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1. INTRODUCTION

The idea of a string involute is due to Christian Huygens (1658), who is also known for his
work in optics. He found involutes while attempting to develop a more exact clock [1]. The
involute of a given curve is a well-known idea in Euclidean 3-space. It is notable that, if a curve
is differentiable at each point of an open interval, a set of mutually orthogonal unit vectors
can be constructed and called Frenet frame or moving frame vectors. The rates of these frame
vectors along the curve defined curvatures of the curves. The set, whose elements are frame
vectors and curvatures of a curve, is called Frenet apparatus of the curve. An evolute and its
involute, are defined in mutual pairs. The evolute and involute of the curve pair is well known
by mathematicians particularly the differential geometry researchers.
Let us define involute-evolute curve couple. The curve ϕ is an evolute of the curve ψ if ϕ lies
on the tangent line to ψ at ψ(s0) and the tangents to ψ and ϕ at ψ(s0) and ϕ are perpendicular
for each s0. Also, ϕ is an evolute of ψ if ψ is an involute of ϕ, for more details, see for instance
[2, 3, 4, 5, 6].
The geometry of space is associated with mathematical group. The idea of invariance of geom-
etry under transformation group may imply that on some spacetimes of maximum symmetry
there should be a principle of relativity, which requires the invariance of physical laws without
gravity under transformations among inertial systems. Besides, the theory of curves and the
curves of constant curvature in the equiform differential geometry of the isotropic spaces I13
and I23 and the Galilean space G3 are described in [7, 8, 9], respectively. Although the equiform
geometry has minor importance related to the usual one, the curves that appear here in the
equiform geometry can be seen as generalizations of well-known curves from the above men-
tioned geometries and therefore could have been of research interest.
The equiform geometry of Cayley-Klein space is defined by mentioning that the similitude gath-
ering of the space jam points among planes and lines, individually. Cayley-Klein’s geometries
have been read up for a long time. However, they have as of late become fascinating since their
significance for different fields, like soliton theory, have been rediscovered.
We have found motivation for this work in [2, 7, 10, 11, 12], where the authors considered
characterizations of general helices in the Minkowski space-time, double isotropic and Galilean
spaces. Therefore, in this paper, we introduced a visualization for the equiform geometry of
Frenet apparatus in three dimensional hyperbolic and de Sitter spaces. Also, we define the
equiform geometry of involute-evolute curve couple in H3

+(−1) and S3
1.

2. GEOMETRY OF HYPERBOLIC AND DE SITTER SPACES

In this section, we use the basic notions and results in Lorentzian geometry for Frenet frame
in hyperbolic and de Sitter spaces. Also, we introduce some definitions and basic facts which
are needed in the subsequent sections, for more details, see [1, 6, 13]).

2.1. Hyperbolic 3-space. Let R4 be a four-dimensional vector space. For any x = (x1, x2, x3, x4), y =
(y1, y2, y3, y4) ∈ R4, the pseudo-scalar product of x and y is defined by ⟨x, y⟩ = −x1y1+x2y2+
x3y3 + x4y4. We call (R4, ⟨, ⟩) Minkowski 4-space and denoted by E4

1. We say that a vector
x ∈ E4

1 is spacelike, lightlike or timelike if ⟨x1, x2⟩ > 0, ⟨x1, x2⟩ = 0 or ⟨x1, x2⟩ < 0, respec-
tively. The norm of the vector x ∈ E4

1 is defiend by ∥x∥ =
√

|⟨x, x⟩|. The hyperbolic space is
defined by

H3
+(−1) = {x ∈ E4

1 | ⟨x, x⟩ = −1, x1 > 0},
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For any x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) and z = (z1, z2, z3, z4)∈ E4
1, the pseudo vector

product of x, y and z is defined as follows:

x ∧ y ∧ z =

∣∣∣∣∣∣∣∣
−i j k l
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣
=

−

∣∣∣∣∣∣
x2 x3 x4
y2 y3 y4
z2 z3 z4

∣∣∣∣∣∣ ,−
∣∣∣∣∣∣
x1 x3 x4
y1 y3 y4
z1 z3 z4

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
x1 x2 x4
y1 y2 y4
z1 z2 z4

∣∣∣∣∣∣ ,−
∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣
 .

Let γ : I −→ H3
+ ⊂ E4

1; γ(t) = (x1(t), x2(t), x3(t), x4(t)) be a smooth regular curve in
H3

+ (i.e., γ′(t) ̸= 0) for any t ∈ I where I is an open interval. So that, ⟨γ′(t), γ′(t)⟩ > 0 for
any t ∈ I . The arc-length of γ, measured from γ(t◦), t◦ ∈ I is s(t) =

∫ t
t◦
∥γ′(t)∥dt. Then the

parameter s is determined such that ∥γ̇(s)∥ = 1, where γ̇(s) = dγ(s)
ds

. The spacelike curve γ is
said to be parameterized by arc-length if it satisfies that ∥γ̇(s)∥ = 1. In what follows, we denote
the parameter s of γ as the arc-length parameter. Let us denote T(s) = γ̇(s), and we call T(s)
a unit tangent vector of γ at s.
Here, we construct the explicit differential geometry on curves in H3

+(−1). Let γ : I −→
H3

+(−1) be a regular curve. Since H3
+(−1) is a Riemannian manifold, we can re-parameterize

γ by the arc-length. Hence, we may assume that γ(s) is a unit speed curve. So we have the
tangent vector T(s) = γ̇(s) with ∥T∥ = 1. When

〈
Ṫ(s), Ṫ(s)

〉
̸= −1, then we have a unit

vector N(s) =
Ṫ(s)− γ(s)

∥Ṫ(s)− γ(s)∥
. Moreover, we define E(s) = γ(s)∧T(s)∧N(s), then we have

a pseudo orthonormal frame {γ(s),T(s),N(s),E(s)} of H3
+ along γ. By standard arguments

and under the assumption that
〈
Ṫ(s), Ṫ(s)

〉
̸= −1, we have the following Frenet formulas:

(2.1)


γ̇(s) = T(s),

Ṫ(s) = γ(s) + κN(s),

Ṅ(s) = −κT(s) + τE(s),

Ė(s) = −τN(s).

