E}. In an analogous way we can define thaiation
m:= ||m||. Thus, ifA € <7, then||m(A)|| < mM(A), which implies tham*(E) < m(E), for every

E e P(T).

Let ck(X) be the family of all nonempty compact and convex subsets of a real Banach space
(X, |- |- By the symbokH- the Minkowski addition will be indicated. Létbe the Hausdorff
metric onck(X). It is well-known that(ck(X), h) is a complete metric space (see for example
[15, Theorem II-14]). Finally, for any bounded &t|A|,, denotes the distan¢gA, {0} ), where

0 is the origin ofX. With the symbolM we denote a set function with valuesdk(X). Now,
several notions are recalled for further use.

Definition 2.1. ([24], [32, Definition 3.2]) Letu : &7 — [0, | be finitely additive.

[2.1.a): A finite or countable family of pairwise disjoint setg;)ic; C <7 will be called
a u- exhaustiorof E € o7 if u(E.) > 0 for everyi € | and for eache > 0, there is

no(€) = np € N such tha(u(E\ U E) <e.

[2.1.b): A set property}3 is said to bqu -exhaustivenE € &7 if there exists at-exhaustion
(Ei); of E, such that ever{ has’p.

[2.1.c): A set property} is calledu-null differenceif wheneverA B € o7 with u(A) >0
andu(B) > 0, fromu(AAB) = 0, it follows that eitherA andB both have}3 or neither
does.

[2.1.d): A property’]3 about the points of holdsg-almost everywherédenoted ji-a.e)
if there existsA € P(T) so thatu (A) = 0 andp3 holds onT \ A.

For an arbitrary real functiofi: T — R, the symbolo(f,P) (or, if there is no doubig (f,P),
om(P) or o(P)) denotes the surg{’ ; f(t;) (A.) for every partition ofT, P = {A;}]! ; and
everyt; € A,i € {1,...,n}. With the same meaning we defigg ( f,P), for non-negative and
ck(X)-valuedM.

3. GOULD INTEGRAL

We now introduce the definition of Gould integrability. The Gould integral was defined
in [22] for real functions with respect to a finitely additive vector measure taking values in a
Banach space. Different generalizations and topics were introduced and studied in [17, 19, 20,
37.[7,36].
Moreover, since we want to study and consider mainly the multivalued case (i.e. set functions
taking values in some space of bounded convex sets) we focus our attention on the Banach space
(C(Q), || ||)- This is due to the fact that, thanks to the Radstrom Embedding Theorem, many
important hyperspaces can be embedddd(@) (for a list of such hyperspaces see elg. [31]).
We remember moreover th@tQ) is also a Banach lattice in which the symipol denotes the
ideri ), or a Banach lattice,
from now on we restrict ourselves & Q) and to mappings: .« — C(Q), with Q compact,
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Hausdorff and we can give the notion of subadditivity@£)-valued set functions in the usual
way: m(0) = 0 andm(AUB) < m(A) +m(B) holds, whemA/B € &7/, ANB=10

Definition 3.1. A real functionf : T — R is said to be

[3.1.a) (Gould) m integrable on Tif the net(o(P))pc(» <) is convergent irc(Q), where %
is ordered by the relatiof. If (o(P))pc(» <) is convergent, then its limit is calletie
Gould integral of f on T with respect to,rdenoted by(G) J; fdm(shortly 7 fdm).

[3.1.b) m integrable on B: <7 if the restrictionf|g of f to B is mintegrable onB, .o/z, mg).

Remark 3.1. Thusf ismintegrable orT if and only if there existg € C(Q) such that for every
€ > 0, there exists a partitioR: of T, so that for every other partition d@f, P = {A }{ ;, with
P > P and every choice of points€ A;,i € {1,...,n}, one hag|c(P) — g||» < €. Moreover
if f1, f, arem integrable andx is any real constant, themf; is m integrable,f; + f, is m
integrable, and the integral is linear.

Proposition 3.1. Let f: T — R be any Gould integrable mapping with respect to m. Then, if A
is any fixed element @, the mapping 1, is integrable too.

Proof. Given Z,, it is not difficult to prove that the sumss (f,P) : P € #25} satisfy a Cauchy
principle inC(Q); since this space is complete with respect to its norm, the assertion fojows.

Example 3.1. Some examples of Gould integrable functions with respent &me given here:

[3.1.a) LetT be afinite seteZ = P(T), m: &/ — C(Q) andf : T — R be arbitrary. Therf is
Gouldmintegrable and; fdm= S f(t)m({t}).
teT

B.b) Ifm: &7 — C(Q) is finitely additive andf : T — R is simple,f = 5 ; a1, thenf is
Gouldmintegrable and; fdm= 3 ; am(A;).

Moreover the previous examgle B.1.b) can be improved as follows.

