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2 IVAN MOJSEJ ANDALENA TARTAL’OVÁ

1. I NTRODUCTION

Consider the third-order nonlinear differential equations with quasiderivatives of the form

(N)

(
1

p(t)

(
1

r(t)
x′(t)

)′)′

+ q(t)f(x(t)) = 0, t ≥ a.

Throughout the paper, we always assume that

(H1) r, p, q ∈ C([a,∞), R), r(t) > 0, p(t) > 0, q(t) > 0 on [a,∞),

(H2) f ∈ C(R, R), f(u)u > 0 for u 6= 0.

For the sake of brevity, we introduce the following notation:

x[0] = x, x[1] =
1

r
x′, x[2] =

1

p

(
1

r
x′

)′

=
1

p

(
x[1]

)′
, x[3] =

(
1

p

(
1

r
x′

)′)′

=
(
x[2]

)′
.

The functionsx[i], i=0, 1, 2, 3, we call thequasiderivativesof x. In addition to (H1) and (H2),
we will sometimes assume that

(H3) lim inf
|u|→∞

f(u)

u
> 0.

By a solutionof an equation of the form(N), we mean a functionw : [a,∞) → R such
that quasiderivativesw[i](t), 0 ≤ i ≤ 3, exist and are continuous on the interval[a,∞) and it
satisfies the equation(N) for all t ≥ a. A solutionw of equation(N) is said to beproper if it
satisfies the condition

sup {|w(s)| : t ≤ s < ∞} > 0 for any t ≥ a.

A proper solution is said to beoscillatory if it has a sequence of zeros converging to∞; oth-
erwise it is said to benonoscillatory. Furthermore, equation(N) is calledoscillatory if it has
at least one nontrivial oscillatory solution, andnonoscillatoryif all its nontrivial solutions are
nonoscillatory.

Let N (N) denote the set of all proper nonoscillatory solutions of equation(N). The set
N (N) can be divided into the following four classes in the same way as in [1, 2, 4]:

N0 = {x ∈ N (N), ∃ tx : x(t)x[1](t) < 0, x(t)x[2](t) > 0 for t ≥ tx}

N1 = {x ∈ N (N), ∃ tx : x(t)x[1](t) > 0, x(t)x[2](t) < 0 for t ≥ tx}
N2 = {x ∈ N (N), ∃ tx : x(t)x[1](t) > 0, x(t)x[2](t) > 0 for t ≥ tx}
N3 = {x ∈ N (N), ∃ tx : x(t)x[1](t) < 0, x(t)x[2](t) < 0 for t ≥ tx}

Furthermore, with respect to asymptotic behavior of the solutions in the classesN0 − N3, we
can divide the classN0 [N3] into the following two disjoint subclasses

NB
0 =

{
x ∈ N0 : lim

t→∞
x(t) = lx 6= 0

}
, N 0

0 =
{

x ∈ N0 : lim
t→∞

x(t) = 0
}

[
NB

3 =
{

x ∈ N3 : lim
t→∞

x(t) = lx 6= 0
}

, N 0
3 =

{
x ∈ N3 : lim

t→∞
x(t) = 0

}]
and also the classN1 [N2] into the following two disjoint subclasses

NB
1 =

{
x ∈ N1 : lim

t→∞
|x(t)| = Mx < ∞

}
, N∞

1 =
{

x ∈ N1 : lim
t→∞

|x(t)| = ∞
}

[
NB

2 =
{

x ∈ N2 : lim
t→∞

|x(t)| = Mx < ∞
}

, N∞
2 =

{
x ∈ N2 : lim

t→∞
|x(t)| = ∞

}]
.
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS 3

If solution x ∈ N0, then its quasiderivatives satisfy the inequalityx[i](t)x[i+1](t) < 0 for
i = 0, 1, 2, for all sufficiently larget. Using the terminology as in [1, 2, 4, 12, 14], we
call it aKneser solution.

There are a lot of results (see, e.g., [1, 3, 4, 5, 15]) devoted to the oscillatory and asymptotic
behavior of the linear case of equation(N), namely of the linear differential equation(

1

p(t)

(
1

r(t)
x′(t)

)′)′

+ q(t)x(t) = 0, t ≥ a.

The nonlinear case, i.e. equation(N), has been largely studied in [1, 2, 4, 14]. In particular,
many authors investigated the oscillatory and asymptotic properties of solutions of differential
equations of the third order with deviating argument. Among the extensive literature on this
field, we refer to [8, 9, 10, 12, 13, 16, 17, 18] and to the references contained therein.

The aim of this paper is to study the asymptotic behavior of nonoscillatory solutions of equa-
tion (N). For this purpose, we divide all proper nonoscillatory solutions of(N) into the above
mentioned several classes with respect to their asymptotic behavior. Such a classification plays
an important role in the study of the qualitative behavior of equation(N). Further, we use a
topological approach based on the following fixed point theorem:

Theorem 1.1. (Schauder fixed point theorem) LetΩ be a non-empty closed convex subset of a
normed linear space E and letT : Ω → Ω be a continuous mapping such thatT (Ω) is relatively
compact in E. ThenT has at least one fixed point inΩ.

After the summarization of some known definitions and notation, in Section 2 we present the
necessary and sufficient conditions for the existence of nonoscillatory solutions of equation
(N) with a specified asymptotic behavior ast tends to infinity. These results are interesting
by themselves by virtue of their necessary and sufficient character. Furthermore, our results are
presented as integral criteria that involve only the functionsp, r, q. Several examples illustrating
the main theorems are also provided.

We point out that our assumption on the nonlinearityf is related with its behavior only in a
neighbourhood of infinity. Moreover, not only monotonicity of the nonlinearityf is unneces-
sary but also no assumptions on the behavior off in R are required. We also remark that the
condition (H3) is needed only for some results concerning the classN2.