Or in the matrix form as follows:
γ̇(s)

Ṫ(s)

Ṅ(s)

Ė(s)

 =


0 1 0 0
1 0 κ 0
0 −κ 0 τ
0 0 −τ 0



γ(s)
T(s)
N(s)
E(s)

 ,
where

κ = ∥Ṫ(s)− γ(s)∥,
(2.2)

τ = −det (γ(s), γ̇(s), γ̈(s),
...
γ (s))

(κ(s))2
,
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are the curvature and torsion of the curve γ, respectively. Since
〈
Ṫ(s)− γ(s), Ṫ(s)− γ(s)

〉
=〈

Ṫ(s), Ṫ(s)
〉
+ 1, the condition: 〈

Ṫ(s), Ṫ(s)
〉
̸= −1,

is equivalent to the condition κ(s) ̸= 0. Moreover, we can show that the curve γ(s) satisfies the
condition κ(s) ≡ 0 if and only if there exists a lightlike vector c such that γ(s)−c is a geodesic.
Such a curve is called an equidistant curve.

2.2. De Sitter 3-space . Here, we define the de Sitter 3-space as follows:

S3
1 = {x ∈ E4

1 | ⟨x, x⟩ = 1}.
Let γ : I −→ S3

1 be a smooth and regular spacelike curve in S3
1. We can parameterize it by arc

length s, since S3
1 is a Riemannian manifold, we can re-parameterize γ by the arc-length. Hence,

we may assume that γ(s) is a unit speed curve. So, we have the tangent vector T(s) = γ̇(s)

with ∥T∥ = 1. In this case, we call γ a unit speed spacelike curve. If
〈
Ṫ(s), Ṫ(s)

〉
̸= 1,

then ∥Ṫ(s) + γ(s)∥ ≠ 0, and we define the unit vector N(s) =
Ṫ(s) + γ(s)

∥Ṫ(s) + γ(s)∥
. Furthermore,

E(s) = γ(s)∧T(s)∧N(s), then we have a pseudo orthonormal frame {γ(s),T(s),N(s),E(s)}
of E4

1 along γ. Also,
〈
Ṫ(s), Ṫ(s)

〉
̸= 1, we have Frenet equations:

(2.3)


γ̇(s) = T(s),

Ṫ(s) = −γ(s) + κN(s),

Ṅ(s) = −δ(γ)κT(s) + τE(s),

Ė(s) = τN(s).

Or in the matrix form:
γ̇(s)

Ṫ(s)

Ṅ(s)

Ė(s)

 =


0 1 0 0
−1 0 κ 0
0 −δ(γ)κ 0 τ
0 0 τ 0



γ(s)
T(s)
N(s)
E(s)

 ,
where δ(γ) = sign(N(s)) (which we shall write as simply δ) and

(2.4)


κ = ∥Ṫ(s) + γ(s)∥,

τ =
δ det (γ(s), γ̇(s), γ̈(s),

...
γ (s))

κ(s)2
,

are the curvatures of the curve γ in S3
1.

Since
〈
Ṫ(s) + γ(s), Ṫ(s) + γ(s)

〉
=
〈
Ṫ(s), Ṫ(s)

〉
− 1, the condition

〈
Ṫ(s), Ṫ(s)

〉
̸= 1 is

equivalent to the condition κ(s) ̸= 0 (see [1, 2]).

3. EQUIFORM GEOMETRY OF CURVES IN HYPERBOLIC 3-SPACE

Let γ(s) : I → H3
+(−1) be a curve in hyperbolic 3-space. We define the equiform parameter

of γ by

(3.1) σ =

∫
ds

ρ
=

∫
κds,

AJMAA, Vol. 20 (2023), No. 2, Art. 6, 20 pp. AJMAA

https://ajmaa.org


THE INVOLUTE-EVOLUTE CURVE COUPLE IN HYPERBOLIC AND DE SITTER SPACES 5

where ρ = 1
κ
, is the radius of curvature of γ. Eq. (3.1), leads to

(3.2)
ds

dσ
= ρ.

Let h is a homothety with the center at the origin and the coefficient λ. So, if we put γ∗ = h (γ) ,
then

(3.3) s∗ = λs, and ρ∗ = λρ,

where s∗ is the arclength parameter of γ∗ and ρ∗ is the radius of curvature of γ∗. Hence σ is an
equiform invariant parameter of γ (see [7, 10, 14])

Notation . Let κ and τ be not invariants of the homothety group, then

κ∗ =
1

λ
κ,

τ ∗ =
1

λ
τ.

The vector

(3.4) U1 =
dγ (s)

dσ
,

is called the tangent vector of γ in the equiform geometry of H3
+. Therefore, from Eqs. (3.2)

and (3.4), we get

(3.5) U1 =
dγ (s)

dσ
= ρ

dγ (s)

ds
= ρ T.

Furthermore, we define the vectors U2 and U3 as follows:

(3.6) U2 = ρN, U3 = ρ E.

