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2 IVAN MOJSEJ ANDALENA TARTALOVA

1. INTRODUCTION

Consider the third-order nonlinear differential equations with quasiderivatives of the form

) (5 (552 0) ) +asew =0, 120
Throughout the paper, we always assume that

(H1) r,p,q € C(la,0),R), r(t) >0, p(t) >0, ¢g(t) >0 on [a, o),
(H2) feCRR), f(u)u>0 for u#D0.

For the sake of brevity, we introduce the following notation:

/ N !
g gLy el (19,;/) = Lgmy e (1 (le) ) = (),
r p\r p p\r

The functionsz?, i=0, 1, 2, 3, we call thuasiderivative®f z. In addition to (H1) and (H2),
we will sometimes assume that

(H3) lim inf () > 0.

lu|—o00 U

By a solutionof an equation of the forniN'), we mean a functiomw : [a,00) — R such
that quasiderivativesl (¢), 0 < i < 3, exist and are continuous on the interjaloo) and it
satisfies the equatiofV) for all ¢ > a. A solutionw of equation(N) is said to beproperif it
satisfies the condition

sup{|w(s)| :t < s < oo} >0 for any ¢t > a.

A proper solution is said to bescillatoryif it has a sequence of zeros convergingxo oth-
erwise it is said to ba@onoscillatory Furthermore, equatiofiV) is calledoscillatoryif it has
at least one nontrivial oscillatory solution, andnoscillatoryif all its nontrivial solutions are
nonoscillatory.

Let AV/(IV) denote the set of all proper nonoscillatory solutions of equatiéih The set
N (N) can be divided into the following four classes in the same way as in [1, 2, 4]:

No={z e N(N), 3t, : z(t)z(t) <0, z(t)zP(t) >0 fort >1t,}
N ={z e N(N), 3t, : z(t)zM(t) >0, z(t)zP(t) <0 for t >1t,}
No={z e N(N), 3t, : z(t)zM(t) >0, z(t)zP(t) >0 fort >1t,}
Ns={z e N(N), 3t, : z(t)zV(t) <0, z(t)z?(t) <0 fort >t,}

Furthermore, with respect to asymptotic behavior of the solutions in the clagsesV;, we
can divide the clasd/; [V3] into the following two disjoint subclasses

MB:{xGM:tILI?Om(t):lm#O}, /\fOO:{JUENo: tllrgox(t):O}

[ f:{xe./\fg,:tlil?om(t):lz;«éO}, N:?:{xENg: limx(t):OH

t—o00

and also the clas¥/; [N3] into the following two disjoint subclasses

NE = {x €N+ Jim [a(t)] = M, < oo}, NZ® = {x e N, : lim |z(t)| = oo}

t—o0

[NB = {xGNQ: tlg})lo\x(t)] =M, < oo}7 N3© = {xGNQ: tlg})lo|x(t)| :ooH.
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If solution = € A, then its quasiderivatives satisfy the inequalit§} ()= +1(t) < 0 for
1 = 0,1, 2, for all sufficiently larget. Using the terminology as in 1, 2] 4,112,114], we
call it aKneser solution
There are a lot of results (see, e.gl[]1,13,/4, 5, 15]) devoted to the oscillatory and asymptotic
behavior of the linear case of equatigi), namely of the linear differential equation

(]% (%(t))) Fale(t) =0, t>a

The nonlinear case, i.e. equatioN), has been largely studied inl [1,(2,[4] 14]. In particular,
many authors investigated the oscillatory and asymptotic properties of solutions of differential
equations of the third order with deviating argument. Among the extensive literature on this
field, we refer tol[8, 9, 10, 12, 183, 1/6,/17,/18] and to the references contained therein.

The aim of this paper is to study the asymptotic behavior of nonoscillatory solutions of equa-
tion (V). For this purpose, we divide all proper nonoscillatory solution§\f into the above
mentioned several classes with respect to their asymptotic behavior. Such a classification plays
an important role in the study of the qualitative behavior of equat®h Further, we use a
topological approach based on the following fixed point theorem:

Theorem 1.1. (Schauder fixed point theorem) Lete a non-empty closed convex subset of a
normed linear space E and I&t: 2 — Q be a continuous mapping such tiag?) is relatively
compact in E. Thefi” has at least one fixed point {n.

After the summarization of some known definitions and notation, in Section 2 we present the
necessary and sufficient conditions for the existence of nonoscillatory solutions of equation
(N) with a specified asymptotic behavior agends to infinity. These results are interesting
by themselves by virtue of their necessary and sufficient character. Furthermore, our results are
presented as integral criteria that involve only the functjgnsg. Several examples illustrating
the main theorems are also provided.