Proposition 3.2. Let.« be ac-algebra, and m.«Z — C(Q) be finitely additive, and assume that
(An)nen is a countable family of pairwise disjoint elementsasf such thalim,M(Uj~nAj) =

0. Then, the function fT — R defined as = §,cy1a, is Gould integrable as soon as the
sequencecy)n, is bounded irR; in this case,; fdm= S ,cnm(Ay).

Proof. Under these assumptions, it is clear that the real-valued sgfies|m(An) is conver-
gent, hence the seri€g,cnm(An) is convergent irC(Q). We will show thatf is integrable
and its integral coincides witly,com(An). Define nowS:= (J,An, and fixe > 0. Then
there existsN € N such thatm(U;.nAj) < &. Thereforey ;. |[cj|M(Aj) < Ke whereK is
any bound foricp|, ne N. Now setF = [J;<nAj, and choose any partitidd of T, finer than
{F,S\F,T\'S}. SettingP = {(Bj,t;),i = 1..,k}, one then has(f,P) := K , f(t)m(Bj) =
Yiel, Ft)M(B;) + Yicl, f(ti)m(B;i), wherely = {i : Bi CF}, I ={i:Bj C S\F}.

Of coursegicy, f(t)m(B;) = 31 ¢jm(A) and|| Tic, f (t)M(Bi)[l < KM(Uj-nA))) < Ke.
So,||o(f,P) =¥ ncaM(An)|lo < || Tiel, CiM(A]) [l + ¥ j=n [CjM(Aj) < 2Ke. This concludes the
proof. n

For more general functions, proceeding as in the procflof [6, theorem 1.4] and [11, Proposi-

tion 6], one can deduce the following proposition and the subsequent corollary. In this situation
the absolute value replaces the nornCof2) andu denotes an order unit.
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Proposition 3.3. Let f: T — R be any integrable function. Then there exists a sequéigi,
of partitions such that, for every nit i5g.n Ob(f,E) < %, where

Ob(f,E) = sup > fOmME") - f(smF)|,VteF" seF ¢,
Me.Ng | [Fieng Frerly

andlg,N¢ run along all partitions of E.

Proof. First observe that, thanks to the Cauchy criterion, a sequéhgg of partitions exists,
such that, for every integer

(3.1) fomF)— Y FOmE"| <>

Ffetv Frlet n
(with obvious meaning of symbols) holds, for all partitidi§ M” finer thanl,. Now, take
any integemn and, for each elemeit of Ny, consider two arbitrary partitiori3g andlnlg of E.
Then, taking theinionof the partitiond¢ asE varies, and making the same operation with the
partitionslg, two partitions ofT are obtained, finer thaf,, for which ) holds true. From
(3.7), obviously it follows

(32) fOmF)— 3 FHmE") <.
Fletr =l n
Now, letE; be the first element dfl,. In the summation at left-hand side, fix all thés and the

F”sthat are not contained iB;. Taking the supremum when the remainifg andF”s vary
in all possible ways, it follows

u

supo(f, I'IEl)—lnfch'I + oy Al S fOmFE) <,

Me, F/err, F”eﬂ”, "
F/¢E F'ZE

namely

u
Ob(f.E)+ Y f(9MF)— F FOmF") <
! ! " " n
F'ell, F"en”,
F/'7E; F'¢E;
In the same way , fixing all thE’s andF”’s that are not contained in the second subsét,of
(sayEp), and making the same operation, it follows

Ob(f.E)+OB(f.E)+ 5 f(OmF)— F fO)mF") < -
Flert, F/en”, n
F'¢E1UEp F"ZE1UEp

Now, it is clear how to deduce the assertign.

Concerning the previous Proposition, we remark that, unless the Xpadaite-dimensional,
a similar conclusion fails to hold if the absolute value is replaced by the norm: this is noteworthy
if one considers its consequences, in particular the corgllaly 3.6.

The following result states an easy consequence of Propdsitipn 3.3 and it can be viewed as a
Henstock Lemma result.

Corollary 3.4. Let g: T — R be any mapping, then g is Gould integrable if and only if there
exists a sequendély), of partitions, such that, for every n and every partitidrfiner thanf,

3.4.1): Secnlo(te)M(E) — [ gdm < ;—J], wheretg is any point in the set E.
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Proof. The "if part" is a consequence of Proposition 33.

Now we want to focus our attention on a particular type of set valued mappingkich
will be useful in the last section, i.e. th@ould integrableones. A similar notion was also
given in [6, Definition 1.1], though for set functions taking values more generally in a vector
lattice. Notice that we will use the symbbto denote the real-valued function ®ndefined by
1(t) = 1, while the symbol denotes the element 6 Q) constantly equal to 1. We remember
also that it is well-known that the norip ||~ coincides with thainitnorm|| - ||u.

Definition 3.2. Given a mappingn: </ — C(Q), such thaim(0) = 0, mis said to beGould
integrableif the mappingl : T — R is Gould integrable with respect to. We denote by
um(T) := J7 1dmits integral.