It is easy to check that the tetrahedron {γ,U1, U2, U3} is an equiform invariant tetrahedron of
the curve γ.
Now, we find the derivatives of these vectors with respect to σ using Eqs. (2.1), (3.5) and (3.6)
as follows:

U′
1 =

d

dσ
(U1) = ρ

d

ds
(ρT) = ρ(ρ̇T+ ρṪ) = ρ(ρ̇T+ ρ(γ + κN))

= ρ2γ + ρ̇(ρT) + (ρN) = ρ2γ + ρ̇U1 +U2,(3.7)

where the derivative with respect to the arc-length s is denoted by a (dot) and respect to σ by a
(prime). Similarly, we obtain

U′
2 =

d

dσ
(U2) = ρ

d

ds
(ρN) = ρ(ρ̇N+ ρṄ) = ρ(ρ̇N+ ρ(−κT+ τE))

= ρT+ ρ̇(ρN) +
τ

κ
(ρE) = U1 + ρ̇U2 +

τ

κ
U3,(3.8)

therefore,

U′
3 =

d

dσ
(U3) = ρ

d

ds
(ρE) = ρ(ρ̇E+ ρĖ) = ρ(ρ̇E+ ρ(−τN))

= −τ
κ
(ρN) + ρ̇(ρE) = −τ

κ
U2 + ρ̇U3.(3.9)
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Definition 3.1. The functions: Ki : I → R (i = 1, 2) defined by

(3.10) K1 = ρ̇, K2 =
τ

κ
,

are called the equiform curvatures of the curve γ. These functions are differential invariant of
the group of equiform transformations, too.

Therefore, the formulas analogous to the famous Frenet formulas in the equiform geometry
of the hyperbolic 3-space have the following form:

γ′ = U1,

U′
1 = ρ2γ +K1U1 +U2,

U′
2 = U1 +K1U2 +K2U3,

U′
3 = −K2U2 +K1U3.

(3.11)

Or in the matrix form as follows:
γ′(σ)
U′

1(σ)
U′

2(σ)
U′

3(σ)

 =


0 1 0 0
ρ2 K1 1 0
0 1 K1 K2

0 0 −K2 K1




γ(σ)
U1(σ)
U2(σ)
U3(σ)

 .
Notation . The equiform parameter σ =

∫
κ(s)ds for closed curves is called the total curvature,

and it plays an important role in global differential geometry of the Euclidean space. Also, the
function τ

κ
has interesting geometric interpretation.

According to the equiform Frenet formulas (3.11), we can write the following equalities
regarding equiform curvatures:{

K1 =
1
ρ2

〈
U

′
j,Uj

〉
; (j = 1, 2, 3) ,

K2 =
1
ρ2

〈
U

′
2,U3

〉
= −1

ρ2

〈
U

′
3,U2

〉
.

(3.12)

Here, we characterize the equiform space and the curves using their equiform curvatures K1

and K2 in H3
+, which have some important geometric interpretations as follows:

(1) If K2 = const., then the curve is an equiform general helix and vice versa. Here, we do
not set conditions on K1 (for more details, see [15, 16, 17]).

(2) If the above condition holds and K1 is identically zero, then the curve is a W-curve ( for
more details, see [17, 18]).

According to [17], we have the following theorem.

Theorem 3.1. Let γ be a curve in H3
+ with the equiform invariant tetrahedron {γ,U1,U2,U3}

and equiform curvature K1 ̸= 0. Then γ has K2 ≡ 0 if and only if γ lies fully in a 2-dimensional
subspace of H3

+(−1).

Proposition 3.2. Let γ be an equiform curve with an equiform invariant vector U3 in the
equiform geometry of H3

+. Then, the curve γ is an equiform general helix if and only if

(3.13) U′′
3 − (K2

1 −K2
2 −K′

1)U3 = −K2U1 − 2K1K2U2.

Proof. Suppose that the curve γ is an equiform general helix. Thus, we have

(3.14) K2 = const.

From Eqs. (3.11) and (3.14) , it is easy to prove that the equation (3.13) is satisfied.
Conversely, we assume that the equation (3.13) holds. Then from (3.11), we find

(3.15) U′
3 = −K2U2 +K1U3.
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Differentiating Eq.(3.15) with respect to σ, we get

U
′′

3 =−K′
2U2 −K2U

′
2 +K′

1U3 +K1U
′
3

=−K′
2U2 −K2(U1 +K1U2 +K2U3)

+K′
1U3 +K1(−K2U2 +K1U3),

then,

U′′
3 = −K2U1 − (2K1K2 +K′

2)U2 + (K2
1 −K2

2 +K′
1)U3.

So, we obtain
K′

2 = 0,

which completes the proof. □

4. EQUIFORM GEOMETRY OF CURVES IN DE SITTER 3-SPACE

In this section, we consider γ(s) : I → S3
1 as a curve parameterized by arc-length s. Then

we can write

V1 = ρ T,

V2 = ρN,

V3 = ρ E.(4.1)

Thus, {γ,V1,V2, V3} is an equiform invariant tetrahedron of γ. The derivatives of these
vectors with respect to σ are

V′
1 =

d

dσ
(V1) = ρ

d

ds
(ρT) = ρ(ρ̇T+ ρṪ) = ρ(ρ̇T+ ρ(−γ + κN))

= −ρ2γ + ρ̇(ρT) + (ρN) = −ρ2γ + ρ̇V1 +V2.(4.2)

Also, we obtain

V′
2 =

d

dσ
(V2) = ρ

d

ds
(ρN) = ρ(ρ̇N+ ρṄ) = ρ(ρ̇N+ ρ(−δκT+ τE))

= −δρT+ ρ̇(ρN) +
τ

κ
(ρE) = −δV1 + ρ̇V2 +

τ

κ
V3,(4.3)

and so,

V′
3 =

d

dσ
(V3) = ρ

d

ds
(ρE) = ρ(ρ̇E+ ρĖ) = ρ(ρ̇E+ ρ(τN))

=
τ

κ
(ρN) + ρ̇(ρE) =

τ

κ
V2 + ρ̇V3.(4.4)

Hence, the Frenet equations in the equiform geometry of the de Sitter 3-space S3
1 can be written

as 
γ′ = V1,

V′
1 = −ρ2γ +K1V1 +V2,

V′
2 = −δV1 +K1V2 +K2V3,

V′
3 = K2V2 +K1V3.