We point out that our assumption on the nonlineafitig related with its behavior only in a
neighbourhood of infinity. Moreover, not only monotonicity of the nonlineafitig unneces-
sary but also no assumptions on the behaviof of R are required. We also remark that the
condition (H3) is needed only for some results concerning the dlass

We close the introduction with the following notation:

](ui):/aooui(t)dt, I(ui,uj):/aooui(t)/atuj(s)dsdt, ij=1,2

00 t s
I(ui,uj,uk):/ ul(t)/ uj(s)/ ug(z)dzdsdt, i,j,k=1,2,3,

whereu;, i = 1,2, 3, are continuous positive functions on the interjvabo).
For simplicity, we will sometimes write(co) instead oflimy; . u(t).

2. MAIN RESULTS

We begin our consideration with several results concerning the asymptotic behavior of solu-
tions of equation(V) in the classV;. The following result provides sufficient conditions for
the existence of solutions in the clasd’.

Theorem 2.1. Let one of the following conditions be satisfied:
(@ I(p,r) <oocandl(q) < oo,
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(b) I(p,q) <ocandi(r) < oc.
Then equatioriV) has a bounded solutianin the class\,, i.e. NP # @.
Proof. We prove the existence of a positive bounded solution of equalgrin the classV;.

Suppose (a). Lek = max {f(u) : u € [c,d]} where ¢, d are constants such that ¢ < d
and lett, > a be such that

(2.1) /Oop(s) /Sr(v) dvds <1 and /OO a(s)ds < 1=

to to to

Let us define the set

A ={u € C([ty,0),R) : ¢ <ul(t) <d},

where C([ty, o), R) will denote the Banach space of all continuous and bounded functions
defined on the intervdk,, oo) with the sup normj|u|| = sup {|u(t)|,t > to}. Clearly,Ais a
non-empty closed, convex and bounded subsét(@f,, co), R). For everyu € A we consider
amappindl’ : A — C([to, 00), R) given by

2 (t) = (Tu)(t) = c+/ r(7) /Oop(s) /S q(2)f(u(z))dzdsdr, t>t.

to T to

In order to apply the Schauder fixed point theorem (Thegrei 1.1) to the mappinhig suffi-
cient to prove thal”’ mapsA into itself,7" is a continuous mapping i and7'(A) is a relatively
compact set ir'([to, o0), R).

(i) T mapsA into A. In fact,z,(t) > ¢ and in view of [2.1), we obtain

nit) = ex [r6) [T o) a0 e az dsar

to to

K /t:T(T; [0 [ i
et K (/too a(2) dz) (/t:or(T) /Toop(s) dsdr)
P (/t:oq(z) dz) (/t:op(s) /t:r(f) des) <d.

(i) T"is continuous. Lefu, }, n € N be a sequence of elementsdfuch thatim,, . ||u, —
ul| = 0. SinceA is closedu € A. By the definition ofI” and in view of [2.11), we see that

IN

IN

IGMKO—UWGHS/WGA@W,tzm

to

where

Gu(z) = q(2)[f (un(2)) — flu(2))].
Thus
(2.2) | T, — Tul| < /t Gn(z)dz.

It is easy to see thadim,,_.., G\,(z) = 0 which is a consequence of the convergeage— u in
C([to, o0), R) and that the following inequality holds

/ TGz ds < 2K /: q(2) dz.

to
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Sincel(q) < oo, the Lebesgue’s dominated convergence theorem yields

o0

lim Gn(z)dz = 0.

n—oo tO

Consequently, fronj (21.2) we halien,, ., ||T'u, — Tu|| = 0, i.e. T'is continuous.

(iii)y T(A) is relatively compact. It suffices to show that the family of functi@ig\) is uni-
formly bounded and equicontinuous on the intef¥@loo). The uniform boundedness 81 A)
immediately follows from the facts thdt(A) C A andA is a bounded subset 6f([ty, o0), R).
Now, we prove thaf’(A) is an equicontinuous family of functions &, co). This will be ac-
complished if we show that for any given> 0, the interval(t,, co) can be decomposed into a
finite number of subintervals in such a way that on each subinterval all functions of the family
T(A) have oscillations less than(see, e.g.[[11], p. 13).

Letu € A andty, > t; > to. Then, taking into accourt (2.1), we have

(2.3) [(Tu)(ta) — (Tu)(t)] < K/tQT(T) /Oop(s) /Sq(z) dzdsdr

to
< (d—- c)/ p(s)/ r(r)drds — 0 as t; — oo.
t1 t1

We conclude from the above inequalities that for any giwen0 there exists* > ¢, such that
forallu € A, we have

This shows that the oscillations of all functions of the faniilyA) on [t*, co) are less than.
Now, letty < ¢; < to < t*. In view of (2.1), [2.8) and the fact th@fp) < oo (it follows from
I(p,r) < 00), we get

(Tu)(t) — (Tu)(t)] < (d— ) / Cr(r) / " p(s)dsdr < (d— ¢)Mylty |

t1 T

[e.9]

whereM; = max < r(7) p(s)ds : T € [ty, t*]}. Hence, for any givem > 0 there exists
5 > 0 such that for alk € A
|(Tu)(te) — (Tu)(tr)] <e if |ta —t1] <.