By Propositiof 3.1, ifm is Gould integrable, them is integrable in every measurable set
A C T. Moreover, denoting byn(A) the integral oimin A, the mappingd — vm(A) is finitely
additive, as will be proved in the Propositipn|3.5. In other wordss Gould integrable if and
only if there existo, : @7 — C(Q) such that, for every sét <€ o7 and for every > 0 a partition
P e & can be found, such tha§ |cp m(1 NA) — vm(A)||, < € holds, as soon & is finer than
P. When this is the case, then, is called thentegral functionof m.

Examples of non-additive set functions that are Gould integrable could be the following:

Example 3.2.Let T = [0, 1] endowed with the usual Borel-algebra> and Lebesgue measure
A

[3.2.a) Letm(A) = ?LZ(A) -u for everyA € 2. Clearlym is not additive (it is superadditive),
but it has null integral: indeed, for argy> 0 take any partitiof® of [0, 1] consisting of
pairwise disjoint measurable sés each with measure less thanThen|| Ti m(A)) || =
TiA(A)? < 5;A(A)e = e. Of course, the same happens for every partition finer Ehan

B2.b) Lety(A) = (A(A) — A%(A)) - u, theny is non-additive (it is subadditive) and integrable
too.

[3.2.c) LetX be any finite-dimensional Banach space. [\&t); denote the standard scalar
Brownian motiont € [0, T*], and se{Bx): = (WBx)t, t € [0, T*]. This clearly defines a
set-valued process. If denotes the Radstrém embedding of the family of compact and
convex subsets of into C(Q), as we will recall in Theorein 4.2, théh(Bx) = u, where
uis the element of(Q) constantly equal to 1. Therefotte:- Wu defines &(Q)-valued
process. Now, let7 be the algebra if0, T*| generated by all (half-open) subintervals,
and definam: & — C(Q) in the following way:

(Wo—We)*-u  A=Jab]
M(A) =< 3i(W, —W4)2-u  Ais the finite union of (maximal) disjoint intervals
Jai, bi].
Then, for any partitiorP of [0, T*], P := {l,...,Ix} into pairwise disjoint elements of
</, defineS(P) = zlj(:l m(lj) and observe that, thanks to well-known properties of the

Brownian motion, this quantity tends " - u in L2 when the maximum length of the
partitions tends to 0. Therefore, at least for this type of convergence, the meakase
integralT* - u, and in every intervalla, b] C [0, T*] the integral igb—a) - u.

Proposition 3.5. If m is Gould integrable then its integral functian,, defined ineZ asvm(A) =
J5 1adm, is additive.

Proof. It follows immediately from the Remafk 3.1.
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So the Gould integrability ofm allows to link m with v, which is an additive set function
and clearlym is additive if and only if it is integrable anoh = v, Moreover, for bounded
functions, the following characterization can be given:

Corollary 3.6. Assume that m is integrable. Then a bounded functiod f—~ R is Gould
integrable with respect to m if and only if it is with respectitg, and the two integrals agree.

Proof. Assume thatf is integrable with respect to, and denote b any majorant for f|.
Now, fix arbitrarily e > 0: correspondingly, there exists a partitiBnsuch that

Igpf(t.)m(l)—/Tfolm ) 3 fm /fdm

holds, for every partitiorP, finer thanPy. Let n be such that An < €, by the Corollary 34,
for g= 1, there exists also a partitidh such thaty . |IM(E) — vm(E)| < eu holds, for every
partition1 finer thanP. So, if P is any partition finer tha®, v P,, one gets

3 (vl /fdm 3 [fw)om() ~ Ft)m)] +| ¥ fo)m /dem <

< ny t) (Um(1) —m(1))| +eu < KZ\m(I)—vm( )| +eu< (1+K)eu

<e i.e <eu

Sol|3; f(t)vm(l) — 5 fdml||, < (1+4K)e. This clearly suffices to conclude this integrable
with respect tovy, and the two integrals agree. A similar argument can be used to prove also
the reverse implication. Hence the proof is finishgd.

We remark that, for bounded functions, the Corol[ary 3.6 allows to deal with the non-additive
case by means of the additive one, similarly as the Stone estension Theorem which connects
LY(m), whenmis finitely additive, withL(v), wherev is the countably additiveransformof
m.

We can observe that the results obtained in Proposition$ 3]1, 3[2 and 3.5 are still valid in an
arbitrary Banach space and not onlyG(Q) and we remember also that notions of order-type
integrals have also been investigated, for functions taking their values in ordered vector spaces,
and in Banach lattices: see for example [20,11, 2].