We close the introduction with the following notation:

I(ui) =

∫ ∞

a

ui(t) dt, I(ui, uj) =

∫ ∞

a

ui(t)

∫ t

a

uj(s) ds dt, i, j = 1, 2

I(ui, uj, uk) =

∫ ∞

a

ui(t)

∫ t

a

uj(s)

∫ s

a

uk(z) dz ds dt, i, j, k = 1, 2, 3,

whereui, i = 1, 2, 3, are continuous positive functions on the interval[a,∞).
For simplicity, we will sometimes writeu(∞) instead oflimt→∞ u(t).

2. M AIN RESULTS

We begin our consideration with several results concerning the asymptotic behavior of solu-
tions of equation(N) in the classN1. The following result provides sufficient conditions for
the existence of solutions in the classNB

1 .

Theorem 2.1.Let one of the following conditions be satisfied:

(a) I(p, r) < ∞ andI(q) < ∞,
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4 IVAN MOJSEJ ANDALENA TARTAL’OVÁ

(b) I(p, q) < ∞ andI(r) < ∞.

Then equation(N) has a bounded solutionx in the classN1, i.e.NB
1 6= ∅.

Proof. We prove the existence of a positive bounded solution of equation(N) in the classN1.
Suppose (a). LetK = max {f(u) : u ∈ [c, d]} where c, d are constants such that0 < c < d

and lett0 ≥ a be such that

(2.1)
∫ ∞

t0

p(s)

∫ s

t0

r(v) dv ds ≤ 1 and

∫ ∞

t0

q(s) ds ≤ d− c

K
.

Let us define the set
∆ = {u ∈ C([t0,∞), R) : c ≤ u(t) ≤ d} ,

whereC([t0,∞), R) will denote the Banach space of all continuous and bounded functions
defined on the interval[t0,∞) with the sup norm‖u‖ = sup {|u(t)| , t ≥ t0}. Clearly,∆ is a
non-empty closed, convex and bounded subset ofC([t0,∞), R). For everyu ∈ ∆ we consider
a mappingT : ∆ → C([t0,∞), R) given by

xu(t) = (Tu)(t) = c +

∫ t

t0

r(τ)

∫ ∞

τ

p(s)

∫ s

t0

q(z)f(u(z)) dz ds dτ , t ≥ t0.

In order to apply the Schauder fixed point theorem (Theorem 1.1) to the mappingT , it is suffi-
cient to prove thatT maps∆ into itself,T is a continuous mapping in∆ andT (∆) is a relatively
compact set inC([t0,∞), R).

(i) T maps∆ into ∆. In fact,xu(t) ≥ c and in view of (2.1), we obtain

xu(t) = c +

∫ t

t0

r(τ)

∫ ∞

τ

p(s)

∫ s

t0

q(z)f(u(z)) dz ds dτ

≤ c + K

∫ t

t0

r(τ)

∫ ∞

τ

p(s)

∫ s

t0

q(z) dz ds dτ

≤ c + K

(∫ ∞

t0

q(z) dz

) (∫ ∞

t0

r(τ)

∫ ∞

τ

p(s) ds dτ

)
= c + K

(∫ ∞

t0

q(z) dz

) (∫ ∞

t0

p(s)

∫ s

t0

r(τ) dτ ds

)
≤ d.

(ii) T is continuous. Let{un}, n ∈ N be a sequence of elements of∆ such thatlimn→∞ ‖un −
u‖ = 0. Since∆ is closed,u ∈ ∆. By the definition ofT and in view of (2.1), we see that

|(Tun)(t)− (Tu)(t)| ≤
∫ ∞

t0

Gn(z) dz, t ≥ t0

where
Gn(z) = q(z)|f(un(z))− f(u(z))|.

Thus

(2.2) ‖Tun − Tu‖ ≤
∫ ∞

t0

Gn(z) dz.

It is easy to see thatlimn→∞ Gn(z) = 0 which is a consequence of the convergenceun → u in
C([t0,∞), R) and that the following inequality holds∫ ∞

t0

Gn(z) dz ≤ 2K

∫ ∞

t0

q(z) dz.
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS 5

SinceI(q) < ∞, the Lebesgue’s dominated convergence theorem yields

lim
n→∞

∫ ∞

t0

Gn(z) dz = 0.

Consequently, from (2.2) we havelimn→∞ ‖Tun − Tu‖ = 0, i.e. T is continuous.

(iii) T (∆) is relatively compact. It suffices to show that the family of functionsT (∆) is uni-
formly bounded and equicontinuous on the interval[t0,∞). The uniform boundedness ofT (∆)
immediately follows from the facts thatT (∆) ⊆ ∆ and∆ is a bounded subset ofC([t0,∞), R).
Now, we prove thatT (∆) is an equicontinuous family of functions on[t0,∞). This will be ac-
complished if we show that for any givenε > 0, the interval[t0,∞) can be decomposed into a
finite number of subintervals in such a way that on each subinterval all functions of the family
T (∆) have oscillations less thanε (see, e.g. [11], p. 13).

Let u ∈ ∆ andt2 > t1 ≥ t0. Then, taking into account (2.1), we have

|(Tu)(t2)− (Tu)(t1)| ≤ K

∫ t2

t1

r(τ)

∫ ∞

τ

p(s)

∫ s

t0

q(z) dz ds dτ(2.3)

≤ (d− c)

∫ ∞

t1

p(s)

∫ s

t1

r(τ) dτ ds → 0 as t1 →∞.

We conclude from the above inequalities that for any givenε > 0 there existst∗ > t0 such that
for all u ∈ ∆, we have

|(Tu)(t2)− (Tu)(t1)| < ε if t2 > t1 ≥ t∗.