(4.5)

Or in the matrix form as follows:
γ′(σ)
V′

1(σ)
V′

2(σ)
V′

3(σ)

 =


0 1 0 0

−ρ2 K1 1 0
0 −δ K1 K2

0 0 K2 K1




γ(σ)
V1(σ)
V2(σ)
V3(σ)

 .
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Therefore, according to the equiform Frenet formulas (4.5), the following equalities regarding
equiform curvatures are given as follows:{

K1 =
1
ρ2

〈
V

′
j,Vj

〉
; (j = 1, 2, 3) ,

K2 =
1
ρ2

〈
V

′
2,V3

〉
= 1

ρ2

〈
V

′
3,V2

〉
.

(4.6)

Corollary 4.1. Let γ be an equifrom curve in S3
1 with the equiform invariant tetrahedron

{γ,V1,V2,V3} and equiform curvature K1 ̸= 0. Then γ has K2 ≡ 0 if and only if γ lies
fully in a 2-dimensional subspace of S3

1.

Proposition 4.2. Let γ be an equiform curve with an equiform invariant vector V3 in the
equiform geometry of S3

1. Then, the curve γ is an equiform general helix if and only if

(4.7) V′′
3 − (K2

1 +K2
2 +K′

1)V3 = −δK2V1 + 2K1K2V2.

Proof. Suppose that the curve γ is an equiform general helix. Thus, we have

(4.8) K2 = const.

From Eqs. (4.5) and (4.8) , it is easy to prove that the equation (4.7) is satisfied.
Conversely, we assume that the equation (4.7) holds. Then from (4.5), we obtain

(4.9) V′
3 = K2V2 +K1V3.

Differentiating Eq.(4.9) with respect to σ, we get

V
′′

3 =K′
2V2 +K2V

′
2 +K′

1V3 +K1V
′
3

=K′
2V2 +K2(−δV1 +K1V2 +K2V3)

+K′
1V3 +K1(K2V2 +K1V3),

then,

V′′
3 = −δK2V1 + (2K1K2 +K′

2)V2 + (K2
1 +K2

2 +K′
1)V3.

So, we obtain
K′

2 = 0,

which completes the proof. □

5. EQUIFORM GEOMETRY OF INVOLUTE-EVOLUTE CURVE COUPLE IN H3
+

In this section, we introduce the equiform geometry for Frenet apparatus of an evolute curve
according to the Frenet apparatus of an involute curve in H3

+(−1).

Definition 5.1. Let ψ : I −→ H3
+(−1) be a regular spacelike curve in H3

+(−1) with arc-length
parameter s so that κ and τ are not zero. Let γ : I −→ H3

+(−1) be the evolute curve of ψ with
arc-length parameter s̄ = f(s). Denote {γ, Tγ , Nγ , Eγ} to be the Frenet frame along γ and κγ ,
τγ to be the curvatures of γ. Then

span{γ,Eγ} = span{T,N}, span{Tγ,Nγ} = span{γ,E},
γ can be expressed as

γ(s) = ψ(s) + λ1(s)Nψ(s) + λ2(s)Eψ(s),

where λ1 and λ2 are C∞ functions on I (see [19]).

Theorem 5.1. Let γ and ψ be unit speed space-like curves and γ be an evolute of ψ. The
equiform Frenet apparatus of γ: {U1γ;U2γ;U3γ,K1γ;K2γ} can be formed according to Frenet
apparatus of ψ: {Tψ;Nψ;Eψ;κψ; τψ}.
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Proof. From the definition of involute-evolute curve couple in hyperbolic 3-space, we can write

(5.1) γ(s) = ψ(s) + λ1(s)Nψ(s) + λ2(s)Eψ(s).

Differentiating both sides of Eq.(5.1) with respect to s, we obtain

ḟTγ = Tψ + λ̇1Nψ + λ1(s)Ṅψ(s) + λ̇2Eψ + λ2(s)Ėψ(s),

Using Eqs.(2.1), we find

ḟTγ =Tψ + λ̇1Nψ + λ̇2Eψ + λ1(−κψTψ + τψEψ) + λ2(−τψNψ)

=(1− κψλ1)Tψ + (λ̇1 − τψλ2)Nψ + (λ̇2 + τψλ1)Eψ.

Recalling the definition of involute and evolute curve couple, we can say that

Tγ ⊥ Tψ,

then, we get

(5.2) λ̇1 − τψλ2 = 0, 1− κψλ1 = 0.

By solving Eqs.(5.2), we obtain

(5.3) λ1 =
1

κψ
, λ2 = − κ̇ψ

κ2ψτψ
.

From Eq.5.1, we have

(5.4) γ(s) = ψ(s) +
1

κψ
Nψ(s)−

κ̇ψ
κ2ψτψ

Eψ(s).

Differentiating both sides of Eq.(5.4) with respect to s and using Eqs.(2.1), we find

Tγ =
1

ḟ

(
τψ
κψ

−

(
κ̇ψ
κ2ψτψ

)·)
Eψ(s),(5.5)

it leads to

Ṫγ =− τ

ḟ 2

(
τψ
κψ

−

(
κ̇ψ
κ2ψτψ

)·)
Nψ(s) +

1

ḟ 2

(
τψ
κψ

−

(
κ̇ψ
κ2ψτψ

)·)˙

Eψ(s)

− f̈

ḟ 2

(
τψ
κψ

−

(
κ̇ψ
κ2ψτψ

)·)
Eψ(s).(5.6)

From Eqs.(2.2), (5.4) and (5.6), where

Nγ =
Ṫγ − γ

∥Ṫγ − γ∥
,

we obtain

Nγ =[(
τ

ḟ 2
Ω +

1

κψ
)2 + (

1

ḟ 2
Ω̇− f̈

ḟ 2
Ω +

κ̇ψ
κ2ψτψ

)2 − 1]−
1
2 (−ψ(s)

− (
τ

ḟ 2
Ω +

1

κψ
)Nψ(s) + (

1

ḟ 2
Ω̇− f̈

ḟ 2
Ω +

κ̇ψ
κ2ψτψ

)Eψ(s)),(5.7)

where

Ω =

(
τψ
κψ

−

(
κ̇ψ
κ2ψτψ

)·)
.
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Also, from Eqs.(5.7) and (2.2), we get

