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ABSTRACT. A stochastic equation of a viscous barotropic gas is considered. The application
of Ité formula to a specific functional in an infinite dimensional space allows us to obtain an
estimate which is useful to analyse the behavior of the solution. As it is difficult to exploit
this estimate, we study an approximate problem. More precisely, we consider the equation of a
barotropic viscous gas in Lagrangian coordinates and we add a diffusion of the density. An esti-
mate of energy is obtained to analyse the behavior of the solution for this approximate problem
and Galerkin method is used to prove the existence and uniqueness of the solution.
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2 R. BENSEGHIR ANDA. BENCHETTAH

1. INTRODUCTION

The equations describing the motion of a viscous gas are presented in many bodks like [5].
They are established using the laws of conservation of the mass, of motion’s amount and energy.
Following [5], they are given by the system of equations

(1.1) 0o+ V- (ov) =0,
L9 0
(1.2) 00w; + ka:; Uk D2y v + Rl(’?_xj(QT)
3
0 0 0 2 0
— A _Z5. ) i . . — 1.9
Z axk (T}(axkv] + axjvk 3 ],kv U)) + 85Ej (Cv ?)) + Qf]a J ) 73a

(1.3) 0c,(O T +v-VT)+ R 0TV -v

ov; 8vk 2 ov;
— LA ovj R v j
=KrkAv+7 Z o &Uj Sémv )c%k + (V- v)?,

wherev = (vy,v9,v3) and g are the speed and the density of the gas respectively (hisre
obviously positive )" is the temperaturef, is an external force, whilg and( are the viscosity
coefficient of the flow and the volumetric viscosity coefficient respectivglthe specific heat,
x the coefficient of the thermal conduction afRg = %, whereR is the universal gas constant
andy is the molar mass of the gas. For the viscous gas, the pressigéven by

(1.4) p= RyioT.
The barotropic model to the system of equati¢ns| (1.1)-(1.3) is given by the system of equations

(1.5) 0+ V - () =0,

(1.6) 00w + o(v-V)v+ hVo' =nlAv + (g +V(V -v) + of;.

This model is obtained by considering the presguas a function of density, i.e.,

(1.7) p=ho,

whereh is a positive constant ang = C”+R1 is the adiabatic exponent. Also, by using some

approximations on the equatidn (1.3) and by consideyingd( as constants. For more details
seel[1] and5].

Furthermore, the equations of the barotropic (I.5)-(1.6) in one spatial dimension in the
domain0 < x < 1 is given by the system of equations

(18) 0tg + &;(gv) = 0,
(2.9) 00,0 + ov0,v — nd2v + hd,0" = of.
We denote that we have the conservation of the mass, i.e.,
1
(2.10) / o(t,x)dr =1, t>0.
0
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The existence and uniqueness of the solution to the problermn (L.8), (1.9) with boundary and
initial conditions are proved by Kazhikhov [4].

In this paper, we consider that the motion of the barotropic gas in spatial dimension is sub-
jected to a random perturbation. More precisely, we consider in the ddmain: < 1, the
stochastic system

(1.11) odv = (—ovd,v + nd?v — hd,0")dt + odW,
(1.12) Dr0 + Du(0v) = 0,
whereW (t) is a brownian motion of the Hilbert spaéé(0, 1) given by
+oo
(1.13) W)=Y Mer(m)WH(t),
k=1

where)\,, k = 1,2, ... are taken iR satisfying
—+00

(1.14) D> X < +oo,
k=1

{ex};>¢ is an orthonormal basis ih?(0, 1) andW®(¢), k = 1,2, ... are brownian independent
canonical motions with real values defined on a stochastic fasi§, P). For more details see
[3]. Here, the basi$e; } > is given by

(1.15) en(z) = V2sin(knz).
We add to the system of equatiofs (1.11)-(1L.12) the boundary conditions
(1.16) V|p=01 =0, t>0

and the initial conditions

(1.17) 0(0,z) = go(z), v(0,z2) =ve(z) for =z €]0,1].

2. ESTIMATE OF SOLUTION FOR THE SYSTEM (1.17)(1.12)

To analyse the behavior of the solution for the system [1[11){(1.12), with the conditions
(1.18), [T.17), we define the functionalt) by

L2 1 L
(2.1) o(t) = p(v(t),o(t)) = /0 gde + ﬁh/o o'dr, for ~#1.

Applying Itd formula to the functionap (see [8]), we have the following result.