Consequently, the interv@lly, o) can be divided into a finite number of subintervals on which
every function of the family’(A) has oscillation less than Thereforel’(A) is an equicontin-
uous family of functions off,, co). HenceT'(A) is relatively compact.

Now, the Schauder theorem yields the existence of a fixed po@tA for the mappingl’
such that

o(t) = e+ / () / " s) / T a() dzdsdr, €3> ho.

to T to

AS
)= [T 006) [Caie)dzds >0 ad 20 =~ [ g (e ds <0,

it is clear thatr is a positive bounded solution of equatigN) in the classV,, i.e.x € NP.
Suppose (b). The proof is the same as in the case (a) except for some minor changes. There-
fore, we omit it. This completes the proaf.
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Remark 2.1. We observe that the existence of a negative bounded solution of equatjdn
the classV; can be proved by using similar arguments. This fact about negative solution also
holds for some next results.

The following example shows the meaning of Theofem 2.1.

Example 2.1. We consider the differential equation
! 8t

2.4 2+ ((2+1)20)) + ———2%(t)sgnz(t) =0, t>2.
@y ((+1) (B + ) 0)) + Ga e Osalt) >

1 8t
—,q(t) = —— and
e = Gaiay
f(u) = u?sgnu. Itis easy to verify that the assumptions of Thedrerh 2.1 are fulfilled and so
2t + 1
24+1°

This is the equation of the foriV) wherer(t) = p(t) =

equation(2.4) has a solution in the clas§?. One such solution is the functioft) =

We also have the following result for the solutions of equatidi in the classVP.
Theorem 2.2.1f I(p, q) = oo, thenN = @.

Proof. Assume thatr € A/B. Without loss of generality, we suppose that there exists a
such thatr(t) > 0, zlU(t) > 0, zl(t) < O forallt > T. Leta(oco) = M, < oco. Asx is
a positive increasing function andis a continuous function on the interval(7"), M, ], there
exists a positive constant m such that

(2.5) m =min{f(u):u € [z(T), M,]}.
Integrating equatiofiV') twice in [T, ¢], we obtain

0) =) 4220 [ pts)as = [ o) [ ath) i) an s

T T T

and therefore .

2W(t) < 20(T) - /

T
Using this inequality with[(2]5), we have

W) < 20T — m/T p(s)/ q(k) dk ds,

s
T

p(s) / gk f (k) dk ds.

which gives a contradiction as— oo, because function!'(#) is a positive for alt > 7. The
caser(t) < 0, 21(t) < 0, 212 (t) > 0 for all t > T* (whereT* > a) can be treated similarly

From Theorem 2|1 and Theor¢m|2.2, one gets immediately the following result.

Corollary 2.3. LetI(r) < co. Then a necessary and sufficient condition for equation (N) to
have a solution: in the classV}? is that(p, q) < .

For solutions in the clas§™, the following theorem holds.
Theorem 2.4.1f I(r) < oo, thenN® = &

Proof. Let x € N7°. Without loss of generality, we suppose that there exists a such that
z(t) > 0, 20(t) > 0, 28(t) < 0forallt > T. As z[' is a positive decreasing function, we
have that'(¢t) < #!Y(T)r(¢) for all t > T. Integrating this inequality ifil’, ¢], we obtain

t

z(t) < z(T) + x[l](T)/ r(s) ds,

T
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which gives a contradiction as — oo, becauser is an unbounded solution. lf(t) < 0,
2l(t) <0, 2(t) > 0forall t > T* (whereT* > a), similar arguments holcj

Combining Corollary 2.3 and Theorgm P.4, we get the following.

Corollary 2.5. Let I(r) < co. Then a necessary and sufficient condition for equation (N) to
have a solutiorr in the classV; is thatl(p, q) < .

Now, we turn our attention to the solutions in the clAgs The following results concern the
existence of solutions of equati¢fV) in the classV.?.
Theorem 2.6. Let one of the following conditions be satisfied:

(@ I(r,p) <occandl(q) < oo,
(b) I(q,p) < candi(r) < occ.

Then equatioriNV) has a bounded solutianin the class\s, i.e N # @.
Proof. We prove the existence of a positive bounded solution of equalgrin the class\s.