(5.8) κγ(s) =

√√√√(τψ
ḟ 2

Ω +
1

κψ

)2

+

(
1

ḟ 2
Ω̇− f̈

ḟ 2
Ω +

κ̇ψ
κ2ψτψ

)2

− 1,

which implies that

(5.9) ργ(s) =

(τψ
ḟ 2

Ω +
1

κψ

)2

+

(
1

ḟ 2
Ω̇− f̈

ḟ 2
Ω +

κ̇ψ
κ2ψτψ

)2

− 1

− 1
2

,

where ργ = 1
κγ

. By differentiating Eq.(5.9), we find

ρ̇γ =[(
τψ

ḟ 2
Ω +

1

κψ
)2 + (

1

ḟ 2
Ω̇− f̈

ḟ 2
Ω +

κ̇ψ
κ2ψτψ

)2 − 1]−
3
2 ((

τψ

ḟ 2
Ω +

1

κψ
)(
τψ

ḟ 2
Ω +

1

κψ
)·

+(
1

ḟ 2
Ω̇− f̈

ḟ 2
Ω +

κ̇ψ
κ2ψτψ

)(
1

ḟ 2
Ω̇− f̈

ḟ 2
Ω +

κ̇ψ
κ2ψτψ

)·).(5.10)

Therefore, from Eqs.(5.4), (5.5), and (5.7), we have

Eγ(s) = ργ

∣∣∣∣∣∣∣∣∣∣∣∣

−ψ(s) Tψ Nψ Eψ

1 0 1
κψ

− κ̇ψ
κ2ψτψ

0 0 0 1
ḟ
Ω

−1 0 −(
τψ

ḟ 2
Ω + 1

κψ
) (

1

ḟ 2
Ω̇− f̈

ḟ2
Ω +

κ̇ψ
κ2ψτψ

)

∣∣∣∣∣∣∣∣∣∣∣∣
,

which can be written as

Eγ(s) = −τψ
ḟ 2

Ω

(τψ
ḟ 2

Ω +
1

κψ

)2

+

(
1

ḟ 2
Ω̇− f̈

ḟ 2
Ω +

κ̇ψ
κ2ψτψ

)2

− 1

− 1
2

Tψ(s).(5.11)

Now, we need to find ...
γ (s), therefore, from Eq.(5.6), we get

...
γ (s) =

1

ḟ 4
((ḟκψτψ)Tψ(s) + ((2 + ḟ)f̈ τψΩ− 2ḟ τψΩ̇− ḟ τ̇ψΩ)Nψ

+ ((f̈ 2 − ḟ τ 2ψ − ḟ
...
f )Ω− (f̈(2 + ḟ))Ω̇ + ḟ Ω̈)Eψ),(5.12)

or in the form

(5.13) ...
γ (s) = µ1Tψ + µ2Nψ + µ3Eψ,

where 
µ1 =

1
ḟ3
κψτψ

µ2 =
1
ḟ4
((2 + ḟ)f̈ τψΩ− 2ḟ τψΩ̇− ḟ τ̇ψΩ)

µ3 =
1
ḟ4
((f̈ 2 − ḟ τ 2ψ − ḟ

...
f )Ω− (f̈(2 + ḟ))Ω̇ + ḟ Ω̈).

(5.14)
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Also, from Eqs.(2.2), (5.4), (5.5), (5.6), and (5.13), we have

τγ(s) = −ρ2γ

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1
κψ

− κ̇ψ
κ2ψτψ

0 0 0 1
ḟ
Ω

0 0 −τψ
ḟ 2

Ω 1
ḟ2
(Ω̇− f̈Ω)

0 µ1 µ2 µ3

∣∣∣∣∣∣∣∣∣∣∣∣
,

then,

τγ(s) = −µτψ
ḟ 3

ρ2γΩ
2.(5.15)

From Eqs.(5.5), (5.7), (5.11), (5.8), (5.10) and (5.15), we obtain the equiform geometry of
Frenet apparatus of the evolute curve according to Frenet apparatus of the involute curve as
follows:

U1γ = ργTγ =
ργ

ḟ

(
τψ
κψ

−

(
κ̇ψ
κ2ψτψ

)·)
Eψ(s),

U2γ = ργNγ

= ργ[(
τ

ḟ 2
Ω +

1

κψ
)2 + (

1

ḟ 2
Ω̇− f̈

ḟ 2
Ω +

κ̇ψ
κ2ψτψ

)2 − 1]−
1
2 (−ψ(s)

− (
τ

ḟ 2
Ω +

1

κψ
)Nψ(s) + (

1

ḟ 2
Ω̇− f̈

ḟ 2
Ω +

κ̇ψ
κ2ψτψ

)Eψ(s)),

U3γ = ργEγ

= −τψ
ḟ 3
ργΩ[(

τψ

ḟ 2
Ω +

1

κψ
)2 + (

1

ḟ 2
Ω̇− f̈

ḟ 2
Ω +

κ̇ψ
κ2ψτψ

)2 − 1]−
1
2Tψ(s),

K1γ =ρ̇γ

=[(
τψ

ḟ 2
Ω +

1

κψ
)2 + (

1

ḟ 2
Ω̇− f̈

ḟ 2
Ω +

κ̇ψ
κ2ψτψ

)2 − 1]−
3
2 ((

τψ

ḟ 2
Ω

+
1

κψ
)(
τψ

ḟ 2
Ω +

1

κψ
)· + (

1

ḟ 2
Ω̇− f̈

ḟ 2
Ω +

κ̇ψ
κ2ψτψ

)(
1

ḟ 2
Ω̇

− f̈

ḟ 2
Ω +

κ̇ψ
κ2ψτψ

)·),

K2γ =
τγ
κγ

=− µτψ

ḟ 3
Ω2

(τψ
ḟ 2

Ω +
1

κψ

)2

+

(
1

ḟ 2
Ω̇− f̈

ḟ 2
Ω +

κ̇ψ
κ2ψτψ

)2

− 1

− 3
2

.