This shows that the oscillations of all functions of the familyT (∆) on [t∗,∞) are less thanε.
Now, let t0 ≤ t1 < t2 ≤ t∗. In view of (2.1), (2.3) and the fact thatI(p) < ∞ (it follows from
I(p, r) < ∞), we get

|(Tu)(t2)− (Tu)(t1)| ≤ (d− c)

∫ t2

t1

r(τ)

∫ ∞

τ

p(s) ds dτ ≤ (d− c)M1|t2 − t1|

whereM1 = max

{
r(τ)

∫ ∞

τ

p(s) ds : τ ∈ [t0, t∗]

}
. Hence, for any givenε > 0 there exists

δ > 0 such that for allu ∈ ∆

|(Tu)(t2)− (Tu)(t1)| < ε if |t2 − t1| < δ.

Consequently, the interval[t0,∞) can be divided into a finite number of subintervals on which
every function of the familyT (∆) has oscillation less thanε. ThereforeT (∆) is an equicontin-
uous family of functions on[t0,∞). HenceT (∆) is relatively compact.

Now, the Schauder theorem yields the existence of a fixed pointx ∈ ∆ for the mappingT
such that

x(t) = c +

∫ t

t0

r(τ)

∫ ∞

τ

p(s)

∫ s

t0

q(z)f(x(z)) dz ds dτ , t ≥ t0.

As

x[1](t) =

∫ ∞

t

p(s)

∫ s

t0

q(z)f(x(z)) dz ds > 0 and x[2](t) = −
∫ t

t0

q(z)f(x(z)) dz < 0,

it is clear thatx is a positive bounded solution of equation(N) in the classN1, i.e. x ∈ NB
1 .

Suppose (b). The proof is the same as in the case (a) except for some minor changes. There-
fore, we omit it. This completes the proof.
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6 IVAN MOJSEJ ANDALENA TARTAL’OVÁ

Remark 2.1. We observe that the existence of a negative bounded solution of equation(N) in
the classN1 can be proved by using similar arguments. This fact about negative solution also
holds for some next results.

The following example shows the meaning of Theorem 2.1.

Example 2.1.We consider the differential equation

(2.4)
((

t2 + 1
) ((

t2 + 1
)
x′(t)

)′)′
+

8t

(2t2 + 1)2 x2(t) sgn x(t) = 0 , t ≥ 2.

This is the equation of the form(N) wherer(t) = p(t) =
1

t2 + 1
, q(t) =

8t

(2t2 + 1)2 and

f(u) = u2 sgn u. It is easy to verify that the assumptions of Theorem 2.1 are fulfilled and so

equation(2.4)has a solution in the classNB
1 . One such solution is the functionx(t) =

2t2 + 1

t2 + 1
.

We also have the following result for the solutions of equation(N) in the classNB
1 .

Theorem 2.2. If I(p, q) = ∞, thenNB
1 = ∅.

Proof. Assume thatx ∈ NB
1 . Without loss of generality, we suppose that there existsT ≥ a

such thatx(t) > 0, x[1](t) > 0, x[2](t) < 0 for all t ≥ T . Let x(∞) = Mx < ∞. As x is
a positive increasing function andf is a continuous function on the interval[x(T ), Mx], there
exists a positive constant m such that

(2.5) m = min {f(u) : u ∈ [x(T ), Mx]} .

Integrating equation(N) twice in [T, t], we obtain

x[1](t) = x[1](T ) + x[2](T )

∫ t

T

p(s) ds−
∫ t

T

p(s)

∫ s

T

q(k)f(x(k)) dk ds

and therefore

x[1](t) < x[1](T )−
∫ t

T

p(s)

∫ s

T

q(k)f(x(k)) dk ds.

Using this inequality with (2.5), we have

x[1](t) < x[1](T )−m

∫ t

T

p(s)

∫ s

T

q(k) dk ds,

which gives a contradiction ast → ∞, because functionx[1](t) is a positive for allt ≥ T . The
casex(t) < 0, x[1](t) < 0, x[2](t) > 0 for all t ≥ T ∗ (whereT ∗ ≥ a) can be treated similarly.

From Theorem 2.1 and Theorem 2.2, one gets immediately the following result.

Corollary 2.3. Let I(r) < ∞. Then a necessary and sufficient condition for equation (N) to
have a solutionx in the classNB

1 is thatI(p, q) < ∞.

For solutions in the classN∞
1 , the following theorem holds.

Theorem 2.4. If I(r) < ∞, thenN∞
1 = ∅.

Proof. Let x ∈ N∞
1 . Without loss of generality, we suppose that there existsT ≥ a such that

x(t) > 0, x[1](t) > 0, x[2](t) < 0 for all t ≥ T . As x[1] is a positive decreasing function, we
have thatx′(t) ≤ x[1](T )r(t) for all t ≥ T . Integrating this inequality in[T, t], we obtain

x(t) ≤ x(T ) + x[1](T )

∫ t

T

r(s) ds,
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which gives a contradiction ast → ∞, becausex is an unbounded solution. Ifx(t) < 0,
x[1](t) < 0, x[2](t) > 0 for all t ≥ T ∗ (whereT ∗ ≥ a), similar arguments hold.

Combining Corollary 2.3 and Theorem 2.4, we get the following.

Corollary 2.5. Let I(r) < ∞. Then a necessary and sufficient condition for equation (N) to
have a solutionx in the classN1 is thatI(p, q) < ∞.

Now, we turn our attention to the solutions in the classN2. The following results concern the
existence of solutions of equation(N) in the classNB

2 .

Theorem 2.6.Let one of the following conditions be satisfied:

(a) I(r, p) < ∞ andI(q) < ∞,
(b) I(q, p) < ∞ andI(r) < ∞.

Then equation(N) has a bounded solutionx in the classN2, i.eNB
2 6= ∅.

Proof. We prove the existence of a positive bounded solution of equation(N) in the classN2.
Suppose (a). LetK = max {f(u) : u ∈ [c, d]} where c, d are constants such that0 < c < d

and lett0 ≥ a be such that

(2.6)
∫ ∞

t0

r(τ)

∫ τ

t0

p(s) ds dτ ≤ 1 and

∫ ∞

t0

q(s) ds ≤ d− c

K
.