4. A RADON-NIKODYM TYPE THEOREM

This section deals with a Radon-Nikodym type theorem for multimeasures using the notion
of exhaustion, following a method of Maynaid [34,] 24| 33, 38]. We recall that, givand
B nonempty sets iX, the Hausdorff distanckis defined byh(A,B) = max{e(A,B),e(B,A)},
where theexcess €\, B) is defined ae(A, B) := sup,ad(a,B) := supainfpeg|la—bl. In
particular

Remark 4.1. If A C B, thene(A,B) = 0 andh(A,B) = e(B,A). Moreover, observe that for any
nonempty bounded sétC X, and any pait, s of elements o, |d(t,A) —d(s,A)| < ||s—t].
Indeed, fix arbitrarilye > 0, then there exists € A such thad(t,A) > |t —a|| —& > |[s—a|| —
|s—t|| —& >d(s,A) — e —||[s—t||. By the arbitrariness o, it follows thatd(t,A) — d(s,A) >
—||s—t]|, i.e. d(s,A) —d(t,A) < |[s—t||. Exchanging the roles betweérands, one obtains
d(t,A) —d(s,A) < ||s—t|| and thereforéd(t,A) — d(s,A)| < ||s—t||. Another useful fact is the
following: for every pair of bounded subsetsB C X, e(B,A) = e(cl(B),A). Of course, since
B C cl(B), itis clear thai(B,A) < e(cl(B),A).
Viceversa, fixe > 0: thenj € cl(B) exists, such thadl(j,A) > e(c
|

> A) —¢g/2. Now, let
b € B be such thatlb— j|| < €/2: then|d(b,A) —d(j,A)| < &/2,

1(B),
and sce(B,A) > d(b,A) >

AJMAA Vol. 15, No. 2, Art. 9, pp. 1-16, 2018 AIJMAA
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d(j,A) —e/2 > e(cl(B),A) — €. By the arbitrariness o, this gives the reverse inequality and
the proof is complete.

By [26, Proposition 1.19 Chapter 7] we have that

Proposition 4.1. Let(An), be any increasing sequence of compact and convex subsets of X, and
assume that a compact and convex set K exists, such tl@a&Afor all n. Thenlimph(An,J) =
0, where J.= cl(UpAn).

For set valued functions we recall from the following concept:

Definition 4.1. A set functionM : &7 — ck(X) is said to be anultisubmeasurd: M(0) = {0}

andM(AUB) C M(A) + M(B), for everyA B € &7, with ANB = 0. M is said to be duzzy
multisubmeasur@ moreover: M(A) C M(B), for everyA B € &7, with A C B (that is,M is

monotoneon 7). If M(AUB) = M(A) + M(B), for everyA B € o7, with ANB = 0 thenM is

said to be anultimeasurehat is,M is finitely additive.

Examples of fuzzy multisubmeasurbsare given in[[20], moreover we can consider also
M(A) = [0,A(A) — A%(A)] - u, whereA andu are as given in Examp@.z.

Definition 4.2. Let M : &7 — ck(X) be a multivalued set function, witkl (0) = {0}. Consider
the following set functions associatedib

4.2.a) IM(-)|n defined byiM(A) |, = h(M(A),{0}) = sup{||x|| : x e M(A)} for everyA € <.
n
4.2.b) vm(-) defined byvm (A) = sup{ 5 |M(Ej)|n}, for everyA € o7, where the supremum is
i=1

extended over all finite partitiansa i, of A wm(-) is said to bethe variationof M.
The multivalued set functioM is said to beof finite variationif v (T) < co.

In the sequel, leM : & — ck(X) be a fuzzy multisubmeasure arida non negative real-
valued function. Let(P) = ot m(P) = 3.4 f(t)M(A), for every partitiorP = {A; }i—1,_n of
T and everyti € Ai,i=1,...,n. Then

Definition 4.3. A function f is said to beM-integrable (on T)if the net(o(P))pc(» <) IS
convergent inck(X),h), whereZ” is the set of all partitions of and< is the order relation on
& given in Definitior 3.1L.a). Its limit is callethe integral of f on Twith respect to the fuzzy
multisubmeasur® and is denoted by fdM.

If B € <7, thenf is said to beM-integrable on Bf the restrictionf|g of f to B is M integrable
on (B, ﬂB, MB).

In other words f is M integrable inT if there exists an elemedte ck(X), such that for every
€ > 0 there exists a partitioR € & with the property thah(c(P’),J) < € holds true, for every
partitionP’ finer thanP.