Which completes the proof. □

6. EQUIFORM GEOMETRY OF INVOLUTE-EVOLUTE CURVE COUPLE IN S3
1

Definition 6.1. Let ϕ : I −→ S3
1 be a regular spacelike curve in S3

1 with arc-length parameter
s, so that κ and τ are not to be zero. Let β : I −→ S3

1 be the evolute curve of ϕ with arc-length
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parameter s̃ = g(s). Denote {β, Tβ , Nβ , Eβ} to be the Frenet frame along β and κβ , τβ to be
the curvatures of β. Then

span{β,Eβ} = span{Tϕ,Nϕ}, span{Tβ,Nβ} = span{ϕ,Eϕ},
β can be expressed as

β(s) = ϕ(s) + ν1(s)Nϕ(s) + ν2(s)Eϕ(s),

where ν1 and ν2 are C∞ functions on I , (for more details, we refer to [19]).

Theorem 6.1. Let β and ϕ be unit speed space-like curves and β be an evolute of ϕ. The
equiform Frenet apparatus of β: {V1β;V2β;V3β;K1β;K2β} can be formed according to Frenet
apparatus of ϕ: {Tϕ;Nϕ;Eϕ;κϕ; τϕ}.

Proof. From the definition of involute-evolute curve couple in de Sitter 3-space, we can write

(6.1) β(s) = ϕ(s) + ν1(s)Nϕ(s) + ν2(s)Eϕ(s).

Differentiating both sides of Eq.(6.1) with respect to s, we obtain

ġTβ = Tϕ + ν̇1Nϕ + ν1(s)Ṅϕ(s) + ν̇2Eϕ + ν2(s)Ėϕ(s),

from Eqs.(2.3), we have

ġTβ =Tϕ + ν̇1Nϕ + ν̇2Eϕ + ν1(−δκϕTϕ + τϕEϕ) + ν2(τϕNϕ)

=(1− δκϕν1)Tϕ + (ν̇1 + τϕν2)Nϕ + (ν̇2 + τϕν1)Eϕ.

Recalling the definition of involute and evolute curve couple, we can say that

Tβ ⊥ Tϕ,

then, we get

(6.2) ν̇1 + τϕν2 = 0, 1− δκϕν1 = 0.

By solving Eqs.(6.2), we get

(6.3) ν1 =
1

δκϕ
, ν2 =

κ̇ϕ
δκ2ϕτϕ

.

Rewriting Eq.6.1, we obtain

(6.4) β(s) = ϕ(s) +
1

δκϕ
Nϕ(s) +

κ̇ϕ
δκ2ϕτϕ

Eϕ(s).

Differentiating both sides of Eq.(6.4) with respect to s and then from Eqs.(2.3), we find

Tβ =
1

ġ

(
τϕ
δκϕ

+

(
κ̇ϕ

δκ2ϕτϕ

)·)
Eϕ(s).(6.5)

Therefore, we have

Ṫβ =
τϕ
ġ2

(
τϕ
δκϕ

+

(
κ̇ϕ

δκ2ϕτϕ

)·)
Nϕ(s) +

1

ġ2

(
τϕ
δκϕ

+

(
κ̇ϕ

δκ2ϕτϕ

)·)˙

Eϕ(s)

− g̈

ġ2

(
τϕ
δκϕ

+

(
κ̇ϕ

δκ2ϕτϕ

)·)
Eϕ(s).(6.6)

From Eqs.(2.2), (6.4) and (6.6), where

Nβ =
Ṫβ + β

∥Ṫβ + β∥
,

AJMAA, Vol. 20 (2023), No. 2, Art. 6, 20 pp. AJMAA

https://ajmaa.org


THE INVOLUTE-EVOLUTE CURVE COUPLE IN HYPERBOLIC AND DE SITTER SPACES 13

one can get

Nβ =[(
τϕ
ġ2

Υ+
1

δκϕ
)2 + (

1

ġ2
Υ̇− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)2 + 1]−
1
2 (ϕ(s)

+ (
τϕ
ġ2

Υ+
1

δκϕ
)Nϕ(s) + (

1

ġ2
Υ̇− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)Eϕ(s)),(6.7)

where

Υ =

(
τϕ
δκϕ

+

(
κ̇ϕ

δκ2ϕτϕ

)·)
.

Also, from Eqs.(6.7) and (2.4), we obtain

(6.8) κβ(s) =

√√√√(τϕ
ġ2

Υ+
1

δκϕ

)2

+

(
1

ġ2
Υ̇− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)2

+ 1,

it implies

(6.9) ρβ(s) =

(τϕ
ġ2

Υ+
1

δκϕ

)2

+

(
1

ġ2
Υ̇− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)2

+ 1

− 1
2

,

where ρβ = 1
κβ

. By differentiating Eq.(6.9), we find

ρ̇β =[(
τϕ
ġ2

Υ+
1

δκϕ
)2 + (

1

ġ2
Υ̇− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)2 + 1]−
3
2 ((

τϕ
ġ2

Υ+
1

δκϕ
)(
τϕ
ġ2

Υ+
1

δκϕ
)·

+(
1

ġ2
Υ̇− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)(
1

ġ2
Υ̇− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)·).(6.10)

Therefore, from Eqs.(6.4), (6.5), and (6.7), we have

Eβ(s) = ρβ

∣∣∣∣∣∣∣∣∣∣∣∣

−ϕ(s) Tϕ Nϕ Eϕ

1 0 1
δκϕ

κ̇ϕ
δκ2ϕτϕ

0 0 0 1
ġ
Υ

1 0 (
τϕ
ġ2

Υ+ 1
δκϕ

) (
1

ġ2
Υ̇− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)