Let us define the set∆ in the same way as in the proof of Theorem 2.1. For everyu ∈ ∆ we
consider a mappingT1 : ∆ → C([t0,∞), R) given by

xu(t) = (T1u)(t) = c +

∫ t

t0

r(τ)

∫ τ

t0

p(s)

∫ ∞

s

q(z)f(u(z)) dz ds dτ , t ≥ t0.

Taking into account (2.6) and using similar arguments as in the proof of Theorem 2.1, it is easy
to verify thatT1 maps∆ into itself,T1 is a continuous mapping in∆ andT1(∆) is a relatively
compact set inC([t0,∞), R). Consequently, by the Schauder fixed point theorem there exists a
fixed pointx ∈ ∆ such that

x(t) = c +

∫ t

t0

r(τ)

∫ τ

t0

p(s)

∫ ∞

s

q(z)f(x(z)) dz ds dτ , t ≥ t0.

As

x[1](t) =

∫ t

t0

p(s)

∫ ∞

s

q(z)f(x(z)) dz ds > 0 and x[2](t) =

∫ ∞

t

q(z)f(x(z)) dz > 0,

it is clear thatx is a positive bounded solution of equation(N) in the classN2, i.e. x ∈ NB
2 .

Suppose (b). Using similar arguments as in the case (a), we are led to the conclusion that
NB

2 6= ∅. Therefore, we omit it. The proof is now complete.

Example 2.2.Let us consider the differential equation

(2.7)

(
1

t

(
t2x′(t)

)′)′

+
8t

(1 + t2)3 arctg3 t
x3(t) = 0, t ≥ 1.

As I(q, p) < ∞ and I(r) < ∞, Theorem 2.6 yields that equation(2.7) has a solution in the
classNB

2 . Really, one such solution is the functionx(t) = arctg t.

Theorem 2.7. If I(q) = ∞, thenNB
2 = ∅.
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8 IVAN MOJSEJ ANDALENA TARTAL’OVÁ

Proof. Assume thatx ∈ NB
2 . Without loss of generality, we suppose that there existsT ≥ a

such thatx(t) > 0, x[1](t) > 0, x[2](t) > 0 for all t ≥ T . Let x(∞) = Mx < ∞. As x is
a positive increasing function andf is a continuous function on the interval[x(T ), Mx], there
exists a positive constant m such that

(2.8) m = min {f(u) : u ∈ [x(T ), Mx]} .

By integrating equation(N) in [T, t], we get

x[2](t) = x[2](T )−
∫ t

T

q(s)f(x(s)) ds.

This equality with (2.8) yields that

x[2](t) < x[2](T )−m

∫ t

T

q(s) ds,

which gives a contradiction ast → ∞, because functionx[2](t) is a positive for allt ≥ T . The
casex(t) < 0, x[1](t) < 0, x[2](t) < 0 for all t ≥ T ∗ (whereT ∗ ≥ a) can be treated in the
similar way.

From Theorem 2.6 and Theorem 2.7, one gets immediately the following result.

Corollary 2.8. Let I(r, p) < ∞. Then a necessary and sufficient condition for equation (N) to
have a solutionx in the classNB

2 is thatI(q) < ∞.

The following result also holds.

Theorem 2.9.Let (H3) hold. IfI(q) = ∞, thenN∞
2 = ∅.

Proof. Let x ∈ N∞
2 . Without loss of generality, we assume that there existsT ≥ a such that

x(t) > 0, x[1](t) > 0, x[2](t) > 0 for all t ≥ T . Because
(
x[2](t)

)′
= −q(t)f(x(t)) < 0 for all

t ≥ T , x[2](t) is a positive decreasing function and thus0 ≤ x[2](∞) < ∞. As x(∞) = ∞, the
assumption (H3) implies that there exists a positive number K andT1 ≥ T such that

(2.9)
f(x(t))

x(t)
≥ K for all t ≥ T1.

Integrating equation(N) in the interval[T1, t], we obtain

(2.10) x[2](T1)− x[2](t) =

∫ t

T1

q(s)f(x(s)) ds.

In view of (2.9) and the fact thatx is an increasing function, the equality (2.10) gives

x[2](T1)− x[2](t) ≥ K

∫ t

T1

q(s)x(s) ds ≥ Kx(T1)

∫ t

T1

q(s) ds.

When t → ∞, we get a contradiction withI(q) = ∞. The casex(t) < 0, x[1](t) < 0,
x[2](t) < 0 for all t ≥ T ∗ (whereT ∗ ≥ a) can be treated similarly.

Corollary 2.8 and Theorem 2.9 give the following result.

Corollary 2.10. Let (H3) hold andI(r, p) < ∞. Then a necessary and sufficient condition for
equation (N) to have a solutionx in the classN2 is thatI(q) < ∞.

In the sequel, we present several results regarding the asymptotic behavior of solutions of
equation(N) in the classN3. For the existence of solutions of(N) in the classN 0

3 , we state the
following result.
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Theorem 2.11. If I(r) < ∞ andI(p, q) < ∞, then equation (N) has a solutionx in the class
N3 such thatlimt→∞ x(t) = 0, i.e.N 0

3 6= ∅.

Proof. We prove the existence of a positive solution of equation(N) in the classN3 which
approaches to zero ast →∞.

Let t0 ≥ a be such that

(2.11) K

∫ ∞

t0

p(τ)

∫ τ

t0

q(s) ds dτ ≤ 1,

where

K = max

{
f(u) : u ∈

[
0, 2

∫ ∞

t0

r(s) ds

]}
.

For convenience, we make use of the following notation:

H(t) =

∫ ∞

t

r(s) ds, t ≥ t0.