Suppose (a). Lek’ = max {f(u) : u € [c,d]} where ¢, d are constants such that ¢ < d
and letty, > a be such that

(2.6) /OO r(7) /Tp(s) dsdr <1 and /00 q(s)ds < d[;_c.

to to to

Let us define the seh in the same way as in the proof of Theorgm| 2.1. For evesy A we
consider a mappin@; : A — C([to, o), R) given by

x,(t) = (Thu)(t) = c+/ r(7) /Tp(s) /00 q(2)f(u(z))dzdsdr, t>t.

to to s
Taking into accoun{ (2]6) and using similar arguments as in the proof of Th¢orem 2.1, it is easy
to verify that7} mapsA into itself, 77 is a continuous mapping iA and7’(A) is a relatively
compact set irC’'([to, o), R). Consequently, by the Schauder fixed point theorem there exists a
fixed pointz € A such that

() :c+/tr(7) /Tp(s) /OO 0(2) f(x(2)) dzdsdr, t>to.

to to s

As

o0

(1) = / p(s) /Ooq<z>f<x<z>>dzds>o and  22)(t) = / 1(2)f(x(2)) dz > 0,

to s t

it is clear thatr is a positive bounded solution of equati@N) in the class\Vs, i.e.z € NP.
Suppose (b). Using similar arguments as in the case (a), we are led to the conclusion that
NP # &. Therefore, we omit it. The proof is now complege.

Example 2.2. Let us consider the differential equation

1 A 8t
2.7 — (2'(t >+ 2(t) =0, t>1.
2.7) (t (£2'(®)) (14 12)" arctg®t () -

AsI(g,p) < oo andI(r) < oo, Theorenj 2J6 yields that equatigB®.q) has a solution in the
classNVP. Really, one such solution is the functioft) = arctgt.

Theorem 2.7.1f I(q) = oo, thenNP = &.
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Proof. Assume thatr € A2, Without loss of generality, we suppose that there exists «
such thatz(t) > 0, 2MU(t) > 0, 2P(t) > 0forallt > T. Letx(co) = M, < co. Asz is
a positive increasing function andis a continuous function on the interval(7'), M, ], there
exists a positive constant m such that

(2.8) m =min{f(u):u € [z(T), M,]}.

By integrating equatioiV) in [T, t], we get
t

£2(t) = 22(T) - / 4(s) f(x(s)) ds.

T

This equality with|[(2.B) yields that

22(t) < (1) — m/th(s) ds,

which gives a contradiction as— oo, because functionl? (¢) is a positive for alt > 7'. The
casex(t) < 0, zMM(t) < 0, z8(t) < 0 forall t > T* (whereT* > a) can be treated in the
similar way.

From Theorem 2|6 and Theor¢m|2.7, one gets immediately the following result.

Corollary 2.8. LetI(r,p) < co. Then a necessary and sufficient condition for equation (N) to
have a solutiorr in the class\V? is thatI(q) < .

The following result also holds.
Theorem 2.9.Let (H3) hold. If/(g) = oo, then\;® = .

Proof. Let x € N5°. Without loss of generality, we assume that there exists a such that
2(t) > 0, 210(t) > 0, 22(t) > 0 forall t > T. Becausgz?)(t))" = —q(t) f(x(t)) < 0 for all

t > T, x1%(t) is a positive decreasing function and thus. 712 (c0) < co. Asz(c0) = oo, the
assumption (H3) implies that there exists a positive number Kiare 7" such that

(2.9) / iig)) > K for all £ > T,

Integrating equatioV') in the interval[77, t|, we obtain
t

(2.10) 22Ty — 22(t) = / 4(s)f (x(s)) ds.

T1
In view of (2.9) and the fact that is an increasing function, the equalify (2.10) gives
t t
22(1) — 2P t) > K [ q(s)x(s)ds > Kx(Tl)/ q(s) ds.

T1 Tl
Whent — oo, we get a contradiction witli(q) = oco. The caser(t) < 0, zIU(t) < 0,
22 (t) < 0forall t > T* (whereT* > a) can be treated similarly

Corollary[2.8 and Theorem 2.9 give the following result.

Corollary 2.10. Let (H3) hold and/(r, p) < co. Then a necessary and sufficient condition for
equation (N) to have a solutionin the classV; is that(q) < occ.

In the sequel, we present several results regarding the asymptotic behavior of solutions of
equation(V) in the class\Vs. For the existence of solutions @¥) in the classVy, we state the
following result.
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Theorem 2.11.1f I(r) < oo and I(p, q) < oo, then equation (N) has a solutianin the class
N3 such thafim; .. z(t) = 0, i.e. NY # @.

Proof. We prove the existence of a positive solution of equatfidf in the class\V; which
approaches to zero as— oo.
Lett, > a be such that

(2.11) K/ / s)dsdr < 1,

where
K:mm@myue@g[?mgﬁﬂ.