As well highlighted in [31] the spacek(X) is a sub-near vector lattice afvk(X) (non-
empty, weakly compact and convex subsetXpfvith respect to the operations of additions
and multiplication by positive scalars and to order inducedtwi( X); moreover ifX is not
finite dimensional, this hyperspace can be considered as a sulfSetafb f(X) (nonempty,
convex, closed, bounded subsetgfand it can be embedded, using the structur&ofro-
vided thatu = By, 0 = {0}, in such a way that the norm of the embedding space is a Riesz
norm. So, using Kakutani’s M-space representation theorem, the near vectord&tidgeavith
order units, endowed with the Hausdorff metric can be represented in te@iQpEpaces, as
shown in:

Theorem 4.2. (|31, Theorem 5.7]).Let X be any Banach space. Then there exist a compact,
Stonian, Hausdorff spad2 and an isometry U ck(X) — C(Q) such that
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4.2.1)U(aA+BC) = aU(A)+ BU(C) for all a,p €]0,[ and AC € ck(X).
4.2.2)h(A,C) = |[U(A) —U(C)|| for all A,C € ck(X).

4.2.3) U (ck(X)) is norm-closed in Q).

[4.2.4) U (co(AUC)) = max{U (A),U(C)}, for all A,C € ck(X).

Observe now that the embedding theorem can be used in order to replace the multivalued
integral above with a single-valued one, at leastgositiveintegrandsf. This leads to the
following

Definition 4.4. DefineUy, : & — C(Q) asUw(E) =U(M(E)) for all E € <. The mappindu
will be called theembeddednapping ofM. Moreover, thanks td.3.4, the embedded mapping
Uy is a fuzzy submeasurehfl is a fuzzy multisubmeasure.

Thanks to the Theorem 4.2, it is clear thjlty (E) || = [M(E)|n for everyE € 7, and soM
is of bounded variation if and only By is, as &C(Q)-valued set function.

Since we can consider also Gould integrability with respetiyjo(according to Definition
[3.1) for mappings : T — R§, then the following result holds:

Theorem 4.3. A function f is M integrable, if and only if it is Gould integrable with respect to
Uwm. Moreover if we denote by J and j the M integral and thg idtegral of f respectively, then
U(J) = j. Finally, in these cases,1f is integrable for every A& <.

Proof. First, assume that is Gould integrable with respect tdy;, and denote by its integral.
This means that the filtering n@t) (om(f,P))pe 2 is convergent tg. Hence it is Cauchy in
C(Q). Then, also the ndiom(f,P))pc 2 is Cauchy inck(X): by completeness of this space,
(om(f,P))pe2 has limitd in ck(X). By continuity ofU, it is then clear that) (J) = j.

A similar argument can be used to prove the converse implication. So to conclude the proof it
only remains to deduce integrability &fin every subsef € <7, and this is a consequence of
integrability of f with respect tdJy: indeed, fixing any subsé& € <7 and any positive in

R, a partitionP exists, finer tha{A, T \ A}, such that|oy,, (f,P’) — ou,, (f,P”)]|« < € holds,
for all partitionsP’ andP” finer thanP. So, choosing two partitions &, say), andrl}, both
finer thanPy (i.e. P restricted toA), andextendinghem toA® with a unique partition finer than
Pac, then two partitionsP’ andP”, can be found, both finer thd and coincident in the sét:
these partitions satisfy > ||oy,, (f,P") — ouy (,P”)[le = [|ouy (f,TA) — ouy (f,M3)]|e- By
the completeness @f(Q), this is enough to deduce integrability bia. u

Following Definition 3.2, a multisubmeasudk: <7 — ck(X), itis said to bentegrableif the
function f(x) = 14 is M integrable for every € 7. Then the notation

Mo(A) ::/TlAdM:z/AldM,

is used, forA € 7.

This means that, for every elemeht o7 there exists an elemehty(A) € ck(X) such that, for
everye > 0 a partitionP € & can be found with the property thiaty | .o M(1 NA),Mg(A)) <&
holds, as soon &8 is a partition finer tharP.

The following theorem states a necessary and sufficient condition for the integrability of a
ck(X)-valued fuzzy multisubmeasure of bounded variation. The technique takes into account
previous results and it is inspired by the notions of [2, Definition 3.4] ahd [3, Definition 3.13].
This equivalence could be also useful in order to study differential inclusions.
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Theorem 4.4.Let M be a fuzzy multisubmeasure of bounded variation. If M (X gkalued,
then M is integrable if and only if there exists a compact and convex set K suah(thd) :=
om(1,P) C K for all partitions Pe 2. When this is the case, then

/TM:CI (Utop):Pe#}).

Proof. Sufficiency: first of all, thanks to bounded variation, all the sums,P) := 5,cpM(I)
are compact and convex sets containedifor all partitionsP. Moreover, thanks to subad-
ditivity, the sums above are a filtering family @k(X). In order to prove the existence of the
integral, it is enough to show that the mBp— o (1,P) is Cauchy, sincek(X) is a complete
space with respect to the Hausdorff distance. Assume by contradiction that the Cauchy property
does not hold: then there exists a positive nungssuch that, as soon &ss any partition ofT,

a couple(P’,P”) of finer partitions exists, satisfying o (1,P’),o(1,P”)) > €. Since the refine-
ment order is filtering, there exists a seque(g, of partitions, increasing in the refinement
order, and such thdt(c(1,R,),c(1,P,11)) > € for all n. Now, sincec(1,R,) is an increasing
sequence of elements df(X), Propositior} 41 applies, and the limit lira (1, P,) exists, with
respect to the Hausdorff distance: but this contradicts the fachtledtl, ), o (1,Py1)) > €
for all n. So this part of the theorem is proved.