Let us define the set

∆ = {u ∈ C([t0,∞), R) : H(t) ≤ u(t) ≤ 2H(t)} ,

whereC([t0,∞), R) denotes the Banach space of all continuous and bounded functions defined
on the interval[t0,∞) with the sup norm‖u‖ = sup{|u(t)|, t ≥ t0}. Clearly,∆ is a non-empty
closed, convex and bounded subset ofC([t0,∞), R). For everyu ∈ ∆ we consider a mapping
T2 : ∆ → C([t0,∞), R) given by

xu(t) = (T2u)(t) = H(t) +

∫ ∞

t

r(τ)

∫ τ

t0

p(s)

∫ s

t0

q(z)f(u(z)) dz ds dτ , t ≥ t0.

In order to apply to the mappingT2 the Schauder fixed point theorem (Theorem 1.1), it is suf-
ficient to prove thatT2 maps∆ into itself, T2 is a continuous mapping in∆ andT2(∆) is a
relatively compact set inC([t0,∞), R).

(i) T2 maps∆ into ∆. In fact,xu(t) ≥ H(t) and in view of (2.11), we have

xu(t) = H(t) +

∫ ∞

t

r(τ)

∫ τ

t0

p(s)

∫ s

t0

q(z)f(u(z)) dz ds dτ

≤ H(t) + K

∫ ∞

t

r(τ)

∫ τ

t0

p(s)

∫ s

t0

q(z) dz ds dτ

≤ H(t) + K

(∫ ∞

t0

p(s)

∫ s

t0

q(z) dz ds

) (∫ ∞

t

r(τ) dτ

)
≤ H(t) + H(t) = 2H(t).

(ii) T2 is continuous. Let{un}, n ∈ N be a sequence of elements of∆ such thatlimn→∞ ‖un−
u‖ = 0. Since∆ is closed,u ∈ ∆. From the definition ofT2, we obtain

|(T2un)(t)− (T2u)(t)| ≤
∫ ∞

t0

Gn(τ) dτ , t ≥ t0

where

Gn(τ) = r(τ)

∫ τ

t0

p(s)

∫ s

t0

q(z)|f(un(z))− f(u(z))| dz ds.

Thus

(2.12) ‖T2un − T2u‖ ≤
∫ ∞

t0

Gn(τ) dτ .
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It is easy to see thatlimn→∞ Gn(τ) = 0, which is a consequence of the convergenceun → u in
C([t0,∞), R) and that the following inequality holds∫ ∞

t0

Gn(τ) dτ ≤ 2K

∫ ∞

t0

r(τ)

∫ τ

t0

p(s)

∫ s

t0

q(z) dz ds dτ .

SinceI(r, p, q) < ∞, the Lebesgue’s dominated convergence theorem yields

lim
n→∞

∫ ∞

t0

Gn(τ) dτ = 0.

Consequently, from (2.12), we havelimn→∞ ‖T2un − T2u‖ = 0, i.e. T2 is continuous.

(iii) T2(∆) is relatively compact. It suffices to show that the family of functionsT2(∆) is uni-
formly bounded and equicontinuous on the interval[t0,∞). The uniform boundedness ofT2(∆)
immediately follows from the facts thatT2(∆) ⊆ ∆ and∆ is a bounded subset ofC([t0,∞), R).
Now, we prove thatT2(∆) is an equicontinuous family of functions on the interval[t0,∞).

Let u ∈ ∆ andt2 > t1 ≥ t0. From the definition ofT2, we have

(2.13) (T2u)(t2)− (T2u)(t1) = −
∫ t2

t1

r(s) ds−
∫ t2

t1

r(τ)

∫ τ

t0

p(s)

∫ s

t0

q(z)f(u(z)) dz ds dτ

and so, taking into account (2.11), we obtain

|(T2u)(t2)− (T2u)(t1)| ≤ H(t1) +

∫ ∞

t1

r(τ)

∫ τ

t0

p(s)

∫ s

t0

q(z)f(u(z)) dz ds dτ

≤ H(t1) + K

(∫ ∞

t0

p(s)

∫ s

t0

q(z) dz ds

) (∫ ∞

t1

r(τ) dτ

)
≤ 2H(t1).

SinceH(t1) → 0 ast1 → ∞, for any givenε > 0 there existsT > t0 such that for allu ∈ ∆,
we have

|(T2u)(t2)− (T2u)(t1)| < ε if t2 > t1 ≥ T.

This shows that the oscillations of all functions of the familyT2(∆) on [T,∞) are less thanε.
Now, let t0 ≤ t1 < t2 ≤ T . Then the equality (2.13) yields

|(T2u)(t2)− (T2u)(t1)| ≤ M1|t2 − t1|+ KM2|t2 − t1|
where

M1 = max {r(s) : s ∈ [t0, T ]} , M2 = max

{
r(τ)

∫ τ

t0

p(s)

∫ s

t0

q(z) dz ds : τ ∈ [t0, T ]

}
.

Hence, for any givenε > 0 there existsδ > 0 such that for allu ∈ ∆

|(T2u)(t2)− (T2u)(t1)| < ε if |t2 − t1| < δ.

Consequently, we can divide the interval[t0,∞) into a finite number of subintervals on which
every function of the familyT2(∆) has oscillation less thanε. ThereforeT2(∆) is an equicontin-
uous family of functions on[t0,∞) (see, e.g. [11], p. 13). HenceT2(∆) is relatively compact.

Now, according to the Schauder fixed point theorem there existsx ∈ ∆ such that

x(t) =

∫ ∞

t

r(s) ds +

∫ ∞

t

r(τ)

∫ τ

t0

p(s)

∫ s

t0

q(z)f(x(z)) dz ds dτ , t ≥ t0.

It is clear thatx is a positive solution of the equation(N) in the classN3 which approaches to
zero ast →∞, i.e. x ∈ N 0

3 . This completes the proof.

We have the following result for solutions of equation(N) in the classN3.