For convenience, we make use of the following notation:

H(t) = /Oor(s) ds, t>t.
Let us define the set
A ={ue C([tp,00),R) : H(t) <wu(t) <2H(1)},

whereC'([ty, o0), R) denotes the Banach space of all continuous and bounded functions defined
on the intervalt,, co) with the sup norm|u|| = sup{|u(t)|, t > to}. Clearly,A is a non-empty
closed, convex and bounded subse€ft,, o), R). For everyu € A we consider a mapping

Ty : A — C([to, 00), R) given by

x,(t) = (Tou)(t) = H(t) + /too r(7) /Tp(s) /S q(2)f(u(z))dzdsdr, t>t,.

to to

In order to apply to the mappirif, the Schauder fixed point theorem (Theoifen) 1.1), it is suf-
ficient to prove thafl;, mapsA into itself, 75 is a continuous mapping ih and73(A) is a
relatively compact set it'([to, o0), R).

(i) 75 mapsA into A. In fact, z,(t ) and in view of [2.1]L), we have

> H(t
() = H(t)—l—/ / / ))dzdsdr
< +K/ / /t o(2) dz ds dr

< H(t )+K</to p(s)/to q(z )dzds) (/fr(ﬂah) < H(t)+ H(t) = 2H(t).

(i) T is continuous. Lefu, }, n € N be a sequence of elements®dfuch thatim,, . ||u, —
u|| = 0. SinceA is closedu € A. From the definition of’,, we obtain

KE%XQ—UWWHS/WGAﬂM,tzm

to

where T .

Gu(r) =r(r) [ 0s) [ a(a)If(un(2)) ~ Fu(a)] de ds.
Thus ’ )
(2.12) | Tou,, — Thul|| < /tooo Gy (7)dr.

AJMAA Vol. 5, No. 1, Art. 12, pp. 1-17, 2008 AJMAA


http://ajmaa.org

10 IVAN MOJSEJ ANDALENA TARTALOVA

It is easy to see thaim,_.., G,,(7) = 0, which is a consequence of the convergemngce- u in
C([to, o0), R) and that the following inequality holds

/t:o Gn(T) dTSQK/t:OT(T) /tOTp(s) /t:Q(Z) d= ds dr.

Sincel(r, p,q) < oo, the Lebesgue’s dominated convergence theorem yields

lim Gn(1)dr = 0.

n—oo to

Consequently, fronj (2.12), we halien,, ., ||Tou, — Toul| = 0, i.e. T; is continuous.

(iii) TH(A) is relatively compact. It suffices to show that the family of functi@agA) is uni-

formly bounded and equicontinuous on the intef¥gloo). The uniform boundednessdf(A)

immediately follows from the facts thdt(A) C A andA is a bounded subset 6f([ty, o), R).

Now, we prove thaf,(A) is an equicontinuous family of functions on the interj¢al co).
Letu € A andt, > t; > to. From the definition of’;, we have

(2.13) (Tou)(s) — (Tou)(ty) = — / " (s)ds — / ) / " o(s) / ") f(u(2)) dz ds dr

t1 t1 to to

and so, taking into accourjt (2]11), we obtain
(Tou)(t2) — (Tow) (1)) < H(ty) + / r(7) / p(s) / 4()f (u(2)) dz ds dr

t1 to to

< H(t)+ K (/t:op(s) /t:q(z) dz ds> </:OT(T> dT) < 2H(t).

SinceH (t;) — 0 ast; — oo, for any given= > 0 there exists" > ¢, such that for alk. € A,
we have

|(T2U) (tg) — (TQU)(tl)’ <e€ if tg >t >1T.
This shows that the oscillations of all functions of the familyfA) on [T, o) are less thaa.
Now, letty < t; <ty < T. Then the equality (2.13) yields

‘(TQU/)(tQ) — (TgU)(tl)’ S M1|t2 - t1| + KM2|t2 — tl‘
where
M, = max{r(s) : s € [to, T|}, My = max {T(T)/ p(s)/ q(z)dzds : T € [to, T]} :
to to

Hence, for any givea > 0 there exist$ > 0 such that for all: € A

’(TQu)(t2> — (TQU)(t1>| <e€ if |t2 — tll < 5

Consequently, we can divide the interjil oo) into a finite number of subintervals on which

every function of the family;(A) has oscillation less than Thereforel»(A) is an equicontin-

uous family of functions off,, co) (see, e.g.[[11], p. 13). Hendg(A) is relatively compact.
Now, according to the Schauder fixed point theorem there exists\ such that

:c(t):/toor(s) ds+/too7“(7) /Tp(s) /Sq(z)f(x(z))dzdsdT, >t

to to
It is clear thatr is a positive solution of the equati@iV) in the class\Vz which approaches to
zero ag — oo, i.e.x € Ny. This completes the proog

We have the following result for solutions of equatigW) in the classV;.
Theorem 2.12.1f I(r) = oo, thenN3 = @.
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Proof. Let x € N3. Without loss of generality, we suppose that there exi5ts « such that
z(t) > 0, 21(¢) < 0, 23(t) < 0forallt > T. As 2!l is a negative decreasing function, we
have that'(¢t) < #!Y(T)r(¢) for all t > T Integrating this inequality ifil’, ¢], we obtain

t

z(t) < z(T) + xm(T)/ r(s) ds.