Necessity: choose any partiti®of T, P = {E;, ..., Ex}, and fix arbitrarilye > 0. By integrabil-
ity, there exists a partitioR: such that, for every finer partitid® it holdsh(c (1,P'), [; M) <&,
from whicho (1,P’") C J; M + €Bx. Therefore, choosing’ := P; vV P, and thanks to subadditiv-
ity of M, it follows 6(1,P) C o(1,P’) C J; M+ &Bx. By the arbitrariness d?, one gets

) o(1,P)C / M + €Bx,

Pes T

whereP ranges over all the possible partitionslafBy the arbitrariness of > 0 and compact-
ness off; M, it is obvious that Jpc »» 0(1,P) C J; M, and so the necessity is proven. Observe
that, sincef; M is closed, the inclusion

cl < U cr(l,P)) C/M
Pcz T
follows from the last formula.

In order to finish the proof, it only remains to prove the reverse inclusion, assuminiyl tisat
Gould integrable. To this aim, fix> 0 and any partitiof? of T such that/; M C 6(1,P’) 4 eBx
holds, for all partitiong’ finer thanP. Then

/TM Ccl ( U o(l,P)) + eBy.

Pes
Then, by the arbitrariness ef the desired conclusion followg.

Now, assuming tha¥l is integrable, the additivity of itsitegral mapping M will be proven
together with the equivalence between the integrability of positive functiongh respect to
M and with respect td, at least wherf is bounded. So, at least for bounded positive map-
pings f, integrability with respect t is equivalent to integrability with respect to an additive
multimeasure (with the same integral).

Remark 4.2. Observe that, since the embedding theorem appllesan be always identified
with Uy, so thatVl can be viewed as a single-valued mapping, taking valu€$@) and so all
the results concerning Gould integrability in Secfipn 3 can be appliétl to
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Ho): From now on the fuzzy multisubmeasuve: o7 — ck(X) will always be assumed
of bounded variation and satisfying the conditions in Thedrem 4.4, namely there exists
a compact and convex skt such thato(1,P) C K for all partitionsP, so thatM is
integrable inck(X).
First of all, observe that, in those conditiorfs,14dM exists, for every seh € o7, essentially
with the same proof of Theoreim 4.4. Next,

Proposition 4.5. The function N, defined ineZ as My(A) = [7 1adM, is additive.
Proof. The result is a consequence of Proposifion 3.5, and Thelorerg 4.3.

Now, notice that, under the above conditions, @& )-valued measurgy, —Uw (which is
non-negative, of course) has null integral. This almost immediately implies the following result.

Theorem 4.6.Let f: T — [0, be any bounded mapping. Then f is M integrable if and only
if it is Mg-integrable, and the integrals coincide.

Proof. Assume thaf is integrable with respect td. Then itisUy-integrable, antl ( /7 fdM) =

J+ fdUnm. Now, it is sufficient to apply CoroIIa.6 to deduce tHas integrable also with re-
spect tdJy, with the same integral, 90 (7 fdM) = J; fdUy = J; fdUy,, which also shows
that [ fdUy, is in the range obJ. Thanks to Theorein 4.3 this is enough to conclude fhat
integrable with respect thly and the two integrals agree. A reverse argument also shows the
opposite implication, so the proof is complege.

Also integrability on measurable subsets can be deduced, in the usual manner.

Proposition 4.7. Let f: T — [0, [ be any Gould integrable mapping with respect to M. Then,
if A'is any fixed element af, the mapping 14 is integrable too.

Proof. It is analogous to Propositi¢n 3.4.
Moreover
Proposition 4.8. M, Mg have the same variation measure.

Proof. Fix arbitrarily A € o, and denote by?, the family of all finite partitions ofA. Then,
thanks to Theorein 4.44o(A) = cl(U{3iM(Bi) : (Bi)i € Za}). In particular,M(A) C Mg(A),

and, for any partitior(B;); in Za, one hasy; IM(Bj)|n < ¥ |Mo(Bi)|n < vivy(A). This clearly
implies thatvy (A) < vm,(A).