Theorem 2.12.If I(r) = ∞, thenN3 = ∅.
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Proof. Let x ∈ N3. Without loss of generality, we suppose that there existsT ≥ a such that
x(t) > 0, x[1](t) < 0, x[2](t) < 0 for all t ≥ T . As x[1] is a negative decreasing function, we
have thatx′(t) ≤ x[1](T )r(t) for all t ≥ T . Integrating this inequality in[T, t], we obtain

x(t) ≤ x(T ) + x[1](T )

∫ t

T

r(s) ds.

Whent →∞, we get a contradiction because the functionx(t) is a positive for allt ≥ T . The
casex(t) < 0, x[1](t) > 0, x[2](t) > 0 for all t ≥ T ∗ (whereT ∗ ≥ a) can be treated similarly.

As a consequence of Theorems 2.11 and 2.12, we get the following result.

Corollary 2.13. Assume thatI(p, q) < ∞. Then a necessary and sufficient condition for equa-
tion (N) to have a solutionx in the classN 0

3 is thatI(r) < ∞.

The next results deal with the solutions of equation(N) in the classNB
3 .

Theorem 2.14.If I(r, p, q) = ∞, thenNB
3 = ∅.

Proof. Let x ∈ NB
3 . Without loss of generality, we suppose that there existsT ≥ a such that

x(t) > 0, x[1](t) < 0, x[2](t) < 0 for all t ≥ T . Let x(∞) = lx > 0. Integrating equation(N)
three times in the interval[T, t], we get

x(t) = x(T ) + x[1](T )

∫ t

T

r(s) ds + x[2](T )

∫ t

T

r(s)

∫ s

T

p(z) dz ds

−
∫ t

T

r(s)

∫ s

T

p(z)

∫ z

T

q(τ)f(x(τ)) dτ dz ds.

Thus

(2.14) x(t) ≤ x(T )−
∫ t

T

r(s)

∫ s

T

p(z)

∫ z

T

q(τ)f(x(τ)) dτ dz ds for all t ≥ T.

The continuity of the functionf(u) on the interval[lx, x(T )] ensures the existence of a positive
constantK such that

(2.15) K = min {f(u) : u ∈ [lx, x(T )]} .

The inequality (2.14) with (2.15) yields

x(t) ≤ x(T )−K

∫ t

T

r(s)

∫ s

T

p(z)

∫ z

T

q(τ) dτ dz ds for all t ≥ T.

Whent → ∞, we get a contradiction because the functionx(t) is a positive for allt ≥ T. The
casex(t) < 0, x[1](t) > 0, x[2](t) > 0 for all t ≥ T ∗ (whereT ∗ ≥ a) can be treated in the
similar way.

Theorem 2.15. If I(r, p, q) < ∞, then equation (N) has a solutionx in the classN3 such that
limt→∞ x(t) 6= 0, i.e.NB

3 6= ∅.

Proof. We prove the existence of a positive solution of equation(N) in the classN3 which
approaches to nonzero constant ast →∞.

Let K = max {f(u) : u ∈ [c, d]} where c, d are constants such that0 < c < d and lett0 ≥ a
be such that

(2.16)
∫ ∞

t0

r(τ)

∫ τ

t0

p(s)

∫ s

t0

q(z) dz ds dτ ≤ d− c

K
.
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Let us define the set∆ in the same way as in the proof of Theorem 2.1. For everyu ∈ ∆ we
consider a mappingT3 : ∆ → C([t0,∞), R) given by

xu(t) = (T3u)(t) = c +

∫ ∞

t

r(τ)

∫ τ

t0

p(s)

∫ s

t0

q(z)f(u(z)) dz ds dτ , t ≥ t0.

Taking into account (2.16) and using similar arguments as in the proof of Theorem 2.1, it is easy
to verify thatT3 maps∆ into itself,T3 is a continuous mapping in∆ andT3(∆) is a relatively
compact set inC([t0,∞), R). Consequently, the Schauder fixed point theorem ensures the
existence of a fixed pointx ∈ ∆ such that

x(t) = c +

∫ ∞

t

r(τ)

∫ τ

t0

p(s)

∫ s

t0

q(z)f(x(z)) dz ds dτ , t ≥ t0.

As

x[1](t) = −
∫ t

t0

p(s)

∫ s

t0

q(z)f(x(z)) dz ds < 0 and x[2](t) = −
∫ t

t0

q(z)f(x(z)) dz < 0,

it is clear thatx is a positive solution of the equation(N) in the classN3 which approaches to
nonzero constant ast →∞, i.e. x ∈ NB

3 . This completes the proof.

Theorem 2.15 is illustrated by the following example.

Example 2.3.Let us consider the differential equation

(2.17)

(
1

t

(
t8x′(t)

)′)′

+
24t4

(3t + 1)e
3t+1

t

x(t)ex(t) = 0, t ≥ 1.

AsI(r, p, q) < ∞, Theorem 2.15 secures that equation(2.17)has a solution in the classNB
3 .

One such solution is the functionx(t) =
3t + 1

t
.

Theorems 2.14 and 2.15 give the following corollary.

Corollary 2.16. A necessary and sufficient condition for equation (N) to have a solutionx in
the classNB

3 is thatI(r, p, q) < ∞.

The following also holds.

Corollary 2.17. Assume thatI(p, q) < ∞. Then a necessary and sufficient condition for equa-
tion (N) to have a solutionx in the classN3 is thatI(r) < ∞.

Finally, we consider the solutions of equation(N) in the classN0. We prove the following
results for the existence of solutions of(N) in the classNB

0 .

Theorem 2.18. If I(q, p, r) < ∞, then equation (N) has a solutionx in the classN0 such that
limt→∞ x(t) 6= 0, i.e.NB

0 6= ∅.

Proof. We prove the existence of a positive solution of equation(N) in the classN0 which
approaches to nonzero constant ast →∞.