Proposition 2.1. Let ¢ be defined by2.1) and (v, o) the solution of the system of equations

(1.13) (T.12)with the conditiongT.18) (T.17) If \/0,v0 € L*(0,1) andg, € L7(0,1) then
(2.2) o(t) — ¢(0)

t rl ¢ 1 [t +oo 1
— —77/ / (&Ev)Qda:ds—i—/ (ov, dW (s)) —|—§/ Z)\i/ oz (x)dxds,
0 Jo 0 0 0

where(-, -) is the inner product in.?(0, 1).
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Proof. Let
(2.3) u=v—W.
It6 formula (seel]B]) gives

2. 4)
/awd +/ 92 o+ afs)dW(s)—i—% agvis)uW(s),dW(s»

where

dp Oy o Py

ou’ 9o’ OW(s) 0*W(s)
are Fréchet derivatives. We have for all positive functigramdg,

(2.5)

a 1
(2.6) ) = / ovfdz,
0 L y? h
@7) o= [ G+ e,
Op B !
28) G = [ evsas,
2.9 T [ oo
(2.9) m(f)(g)—/o of gdz.
From [1.11),[(1.12), we obtain
(2.10) gidu = /01[—91)2(911) + nvd?v — hvd,o")dxds,
a(p B 1 —U3 1 B B
8Qd /o [— 5 Oy g—g 8 v]drds — ﬁh/() (vo" 10,0 + 07 00, v)dxds,
0
3117V () = (o0, dW (s)
and

Gy 6 5 _/ sz Jhds

Substituting these relations in 1t formula (2.4), we get

t 1
(2.11) ¢(t) — ¢(0) = / / [—0v?0,v + nvdPv — hvd,0"]dxds
0

0

L= v? Y ! |
0,0 — 0—=0,v — 10,0 4 07 00,0)|dad
+/0/0[ 5020 — 0500 7_1(119 0+ 0" 00,v)|dxds

—l—/(g’u dw (s // QZ)\kek Ydxds.
0
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From (1.16), we have

1 v3 02 1 02
_/ (szaxv + EaxQ + anxv)d:n = — 81,[91)?] =0,
0 0

1 1 1
/ (00" 00+ 07 00,0 + 00, 0")dx = / Oz[ve™] = 0,
0 0
then, we obtain (2]2). O

Corollary 2.2. Let (v, g,) be the initial data given by/o,uy € L*(0,1) andg, € L7(0,1).
For T > 1, there exists a positive constafitsuch that

1 T

Proof. Applying mathematical expectation to the formdla|2.2), we obtain

1 h 1 1 h 1
(213)E(/Q2dl'+ﬁ ’ydl')_E(/ Q02dm+ﬁ gd%)
0

t o0
—nE/ 1020120,y s + E/ Zx?/ 062 (2)dds.
0

k=1
As 1 2 1
h
E(/ dex—i-— 7dx>>0
0 v—1
and,/oyvy € L*(0,1), g, € L7(0, 1) then, [2.1IB) becomes
1 1 t +oo 1
(2.14) nE/ 10201 72(0.1) ds < Cy + 5E/ in/ 0€2 (z)dxds,
0 0 0
where L .
h
Cle</ gov dx—i—— 8d:c).
) 02 —1
As
+o0
Z A < +oo,
k=1
and using the relations
sup e2(x) = sup (V2sin(krz))? = 2,
0<z<1 0<z<1
1 1
/ oerdr < sup ez(x)/ odr = 2,
0 0<a<1 0
(2.14) becomes
1
(2.15) nE/O |‘axv|‘i2(o,1) ds < Cy + Cy,
where
+oo
Cy=t) M.
k=1
Dividing (2.18) byT" > 0, we obtain the sought after estimate, whére- <1t O
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Remark 2.1. From Prokhorov theorem[[3], the inequalify (2.12) allows us to extract a subse-
guence of invariant measures
Ty
= —/ tht

converging weakly to a measurdn the spacd.?(0, 1), p € [0, 4+o0]. Itis clear that this result

is valid only forv. To find an invariant measure for the system of equations](1.11)}(1.12) (using
Krylov-Bogoliubov theorem[[3]), we need to have also an estimatefohs it is difficult to

find an adequate estimate f@rwe propose to study an approximate problem.