Conversely, fix any > 0 andA € 7. For every partitionP = (Bi)i’\':1 € Pa, and every in-
dexi, sinceM is integrable, there exists a partitiéh= (B; ;); € ¥ such thaiMo(Bi)|n <

|3 M(B ))In+&/N<3;IM(Bj)ln+e/Nandsdy; [Mo(Bi)[n < 3i 5 IM(B{ ) In+e < vm(A) +
€. By the arbitrariness dP € & and ofe > 0, it follows v, (A) < vm(A). 1

In the sequel, assume that is a c-algebra. Also lefl : &/ — ck(X) be any fixed fuzzy
multimeasure. Followind [24, 33] forx > 0 andE € <7, let Ar (E, ) be thea-approximate
rangedefined by:Ar(E, ) = {r € [0,+) : h(F'(H),rM(H)) < avm(H), YH € &/ NE}.

Remark 4.3. Observe that, by Theordm 4.2, using the embeddinig is possible to formulate
the a-approximate range in the following way:

Ar(E,a) = {re0,4):||Ur(H)—=rUm(H)|lo < oam(H),VH € &/ NE},
wherem:=Uy. In facth(F'(H),rM(H)) = |[Ur(H) —rUm(H) ||« and
M(H) = supy [[Um(Ei)lle = SUPY IM(E)|n = v (H).
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Theorem 4.9. ([33, Lemma 3.3]Letl < vy (i.e. Ve > 0, 3 8(¢) = & > O such that for every
E € & withw (E) < 9, itfollows & (E) < €). Then, for every > 0, the property A(E, @) # 0
is v -null difference.

Theorem 4.10.Let]3 be a -null difference property such tht is w-exhaustive on T. Then
there exists apy-exhaustion of T(B;);, such that every Bhas P and T= UB;.
|

Proof. Since’} is vv-exhaustive o, there exists &y -exhaustion ofl, denoted by(E;)i¢) ,
such that every; has3. Thus

No
(4.1) Ve > 0,3 ng(e) =g € N such thatm (T\ | JE) <e.

i=1
LetEop =T\ U Ei. From the previous inequality it resulig (Eg) = 0. Let (Bj)ic| be the family

iel

of sets defined byB; = EgUE; € &7 ,B; = E; € &7 fori > 2. Thenvy(B1) = vm(E1) > 0 since
v (E1) < wm(B1) < vm(Ez1) +vm(Eo) = vm(E1) andvm(B;) = vm(E;) > 0, for everyi > 2.
Obviously,T = Ui B;. Itis U, B = EqU (U°,Ej). Sincev(T\ UMY, Bi) <wm(T\U®, E) <
g, then(B;)i¢ is avi-exhaustion off . Now, for everyi > 2, B; = E; has3. So, it only remains
to prove thaB; has3. By the relations:

B1AE; = (E()U El)AE]_ = Eo\El CEy=0< V|\/|(B]_AE1> < VM(E()) =0,

it follows thatvy (B1AE;) = 0. Since} is viy-null difference andg; has3, one concludes that
B, has}3. 1

Definition 4.5. A multimeasurel : .o — ck(X) is said to be dominated by Mf there is a
constanb > 0 such thatl" (E)|n < bw(E), for everyE € /.

Observe that if” is dominated by thenl" < vy.

Lemma 4.11.(see[32, Lemma 2.9] for semivariatiorfor every Ec o7 with w (E) > 0O, there
exists Be &/ NE, such that m(B) < 2|M(B)|p.

Proof. By contradiction, there exists an eleméht <7, with v (E) > 0 such that(B) >
2|M(B)|p, for all measurable seBC E, with vy (B) > 0. Fixe > 0 arbitrarily and pick a disjoint
family By, ..., Bx of measurable subsetsBf such thaty (B;) > 0 for alli andy; [M(B;)|n+ € >
vm(E). Sincewy is additive, from the contradiction assumed we obtgitE) = 3 vm(Bj) >
25 IM(Bi)|n > 2vm(E) — 2¢. Sincee is arbitrarily small it follows that (E) < 0, giving a
contradiction.n

We state now our main theorem, which is inspired/by [32, Lemma 3.1].

Theorem 4.12.[Radon Nikodym]Let M andl” be cKX)-valued fuzzy multisubmeasures, sat-
isfying the condition fl Suppose moreover thitis additive and

4.12.1)T is dominated by M
[4.12.2) for everye > 0, the set property A[E, €) # 0 is w-exhaustive on every E <7 .

Then there exists an M integrable bounded functiom - [0, [ such that for every EE <7 it
isT(E) = [g fdM.

Proof. Thanks to Theorenijs 4.3 apd 4.6, it will be sufficient to prove that, for the single-valued
mappingsUr andUy,, there exists a bounded measurable Radon-Nikodym derivétivae-
deed, sincéd is dominated by, the same property holds with respecMg, sincevy = v,

by Propositiof 4/8. Of course, then the single-valued additive majpfingdominated byy,.