Let K = max {f(u) : u ∈ [c, d]} where c, d are constants such that0 < c < d and lett0 ≥ a
be such that

(2.18)
∫ ∞

t0

q(z)

∫ z

t0

p(s)

∫ s

t0

r(τ) dτ ds dz ≤ d− c

K
.

Let us define the set∆ in the same way as in the proof of Theorem 2.1. For everyu ∈ ∆ we
consider a mappingT4 : ∆ → C([t0,∞), R) given by

xu(t) = (T4u)(t) = c +

∫ ∞

t

r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z)f(u(z)) dz ds dτ , t ≥ t0.
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(i) T4 maps∆ into ∆. In fact,xu(t) ≥ c and in view of (2.18), we have

xu(t) = c +

∫ ∞

t

r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z)f(u(z)) dz ds dτ

≤ c + K

∫ ∞

t0

r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z) dz ds dτ

= c + K

∫ ∞

t0

q(z)

∫ z

t0

p(s)

∫ s

t0

r(τ) dτ ds dz ≤ d.

(ii) T4 is continuous. Let{un}, n ∈ N be a sequence of elements of∆ such thatlimn→∞ ‖un−
u‖ = 0. Since∆ is closed,u ∈ ∆. The definition ofT4 yields that

|(T4un)(t)− (T4u)(t)| ≤
∫ ∞

t0

Gn(z) dz, t ≥ t0

where

Gn(z) = q(z)|f(un(z))− f(u(z))|
∫ z

t0

p(s)

∫ s

t0

r(τ) dτ ds.

Thus, we have the following

(2.19) ‖T4un − T4u‖ ≤
∫ ∞

t0

Gn(z) dz.

It is obvious thatlimn→∞ Gn(z) = 0 and∫ ∞

t0

Gn(z) dz ≤ 2K

∫ ∞

t0

q(z)

∫ z

t0

p(s)

∫ s

t0

r(τ) dτ ds dz.

SinceI(q, p, r) < ∞, applying the Lebesgue’s dominated convergence theorem, we obtain from
(2.19) thatlimn→∞ ‖T4un − T4u‖ = 0 which means thatT4 is continuous.

(iii) T4(∆) is relatively compact. It is easy to see that the family of functionsT4(∆) is uni-
formly bounded. We need only to prove the equicontinuity ofT4(∆) on the interval[t0,∞).

Let u ∈ ∆ andt2 > t1 ≥ t0. Then we have

(2.20) (T4u)(t2)− (T4u)(t1) = −
∫ t2

t1

r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z)f(u(z)) dz ds dτ

and so

|(T4u)(t2)− (T4u)(t1)| ≤ K

∫ ∞

t1

r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z) dz ds dτ

= K

∫ ∞

t1

q(z)

∫ z

t1

p(s)

∫ s

t1

r(τ) dτ ds dz → 0 as t1 →∞.

From the above facts, we conclude that for any givenε > 0 there existsT > t0 such that for all
u ∈ ∆, we have

|(T4u)(t2)− (T4u)(t1)| < ε if t2 > t1 ≥ T.

Now, let t0 ≤ t1 < t2 ≤ T . The equality (2.20) and the fact thatI(q, p) < ∞ (it follows from
I(q, p, r) < ∞) give the following inequality

|(T4u)(t2)− (T4u)(t1)| ≤ KM |t2 − t1|

AJMAA, Vol. 5, No. 1, Art. 12, pp. 1-17, 2008 AJMAA

http://ajmaa.org


14 IVAN MOJSEJ ANDALENA TARTAL’OVÁ

whereM = max

{
r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z) dz ds : τ ∈ [t0, T ]

}
. Hence, for any givenε > 0

there existsδ > 0 such that for allu ∈ ∆

|(T4u)(t2)− (T4u)(t1)| < ε if |t2 − t1| < δ.

Consequently, we can divide the interval[t0,∞) into a finite number of subintervals on which
every function of the familyT4(∆) has oscillation less thanε. ThereforeT4(∆) is an equicontin-
uous family of functions on[t0,∞) (see, e.g. [11], p. 13). HenceT4(∆) is relatively compact.

From the preceding considerations, we see that Schauder fixed point theorem (Theorem 1.1)
can be applied to the mappingT4. Hence, there exists a fixed pointx ∈ ∆ such that

x(t) = c +

∫ ∞

t

r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z)f(x(z)) dz ds dτ , t ≥ t0.

It is clear thatx is a positive solution of the equation(N) in the classN0 which approaches to
nonzero constant ast →∞, i.e. x ∈ NB

0 . This completes the proof.

Theorem 2.19.If I(q, p, r) = ∞, thenNB
0 = ∅.

Proof. Let x ∈ NB
0 . Without loss of generality, we suppose that there existsT ≥ a such

that x(t) > 0, x[1](t) < 0, x[2](t) > 0 for all t ≥ T . Let x(∞) = lx > 0. From equation
(N), it follows that

(
x[2](t)

)′
< 0 for all t ≥ T . Hence,x[2](t) is a positive decreasing function.

Integrating equation(N) three times in[t,∞) and taking into account the facts that0 < x(∞) <
∞, 0 ≤ x[2](∞) < ∞ and−∞ < x[1](∞) ≤ 0, we obtain

(2.21) x(t) ≥
∫ ∞

t

r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z)f(x(z)) dz ds dτ .

The continuity of the functionf(u) on the interval[lx, x(T )] ensures the existence of a positive
constantK such that

(2.22) K = min {f(u) : u ∈ [lx, x(T )]} .

In view of (2.21) and (2.22), we have

x(t) ≥ K

∫ ∞

t

r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z) dz ds dτ for all t ≥ T.

Hence, by interchanging the order of integration, we get thatI(q, p, r) < ∞. For the case
x(t) < 0, x[1](t) > 0, x[2](t) < 0 for all t ≥ T ∗ (whereT ∗ ≥ a), similar arguments hold.