T

Whent — oo, we get a contradiction because the functigt) is a positive for alt > 7'. The
caser(t) < 0, z(t) > 0, 212 (¢t) > 0 for all t > T* (whereT* > a) can be treated similarlys

As a consequence of Theorejms 2.11[and|2.12, we get the following result.

Corollary 2.13. Assume thaf(p, q) < co. Then a necessary and sufficient condition for equa-
tion (N) to have a solution in the classV? is that(r) < .

The next results deal with the solutions of equatiaf in the classV2.
Theorem 2.14.1f I(r,p, q) = oo, thenNZ = &,

Proof. Let z € N.2. Without loss of generality, we suppose that there exists a such that
x(t) >0, 2(¢) < 0,2P(t) < 0forallt > T. Letz(co) = I, > 0. Integrating equatioN)
three times in the interval’, ¢|, we get

t

r(s)ds + 23(T) / t r(s) / S p(2) dzds

T T

z(t) = x(T) + z(T) /

T

_/tr(s) /Tsp(z) /Zq(T)f(x(T))dezdS.

T T
Thus

(2.14) z(t) < z(T) — / r(s) /Sp(z) /z q(7)f(z(7))dr dz ds forallt > T.

T T T

The continuity of the functiorf («) on the intervall,, z(T")] ensures the existence of a positive
constantk” such that

(2.15) K =min{f(u):u € [l,,z(T)]}.
The inequality[(2.14) with (2.15) yields

() < (T) — K/Ttr(s) /Tsp(z) /Zq(T) drdzds  forall t>T.

T
Whent — oo, we get a contradiction because the functign) is a positive for alt > 7. The
casex(t) < 0, zl(t) > 0, 2B(t) > 0 forall ¢t > T* (whereT* > a) can be treated in the
similar way.

Theorem 2.15.1f I(r,p, q) < oo, then equation (N) has a solutianin the class\; such that
limy oo z(t) # 0, .. Nf # 2.

Proof. We prove the existence of a positive solution of equatfidf in the class\V3 which
approaches to nonzero constant as oc.

Let K = max {f(u) : u € [¢,d]} where c, d are constants such that ¢ < d and lett, > a
be such that

(2.16) /t:or(T) /tOTp(S) /t:q(z) dzdsdr < %C
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Let us define the seh in the same way as in the proof of Theorem| 2.1. For every A we
consider a mappin@; : A — C([to, o), R) given by

z,(t) = (T3u)(t) = c+ /too r(7) /Tp(s) /S q(2)f(u(z))dzdsdr, t>t.

to to
Taking into accounf{(2.16) and using similar arguments as in the proof of Thgorem 2.1, itis easy
to verify that7; mapsA into itself, 75 is a continuous mapping iA and73(A) is a relatively
compact set inC([ty,0),R). Consequently, the Schauder fixed point theorem ensures the
existence of a fixed point € A such that

(1) :c—l—/toor(r) /Tp(s) /Sq(z)f(x(z))dzdsdr, >t

to to

As

t

() = - / p(s) / Cg()f(2(2)) dzds <0 and 2P(t) = / 42 ((2)) dz < 0,

to to to
it is clear thatr is a positive solution of the equatidiV) in the classV; which approaches to
nonzero constant ds— oo, i.e.z € N. This completes the prook

Theorenj 2.15 is illustrated by the following example.

Example 2.3. Let us consider the differential equation

(2.17) (1 (tga:’(t))/)/ L e —o 131
' t (3t+1)e" T T

AsI(r,p,q) < oo, Theoren 2.15 secures that equat{@il7)has a solution in the clas&/?.

. . 3
One such solution is the functiarft) = TJF

Theorem$ 2.14 arjd 2]15 give the following corollary.

Corollary 2.16. A necessary and sufficient condition for equation (N) to have a solution
the class\VP is thatI(r, p, q) < co.

The following also holds.

Corollary 2.17. Assume thaf(p, q) < co. Then a necessary and sufficient condition for equa-
tion (N) to have a solution in the classV; is thatI(r) < oc.

Finally, we consider the solutions of equatigN) in the class\,. We prove the following
results for the existence of solutions(df) in the classV.

Theorem 2.18.1f I(q,p,r) < oo, then equation (N) has a solutianin the classV, such that
lim; o x(t) £ 0,i.e. NP # 2.

Proof. We prove the existence of a positive solution of equatfidf in the class\, which
approaches to nonzero constant as oc.