Now, it will be proved thatl and Mg satisfy the condition of exhaustivity of the property
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Ar(E,e) # 0. To this aim, the notatioAr v (E, €) will be used, in order to stress the roleMfin
Ar(E,¢e). Then, assuming that the &t (E, €) is nonempty, it also turns out thag v, (E, €)
is nonempty. Indeed, lgt > 0 andr € Ar m(E, €) be fixed. Then, for every measurableC E,
there exists a finite partitiofiHy, ..., H; } of H, such thath(rMo(H),r 5!_; M(Hi)) < p. Now,
one hash(T'(H),Mo(H)) < h(T(H).r 3{_;M(Hi) +p = h(Zi_; T (Hi),r $i_sM(H)) +p <
S h(T(Hi),rM(Hi) +p < eSl_ vm(H) +p = ewm(H) +p = e, (H) +p. Sincep is arbi-
trary, this shows that € Ar v, (E, €), and, in turn, this implies the exhaustivity of the property
Ar(E, €) # 0 also with respect tMy. Of course, since is an isometric embedding, the mea-
suredJr andUy, also enjoy the same properties of absolute continuity and exhaustivity.
Once a bounded measurable Radon-Nikodym derivdtiias been found, fddr with re-
spect toUy,, then one has integrability of with respect toMo by the Theorenj 4}3 and
U (Jg fdMg) = [ fdUm, = Ur(E), while J¢z fdMg = [z fdM, holds true for every measur-
able se€ thanks to Theoreim 4.6.
So, for allE € &7 one hadJ ([¢ fdM) =Ur(E) and thereforgz fdM =T (E). So, the problem
is to find a bounded measurable mappihgderivative ofUr with respect tdJy,. In order
to prove this we can observe thatNf has bounded variation, théh,, is obviously strongly
bounded; moreover the pdihy,,Ur satisfies the assumptions 6f [32, Lemma 3.1] and so an
integrable functionf in the sense of [32] can be found. Finally, since sfide non negative,
bounded andahy,-totally measurable then, by [21, Theorem 4.9] iMg integrable.x

We remark that the result is new even in the single-valued case, since additivity is requested
just from one of the measures involved, so Thedrem|4.12 extends theorems given in [32, 33].

Moreover, as an application, we can consider a Gould integrable multifunction (in the sense
of [36, Definition 16]) ¢ : T — ck(X) with respect to a probabilityt; let M be its Gould
integral: M : &7 — ck(X). Thanks to[[35, Theorem 11] the set valued functibrnis additive,
and satisfies the conditidity. Observe moreover that, thanks to the Radstrém’s embedding and
[36, Definition 16], an analogous version of Corollary|3.4 holds when the measure involved is
scalar and the integrand@ Q)-valued. Then we have

Corollary 4.13. Let " be any ckX)-valued fuzzy multimeasure, satisfying, 4.12.1)and
.2) Then there exists a scalar M integrable bounded mappind f— R such that,
for every Ac &7,

(42) r(A) = [ fHomdu.

Proof. Thanks to Theorein 4.12, there exists a bourdédtegrable mapping : T — R*, such

that, forallAe o7, [, f(t)dM =TI (A). By [36, Theorem 5] it is enough to prove the assertion for

A =T. Without loss of generality we also can consigeM, " as objects with values i6(Q),

as pointed out in Remafk 4.2 and in Theoren] 4.2. In this new setting, we can use Corollary
(in both versions: scalar functions aB)-valued measures and viceversa) and so, there
exists a sequence of partitio(|,), in T such that, for every € N and for every partitior?

finer thanP,, one has:y ;.p|M(J) — @(ty)u(J)] < % S1ep|F(3) — Ft)M()] < % for every
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choice ofty € J. Then, for evenyP finer thanPk,,

|3 (9RO -T(T) < 3 [1)e)RE) ~TO)] <
< 3 If)ptuO) ~ (M) + 3 M) 1) <
< 3 1)1 p@R) ~M)|+ [ < C0-+sup ),

So(o(fe,P))pis convergentirc(Q) toI'(T), and sof ¢ is u-integrable and

The last result of Corollary 4.13 can be viewed as an integration by substitution for fuzzy
multisubmeasures and (4.2) can be written as

/fdM:/f(pdu, VAE .
A A

5. CONCLUSIONS

We have studied the Gould integrability of a scalar functiowith respect to a set-valued,
non necessarily additive measumeln particular we have focused our attention on compact and
convex-valued measures. In this case, thanks to the well-known Radstrém’s embedding theo-
rem, mcan be considered as a measure taking values in the Banach G{ti}¢e In addition,
the notion ofintegrability has been introduced fom, with the purpose to avoid the requirement
of additivity. In fact, thanks to the Radstrom’s embedding, we are able to establish a Henstock-
type theorem for this kind of integral. This, in turn, implies that amggrablemeasuran can
be seen as an additive measure, plosgligibleone. Finally a Radon-Nikodym Theorem is ob-
tained in this situation which is new also in the finite dimensional case, since one of the involved
set-valued measures is non-additive. Moreover, a u-substitution result for fuzzy multimeasures
is established.
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