∣∣∣∣∣∣∣∣∣∣∣∣
,

which can be written as

Eβ(s) =
τϕ
ġ3

Υ2

(τϕ
ġ2

Υ+
1

δκϕ

)2

+

(
1

ġ2
Υ̇− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)2

+ 1

− 1
2

Tϕ(s).(6.11)

Now, we need to find
...
β (s), so from Eq.(6.6), we find

...
β (s) =

1

ġ4
((−δġκϕτϕ)Tϕ(s)− ((2 + ġ)g̈τϕΥ− 2ġτϕΥ̇− ġτ̇ϕΥ)Nϕ

+ ((−2g̈2 + ġτ 2ϕ − ġ
...
g )Υ− (g̈(2 + ġ))Υ̇ + ġΫ)Eϕ),(6.12)

or in the form:

(6.13)
...
β (s) = η1Tϕ + η2Nϕ + η3Eϕ,
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where 
η1 = − 1

ġ3
δκϕτϕ

η2 = − 1
ġ4
((2 + ġ)g̈τϕΥ− 2ġτϕΥ̇− ġτ̇ϕΥ)

η3 =
1
ġ4
((−2g̈2 + ġτ 2ϕ − ġ

...
g )Υ− (g̈(2 + ġ))Υ̇ + ġΫ).

(6.14)

Also, from Eqs.(2.4), (6.4), (6.5), (6.6), and (6.13), we obtain

τβ(s) = −ρ2β

∣∣∣∣∣∣∣∣∣∣∣

1 0 1
δκϕ

κ̇ϕ
δκ2ϕτϕ

0 0 0 1
ġ
Υ

0 0
τϕ
ġ2

Υ 1
ġ2
(Υ̇− g̈Υ)

0 η1 η2 η3

∣∣∣∣∣∣∣∣∣∣∣
,

then, we get

τβ(s) =
ητϕ
ġ3
ρ2βΥ

2.(6.15)

From Eqs.(6.5), (6.7), (6.11), (6.8), (6.9) and (6.15), we obtain

V1β = ρβTβ =
ρβ
ġ

(
τϕ
δκϕ

+

(
κ̇ϕ

δκ2ϕτϕ

)·)
Eϕ(s),

V2β = ρβNβ

= ρβ[(
τϕ
ġ2

Υ+
1

δκϕ
)2 + (

1

ġ2
Υ̇− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)2 + 1]−
1
2 (ϕ(s)

+ (
τϕ
ġ2

Υ+
1

δκϕ
)Nϕ(s) + (

1

ġ2
Υ̇− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)Eϕ(s)),

V3β = ρβEβ

=
τϕ
ġ3

Υ2

(τϕ
ġ2

Υ+
1

δκϕ

)2

+

(
1

ġ2
Υ̇− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)2

+ 1

− 1
2

Tϕ(s),

K1β =ρ̇β

=[(
τϕ
ġ2

Υ+
1

δκϕ
)2 + (

1

ġ2
Υ̇− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)2 + 1]−
3
2 ((

τϕ
ġ2

Υ

+
1

δκϕ
)(
τϕ
ġ2

Υ+
1

δκϕ
)· + (

1

ġ2
Υ̇− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)(
1

ġ2
Υ̇

− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)·),

K2β =
τβ
κβ

=
ητϕ
ġ3

Υ2

(τϕ
ġ2

Υ+
1

δκϕ

)2

+

(
1

ġ2
Υ̇− g̈

ġ2
Υ+

κ̇ϕ
δκ2ϕτϕ

)2

+ 1

− 3
2

.

Which completes the proof. □
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7. EXAMPLES

Finally, in this section we present two computational examples to calculate Frenet apparatus
of the two equiform curves in three-dimensional hyperbolic and de Sitter spaces.

Example 7.1. We assume that the general involute helix ψ in H3
+(−1) is given by

(7.1) ψ(s) =
(√

5 cosh(s),
√
5 sinh(s), 2 sin(s), 2 cos(s)

)
.

From Eq.(7.1), the Frenet apparatus of the curve ψ is
Tψ(s) =

(√
5 sinh(s),

√
5 cosh(s), 2 cos(s),−2 sin(s)

)
,

Nψ(s) = (0, 0,− cos(s),− sin(s)) ,

Eψ(s) =
(
2
√
5 sinh(s), 2

√
5 cosh(s),−5 cos(s), 5 sin(s)

)
,

κψ = 4, τψ = 5.

(7.2)

Then, from Eqs.(5.4), (7.1) and (7.2), the evolute curve of ψ is

γ(s) =

(√
5 cosh(s),

√
5 sinh(s),

7

4
sin(s),

7

4
cos(s)

)
.(7.3)

From Eq.(7.3), the tangent vector of the curve γ is given as

(7.4) Tγ(s) =

(√
5 sinh(s),

√
5 cosh(s),

7

4
cos(s),−7

4
sin(s)

)
,

and, we get

Ṫγ(s)

(√
5 cosh(s),

√
5 sinh(s),−7

4
sin(s),−7

4
cos(s)

)
.(7.5)

From Eqs.(7.3) and (7.5), we obtain

Nγ(s) =
Ṫγ(s)− γ(s)

∥Ṫγ(s)− γ(s)∥
= (0, 0,− sin(s),− cos(s)) ,(7.6)

The curvature of γ is given by

κγ(s) = ∥Ṫγ(s)− γ(s)∥ =
7

2
.