Let K = max {f(u) : u € [¢,d]} where c, d are constants such that ¢ < d and lett, > a
be such that

(2.18) /t:o q(z) /t:p(s) /tosr(T) drdsdz < dT_C

Let us define the seh in the same way as in the proof of Theorem| 2.1. For every A we
consider a mapping@;, : A — C([to, 00), R) given by

x,(t) = (Tyu)(t) = c+ /too r(7) /Oop(s) /00 q(z)f(u(z))dzdsdr, t>t.
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(i) Ty mapsA into A. In fact,z,(¢) > ¢ and in view of (2.1B), we have

T, (t) = c—i—/toor(T) /Toop(s) /:Oq(z)f(u(z))dzdsdT

< c+K/tooor(r)/Toop(s)/:oq(z)dzdsdf
= c—|—K/t:oq(z)/t:p(s)/t:r(T)desdz§d.

(i) Ty is continuous. Lefu, }, n € N be a sequence of elements®dfuch thatim,, . ||u,, —
u|| = 0. SinceA is closedu € A. The definition off, yields that

(Taen)t) — (T (o) < [ TG 21

to

Gal2) = 4(2)|f (1 (2) ™ / / ) dr ds.

Thus, we have the following

where

(2.19) | Tyw, — Tyu|| < / Gn(z)dz.

to

It is obvious thatim,, .., G,,(z) = 0 and

/: Gn(z)dz < 2K/: q(2) /t:p<5) /t:r(T) dr ds dz.

Sincel(q, p,r) < oo, applying the Lebesgue’s dominated convergence theorem, we obtain from
(2.19) thatlim,, . ||Tyu, — Tyu|| = 0 which means thdl, is continuous.

(i) T4(A) is relatively compact. It is easy to see that the family of functidp&\) is uni-
formly bounded. We need only to prove the equicontinuity’afA) on the intervalty, o).
Letu € A andty > t; > t,. Then we have

@20) (T - Twe) = [ () | " p(s) / " () f(ulz)) dz ds dr

t1 T S

and so

(Tan)(ty) — (Ta)(t)| < K / () / " p(s) / " 4(2) dzdsdn

= K/ q(z)/ p(s)/ r(r)drdsdz — 0 as t; — 00.
t1 t1 t1

From the above facts, we conclude that for any giwven0 there existd” > ¢, such that for all
u € A, we have

(Tyu)(ts) — (Tw) ()] <& if ta >t > T

Now, lett, < t; < to < T. The equality[(2.20) and the fact th&fz, p) < oo (it follows from
I(q,p,r) < o0) give the following inequality

(Thu)(t2) — (Thu)(tr)| < KMty — 4]
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o0 o0

where M = max 7‘(7’)/ p(s)/ q(z)dzds : T € [to, T]}. Hence, for any gives > 0
there exist® > 0 such that for aluse A
’(T4U)(t2) — (T4U)(t1)’ <e€ lf ‘tg — tll < (5

Consequently, we can divide the interji&l oo) into a finite number of subintervals on which
every function of the family;(A) has oscillation less than Thereforel,(A) is an equicontin-
uous family of functions off,, o) (see, e.g.[[11], p. 13). Hendg(A) is relatively compact.

From the preceding considerations, we see that Schauder fixed point theorem (Theprem 1.1)
can be applied to the mappifig. Hence, there exists a fixed pointe A such that

x(t):c+/toor(r) /Toop(s) /:oq(z)f(x(z))dzdsdT, >t

It is clear thatr is a positive solution of the equatidtV) in the class\, which approaches to
nonzero constant @s— oo, i.e.z € N. This completes the prooik

Theorem 2.19.1f I(q,p,r) = oo, thenNF = @.

Proof. Let z € NP. Without loss of generality, we suppose that there exists a such
thatz(t) > 0, 20(¢t) < 0, 2(¢) > 0 forall ¢t > T. Letz(co) = I, > 0. From equation
(N), it follows that (z2/(¢))" < 0 for all t > T. Hence 3 () is a positive decreasing function.
Integrating equatiofV') three times irt, co) and taking into account the facts tilat z(c0) <
00, 0 < 718 (00) < 0o and—oo < zltl(00) < 0, we obtain

(2.21) x(t) > / r(7) / p(s) / q(2)f(z(z))dzdsdr.
t T s
The continuity of the functiorf (u) on the intervall,, x(7)] ensures the existence of a positive
constantk’ such that
(2.22) K =min{f(u):u € [l,,z(T)]}.
In view of (2.21) and[(2.22), we have

() > K/too r(r) /Toop(s) /:O g(2)dzdsdr  forallt > T,

Hence, by interchanging the order of integration, we get fliatp,r) < oo. For the case
z(t) <0, zM1(t) > 0, 28(t) < 0 forall t > T* (whereT™* > a), similar arguments holcy
Theorems$ 2.18 arjd 219 give the following corollary.