3. POSITION OF THE PROBLEM

We consider the system of equations (1.11)-(1.12), with the conditions| (1.16)] (1.17), in
lagrangian coordinates in the doméinl| (for the passage of eulerian coordinates to lagrangian
coordinates seé[1] ). the system of equations is written as

(3.1) dv = (n0:(00cv) — h(0:0"))dt +dG, 0 <€ <1,
(3.2) D0 = —0° O,

with

(3.3) Vo1 =0, t€[0,T]

and

(3.4) 0(0,8) = 0o(§), v(0,§) =wo(§) for £e0,1].

whereG is a Brownian motion defined in the probability spate F, P) such that

+oo
k=1

where\, € R, k=1,2, .., {ek} " is an orthonormal basis ih%(0,1) andG™ k= 1,2, ..,
are independent real Brownian motlons
The existence and uniqueness of the solution to the probleimn [3.1)-(3.2) with the confitipns (3.3)
and [3.4) are proved by Tornatore-Fujita Yashima [9].
We add a diffusion of density to the equatidn {3.2), given by

£00:((00™ + 2077 + 0~ *)d,0), € > 0,

i.e., we consider the system

(3.5) dv = (n0¢v(00gv) — h(0g0"))dt + dG,

(3.6) D0 = —0*0ev +200:((0""™2 + 2077 + 0~ 2) 9, 0),
with

3.7) Vecor =0, tel0,T]

and

(3.8) 0(0,8) = 0o(§), v(0,§) =wo(§) for £€0,1].
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3.1. Estimate of energy. We define a functionab(¢) such that

1 2 h 1
wl) = [ e+ [ e
0 v—1
The application of Ito formula to the functlonzalglves the following result.

Proposition 3.1. Let be

o=0— —.
0
We have

B(t) — :—7]// (O¢v) 2déds — he(y — 1) / [0¢o(s ”L201) s

(3.9) /O (v, dG) /0 va / eidéds.

k=1

Proof. Let
v=u+G.

Ito formula gives

(3.10) &(t) —%(0)

2—
/a% +/ 9% 4o +/a¢dG+ /;gdGQ

Jp 0p 0p P
ou’ B’ 0G, 092G,
are Fréchet derivatives. From (B.5), we have

a 1
odu = [ ledi(evee) - k(@) deds
0

On the other hand, from (3.6), we get
Ip
do

Similarly, we have

where

1

1
92 4o = —h / o Devdeds — he(y + 1) / (D0 — E) Jdéds.

0

9% 4c, = (v,dG.)

0G,
and
62 t +oo )
ey ? (dGy, dG,) /0 Z A2 / e2deds.
Subsisting these relations in Ito form@.lO), we obtain the desired result. O

We have the following result.

Corollary 3.2. We have the estimate

1 T 4 1 T )
(3.11) 18 [l i 2B [ o0l < T

whereC is a positive constant.
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Proof. As we have
(3.12) joel, = [ foctde= [ (2)2ok el de
. U L%(O,l)_ . 1 = . Lo % eV .

From Holder inequality(p = 3,¢ = 2), we have

s L, i/l , 3
3 < -
ocolly,, < ([ Crae) ([ otoeotac)

As

1|7 )

- <2|o]"+1

0
then

_1.2 ! 2 [t
1 - 2 - 2 de.

(3.13) ool 0 5+ [ loPde 5 [ oloclas
Substituting the inequality (3.13) in the formuJa (3.9), applying the mathematical expectation
and dividing byT", then we obtain the desired estimate. O

4. EXISTENCE OF THE SOLUTION FOR THE SYSTEM (3.3)}(3.7)

We consider the system of equatiops 3[5){(3.8) for euacehQ It is a deterministic system
for u(w; t, ), o(w; t, z). Multiplying the equation[(316) by = 7 , by letting

O=o7
and
o = Q;%l,
then, the system of equations (3.5)-(3.6) becomes
(4.1) Dy = 0 (077 Deu) + 0 (0710, G) — hded-1,
v — —7+2) _2, 2(1+2)

@2) 90 + =100, + &) — (1o L)epa((0°5H + 207 )dco 5y = o,

with
U|5:0,1 = O, t e [O,T]
To study this system of equations, we use Galerkin approximate.
4.1. Galerkin method. Let beV,, a space generated by
{cos kmx,sinkrx}] . m € N.

In the spacé/,,,, the system of equations (4.1)-(4.2) is written in the form

2 2 2y
(4.3) Opul™ = 0o (07T Oeul™) + no (677 0:G) — hoo™ T,

-1 71
(4.4) 9,0 + (”T)e[mlv—lag(u[ml i)

v — 2(=v+2) —2(v+2)

5 Depimlag((oim T 4 2t )agghm ) Z g
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4.1.1. Existence and uniqueness of the solutibet (6™ v[™]) be the solution of the system
to equations[(4]3)-(4l4). The research of the solutiBhgiven by

(4.5) oM — 6, = Z ay'(t) cos kma + B (t) sin kma

is done by solving the system of a differential equations

d m . Y +1 ! —y+1
Gor =-55 [
+F0k<am7ﬁm)7

(u™ + G) cos kmz)dé

d m . '}/—'— 1 1 7'y2+1
G0 == [ (o
+F1k<am7ﬁm)7

(u™ + G) sin krz)dé

where

—2(v+2)