Theorems 2.18 and 2.19 give the following corollary.

Corollary 2.20. A necessary and sufficient condition for equation (N) to have a solutionx in
the classNB

0 is thatI(q, p, r) < ∞.

Example 2.4.The differential equation of the third order

(2.23)

(
1

t2

(
1

t
x′(t)

)′)′

+
56

t8 arctg t2+1
t2

arctg x(t) = 0, t ≥ 1

satisfies the condition of Theorem 2.18. Therefore, equation(2.23)has a solution in the class

NB
0 . In fact, one such solution is the functionx(t) =

t2 + 1

t2
.

Now, we state sufficient condition for the existence of solutions of(N) in the classN 0
0 .

Theorem 2.21. If I(q, p) < ∞ andI(r) < ∞, then equation (N) has a solutionx in the class
N0 such thatlimt→∞ x(t) = 0, i.e.N 0

0 6= ∅.
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Proof. We prove the existence of a positive solution of equation(N) in the classN0 which
approaches to zero ast →∞.

Let t0 ≥ a be such that

(2.24) K

∫ ∞

t0

q(s)

∫ s

t0

p(τ) dτ ds ≤ 1,

where

K = max

{
f(u) : u ∈

[
0, 2

∫ ∞

t0

r(s) ds

]}
.

For convenience, we again make use of the following notation:

H(t) =

∫ ∞

t

r(s) ds, t ≥ t0.

Let us define the set∆ in the same way as in the proof of Theorem 2.11. For everyu ∈ ∆ we
consider a mappingT5 : ∆ → C([t0,∞), R) given by

xu(t) = (T5u)(t) = H(t) +

∫ ∞

t

r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z)f(u(z)) dz ds dτ , t ≥ t0.

In order to apply the Schauder fixed point theorem to the mappingT5, it is sufficient to prove
thatT5 maps∆ into itself,T5 is a continuous mapping in∆ andT5(∆) is a relatively compact
set inC([t0,∞), R).

(i) T5 maps∆ into ∆. In fact,xu(t) ≥ H(t) and in view of (2.24), we have

xu(t) = H(t) +

∫ ∞

t

r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z)f(u(z)) dz ds dτ

≤ H(t) + K

∫ ∞

t

r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z) dz ds dτ

≤ H(t) + K

(∫ ∞

t0

p(s)

∫ ∞

s

q(z) dz ds

) (∫ ∞

t

r(τ) dτ

)
= H(t) + K

(∫ ∞

t0

q(z)

∫ z

t0

p(s) ds dz

) (∫ ∞

t

r(τ) dτ

)
≤ H(t) + H(t) = 2H(t).

(ii) T5 is continuous. The proof is the same as the one of the continuity of mappingT4 in Theo-
rem 2.18. Therefore, we omit it.

(iii) T5(∆) is relatively compact. It suffices to show that the family of functionsT5(∆) is
uniformly bounded and equicontinuous on the interval[t0,∞). The uniform boundedness of
T5(∆) follows from the facts thatT5(∆) ⊆ ∆ and∆ is a bounded subset ofC([t0,∞), R).
Now, we prove thatT5(∆) is an equicontinuous family of functions on the interval[t0,∞).

Let u ∈ ∆ andt2 > t1 ≥ t0. From the definition ofT5, we have

(2.25) (T5u)(t2)−(T5u)(t1) = −
∫ t2

t1

r(τ) dτ−
∫ t2

t1

r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z)f(u(z)) dz ds dτ

and so, taking into account (2.24), we obtain

|(T5u)(t2)− (T5u)(t1)| ≤ H(t1) +

∫ ∞

t1

r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z)f(u(z)) dz ds dτ

≤ H(t1) + K

(∫ ∞

t1

p(s)

∫ ∞

s

q(z) dz ds

) (∫ ∞

t1

r(τ) dτ

)
≤ 2H(t1).
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SinceH(t1) → 0 ast1 → ∞, for any givenε > 0 there existsT > t0 such that for allu ∈ ∆,
we have

(2.26) |(T5u)(t2)− (T5u)(t1)| < ε if t2 > t1 ≥ T.

Now, let t0 ≤ t1 < t2 ≤ T . The equality (2.25) and the fact thatI(q, p) < ∞ yield

|(T5u)(t2)− (T5u)(t1)| ≤ M1|t2 − t1|+ KM2|t2 − t1|
where

M1 = max {r(τ) : τ ∈ [t0, T ]} , M2 = max

{
r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z) dz ds : τ ∈ [t0, T ]

}
.

Hence, for any givenε > 0 there existsδ > 0 such that for allu ∈ ∆

(2.27) |(T5u)(t2)− (T5u)(t1)| < ε if |t2 − t1| < δ.

In view of (2.26) and (2.27), we are able to decompose the interval[t0,∞) into a finite number
of subintervals on which every function of the familyT5(∆) has oscillation less thanε. It
follows thatT5(∆) is relatively compact.

Now, according to the Schauder fixed point theorem there existsx ∈ ∆ such that

x(t) =

∫ ∞

t

r(s) ds +

∫ ∞

t

r(τ)

∫ ∞

τ

p(s)

∫ ∞

s

q(z)f(x(z)) dz ds dτ , t ≥ t0.

It is clear thatx is a positive solution of the equation(N) in the classN0 which approaches to
zero ast →∞, i.e. x ∈ N 0

0 . The proof is now complete.

Remark 2.2. Similar investigation of the asymptotic behavior of solutions of the second order
differential equations

(r(t)x′(t))
′
+ q(t)x(t) = 0 and (r(t)x′(t))

′
+ q(t)f(x(t)) = 0, t ≥ a,

wherer, q, f satisfy (H1), (H2), has been given in [6] and [7], respectively. We also refer the
reader to [11] for other results on this topic.
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