Corollary 2.20. A necessary and sufficient condition for equation (N) to have a solution
the classVE is thatI(q,p,r) < oo.

Example 2.4. The differential equation of the third order

(2.23) L1 () / /+ o0 tgx(t) =0, t>1
. — | =7 5 - aIctg ™ =
2 \ t t8 arctg B4 & T
satisfies the condition of Theor¢m 2.18. Therefore, equgfdt8) has a solution in the class

241
2
Now, we state sufficient condition for the existence of solutiong\fin the class\Vy.

NE. In fact, one such solution is the functioft) =

Theorem 2.21.1f I(¢q,p) < oo andI(r) < oo, then equation (N) has a solutianin the class
N such thafim; .. z(t) = 0, i.e. N # @.
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Proof. We prove the existence of a positive solution of equatfidf in the class\, which
approaches to zero as— oc.
Lett¢, > a be such that

(2.24) K/OO q(s)/ p(r)drds <1,

S
to

K:max{f(u) Tu € {0, 2/ r(s)ds}}.
to
For convenience, we again make use of the following notation:
H(t) = / r(s)ds, t > 1.
t

Let us define the sek in the same way as in the proof of Theorgm 2.11. For euegyA we
consider a mappin@; : A — C([to, o), R) given by

o(t) = (Tsu)(t) = H(t) + /t T / () / T o) fu(z)) dzdsdr, ¢ > o,

In order to apply the Schauder fixed point theorem to the mapgping is sufficient to prove
that7; mapsA into itself, 75 is a continuous mapping id and75(A) is a relatively compact
setinC([ty, ), R).

where

(i) T5 mapsA into A. In fact,z,(t) > H(t) and in view of [2.24), we have
wt) = @+ [ o) [0 [ ) ddsar
< H(t) —|—K/toor(7') /Oop(s) /Ooq(z)dzdsdT

< H(t)+K</tO p(s)/:oq(z)dzds> (/toor(T)dT)

= H)+K (/ooq(z) /Zp(s) ds dz) (/toor(T) dT) < H(t) + H(t) = 2H(1).

to to
(ii) T5 is continuous. The proof is the same as the one of the continuity of mappingrheo-
rem[2.18. Therefore, we omit it.

(iii)y T5(A) is relatively compact. It suffices to show that the family of functidigA) is
uniformly bounded and equicontinuous on the inteftg@loo). The uniform boundedness of
T5(A) follows from the facts thafs(A) € A and A is a bounded subset @f ([ty, ), R).
Now, we prove thaf5(A) is an equicontinuous family of functions on the interj¢gl o).

Letu € A andty > t; > ty. From the definition of’;, we have

(2.25) (Tsu)(te) — (Tsu)(ty) = — / 2 r(7) dT—/ 2 r(7) /Oop(s) /OO q(2)f(u(z))dzds dr

t1 t1 T S

and so, taking into accourt (2]24), we obtain

() (1) — (Th)(t)| < H(t)+ [ ) / " p(s) / " () f(u(2) dzds dr

t1 T S

<Ht)+K (/:Op(S) /:O q(2) dzds) (/:o r(7) d7> <2H(t).
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SinceH (t;) — 0 ast; — oo, for any givens > 0 there existd” > ¢, such that for alls € A,
we have

(2.26) |(Tsu)(tz2) — (Tsu)(ty)] < e if to >t >T.

Now, letty < t; <ty <T. The equality[(2.25) and the fact th&l;, p) < oo yield
[(T5u)(t2) — (Tsu)(t1)] < Milts — t1] + KMalts — 1]

where

My, = max{r(r) : 7 € [to, T}, Ms = max {T(T)/ p(s)/ q(z)dzds : T € [to, T]} :
Hence, for any givea > 0 there exist$ > 0 such that for all € A

In view of (2.26) and[(Z2.27), we are able to decompose the int@gab) into a finite number
of subintervals on which every function of the family(A) has oscillation less than It
follows that75(A) is relatively compact.

Now, according to the Schauder fixed point theorem there existg\ such that

() :/toor(s)ds+/toor(7) /Toop(s) /:oq(z)f(:v(z))dzdsdT, t> to.

It is clear thatr is a positive solution of the equati@iV) in the class\, which approaches to
zero ag — oo, i.e.x € N{. The proof is now completes

Remark 2.2. Similar investigation of the asymptotic behavior of solutions of the second order
differential equations

(r(O2(O)) +q(a(t) =0 and ()2 (1) +q()f () =0, t>a,

wherer, q, f satisfy (H1), (H2), has been given inl [6] and [7], respectively. We also refer the
reader tol[11] for other results on this topic.
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