-1 1 —(v+2) —2y
Fok(a™, ™) = (7 > )6/ e[m}(aé(g[m] Ly gglmlat |y glm] 5T )
0

2
De (0™ —1) cos kmxdz
fy u—

—2(v+2)

— L [ gl g TR L ggimFE | gim 3
)5/9 (Be(01™ T 4 gglmI ot | ghml 5y
0

2

Flk(am’6m> — (fy

De(0

. ) sin kmxdx.
ry J—

4.2. Estimate for the convergence.If we multiply the equation(4]3) by/™ and the equation
@34) byo™ after integrating fron to 1, the systen{ (4]3)-(4.4) becomes

(4.6) ‘ [m]‘ + =4 /1 9ImI5 gl g
2dt L2(0,1) 2 0
v-1 fm] 51 (y —1)? >
5 [ o Faavae + Do ol =0
and
L
(4.7) %% Hu[m]HiQ(o,l) - _77/0 01T (Bgul™)?dg

1 2 1 2y
—n / 0T (Deul™ 9 WY dE + h / oI 9eulm e
0 0
Then, we have the following result.

Proposition 4.1. There exists a constaif independent of: such that

1
(4.8) Sup/ e 4 sup [ ul ]“i?(o,l)
0

0<t<t; 0<t<t;

t1 1
100 (o™ a0 1200 * 19 ™ 24 0,08 01+ / / P (Ocul™)*dg < K.
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Proof. Multiplying (4.6) by~ and [4.7) by”—’1 and summing the two equations, we have

@9) 1L ]l L )+ /9[’”“ " (Deul™)dg
—1
< —h¥/ gimlo- 13 Wd§ — h( O 5H6€UHL201)
0
— 1 2 — 2
B 77(7 . 1)/ Q[m]vfl(égu[m])ng B n(’Y 1)/ 67T (Deulm 9 Ve
0 0

Substituting the inequality (3.13) in (4.9), we obtain the desired result. O

4.3. Existence of the solution.We have the following result.

Proposition 4.2. There exists a couple:, p) satisfying the equalities

(4.10) — /0 : /0 (Ocoyudeds — /0 ' (. O)u(z, 0)dx

T ,l1 T rl
_ /0 /0 (0c0)pdevdeds + h /0 /U (O deds
and

@iy - [ ) / (09) o~ / (2, 0) log(, 0
/ / (pOev)pdeds — ¢ / / Y2077 + o= )5, p)déds,

for any functionp sufficiently regular satisfying
(4.12) (0) = ¢(1) = 0.
Proof. Recall that | .
O = O (p — ;) =(1+ ;)8&0«
As we have

—(~— — —(v+2) o ]_ o 1
((p =D+ N g p) = p? 7(1+§)+p (1 2 —) = (p""+p 7)o,

then, [4.111) becomes
T rl 1
_ / / (9;0) log p — / ¢(x,0)log(z,0)
0o Jo 0

T 1 T 1
[ [ wveedeas e [ [+ paoviodcas
0 0 0 0
O

To prove the existence of the solution for the system of equatjonss (3.%)-(3.8), we have the
following theorem.

Theorem 4.3.LetT > 0. Assume that/gyu, € L*(0,1) and g, € L7(0,1), then there
exists a couplév, p) with value inL?(0, T'; H;(0,1)) and L?(0, T'; L*(0,1)), p > 1 respectively
satisfying in[0, 7] the system of equatiotf8.5)-(3.9).

To prove this theorem, we need the following compactness lemma ( for more details, see [6,
page 57 — 59] (Ch. 1, Theorem 5.1)).
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Lemma 4.4. [6] Consider the Banach spacéy, B, and B such that
(1) By C B C B; with continuous injections and3,, B; are reflexives,
(2) the injection ofB, in B, is compact.
Let

d
(4.13) W = {ueLP0,T; BO)|d—;L e 17(0,T: By)},
whereT' is positive number whilé < p; < +oo for i = 0, 1, equipped with the norm
du
lullero 7m0 + 11— [l @750,

then the injection of the Banach spddéin L (0, T'; B) is compact.

Proof of the theorem. It is clear that the inequalitief (4]10) and (4.11) are satisfied fer
V.n. For the passage to the limit, we use a compactness Lemma with

By = H'(0,1), B=1F0,1) and B, =H20,1).
It is easy to control that all conditions of compactness lemma are satisfied, then, we have

log pI™ — log p in L'(0,1),
P 2 in 22(0,1),
plm = in L2(0,1).
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