Also, we get

Eγ(s) = γ(s) ∧Tγ(s) ∧Nγ(s)

=

∣∣∣∣∣∣∣∣
−i j k l√

5 cosh(s)
√
5 sinh(s) 7

4
sin(s) 7

4
cos(s)√

5 sinh(s)
√
5 cosh(s) 7

4
cos(s) −7

4
sin(s)

0 0 − sin(s) − cos(s)

∣∣∣∣∣∣∣∣ ,
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or in the form

Eγ(s) =−

∣∣∣∣∣∣
√
5 sinh(s) 7

4
sin(s) 7

4
cos(s)√

5 cosh(s) 7
4
cos(s) −7

4
sin(s)

0 − sin(s) − cos(s)

∣∣∣∣∣∣ i−
∣∣∣∣∣∣
√
5 cosh(s) 7

4
sin(s) 7

4
cos(s)√

5 sinh(s) 7
4
cos(s) −7

4
sin(s)

0 − sin(s) − cos(s)

∣∣∣∣∣∣ j

+

∣∣∣∣∣∣
√
5 cosh(s)

√
5 sinh(s) 7

4
cos(s)√

5 sinh(s)
√
5 cosh(s) −7

4
sin(s)

0 0 − cos(s)

∣∣∣∣∣∣ k −
∣∣∣∣∣∣
√
5 cosh(s)

√
5 sinh(s) 7

4
sin(s)√

5 sinh(s)
√
5 cosh(s) 7

4
cos(s)

0 0 − sin(s)

∣∣∣∣∣∣ l,
then, we have

Eγ(s) =

(
7
√
5

4
sinh(s),

7
√
5

4
cosh(s),−5 cos(s), 5 sin(s)

)
.

Therefore, we obtain

det(γ, γ̇, γ̈,
...
γ ) =

∣∣∣∣∣∣∣∣
√
5 cosh(s)

√
5 sinh(s) 7

4
sin(s) 7

4
cos(s)√

5 sinh(s)
√
5 cosh(s) 7

4
cos(s) −7

4
sin(s)√

5 cosh(s)
√
5 sinh(s) −7

4
sin(s) −7

4
cos(s)√

5 sinh(s)
√
5 cosh(s) −7

4
cos(s) 7

4
sin(s)

∣∣∣∣∣∣∣∣ ,
then,

det(γ, γ̇, γ̈,
...
γ ) = −245

4
.

and we have

τγ(s) = −det(γ, γ̇, γ̈,
...
γ )

κ2γ
= 5.

From Eqs. (3.5) and (3.6), the equiform invariant trihedron {U1,U2, U3} of the evolute curve
γ is obtained as follows:

U1 =

(
2
√
5

7
sinh(s),

2
√
5

7
cosh(s),

1

2
cos(s),−1

2
sin(s)

)
,

U2 =

(
0, 0,−2

7
sin(s),−2

7
cos(s)

)
,

U3 =

(√
5

2
sinh(s),

√
5

2
cosh(s),−10

7
cos(s),

10

7
sin(s)

)
.

Hence, using Eqs. (3.10), we get

K1 = 0, K2 =
10

7
.

Example 7.2. Consider the general involute helix ϕ(s) in S3
1 parameterized by

(7.7) ϕ(s) =
(
cosh(s), sinh(s),

√
2 sin(s),

√
2 cos(s)

)
.

From Eq. (7.7), the Frenet apparatus of the curve ϕ is calculated as follows:
Tϕ(s) =

(
sinh(s), cosh(s),

√
2 cos(s),−

√
2 sin(s)

)
,

Nϕ(s) = (cosh(s), sinh(s), 0, 0) ,

Eϕ(s) =
(
2 sinh(s), 2 cosh(s),−

√
2 cos(s),

√
2 sin(s)

)
,

κϕ = 2, τϕ = 2.

(7.8)
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Therefore, from Eqs.(6.4), (7.7) and (7.8), the evolute curve of ϕ is

β(s) =

(
3

2
cosh(s),

3

2
sinh(s),

√
2 sin(s),

√
2 cos(s)

)
.(7.9)

From Eq.(7.9), the tangent vector of β is given by

(7.10) Tβ(s) =

(
3

2
sinh(s),

3

2
cosh(s),

√
2 cos(s),−

√
2 sin(s)

)
.

Also, we get

Ṫβ(s) =

(
3

2
cosh(s),

3

2
sinh(s),−

√
2 sin(s),−

√
2 cos(s)

)
.(7.11)

From Eqs. (7.9) and (7.11), we have

Nβ(s) = (cosh(s), sinh(s), 0, 0)(7.12)

where

Nβ(s) =
Ṫβ(s) + β(s)

∥Ṫβ(s) + β(s)∥
.

Therefore, we can compute the curvature of β as follows:

κβ(s) = ∥Ṫβ(s) + β(s)∥ = 3.

Also, we get

Eβ(s) =β(s) ∧Tβ(s) ∧Nβ(s)

=

∣∣∣∣∣∣∣∣
−i j k l

3
2
cosh(s) 3

2
sinh(s)

√
2 sin(s)

√
2 cos(s)

3
2
sinh(s) 3

2
cosh(s)

√
2 cos(s) −

√
2 sin(s)

cosh(s) sinh(s) 0 0

∣∣∣∣∣∣∣∣ ,

or in the form

Eβ(s) =−

∣∣∣∣∣∣
3
2
sinh(s)

√
2 sin(s)

√
2 cos(s)

3
2
cosh(s)

√
2 cos(s) −

√
2 sin(s)

sinh(s) 0 0

∣∣∣∣∣∣ i−
∣∣∣∣∣∣

3
2
cosh(s)

√
2 sin(s)

√
2 cos(s)

3
2
sinh(s)

√
2 cos(s) −

√
2 sin(s)

cosh(s) 0 0

∣∣∣∣∣∣ j

+

∣∣∣∣∣∣
3
2
cosh(s) 3

2
sinh(s)

√
2 cos(s)

3
2
sinh(s) 3

2
cosh(s) −

√
2 sin(s)

cosh(s) sinh(s) 0

∣∣∣∣∣∣ k −
∣∣∣∣∣∣

3
2
cosh(s) 3

2
sinh(s)

√
2 sin(s)

3
2
sinh(s) 3

2
cosh(s)

√
2 cos(s)

cosh(s) sinh(s) 0

∣∣∣∣∣∣ l,
then, we get

Eβ(s) =

(
2 sinh(s), 2 cosh(s),−3

√
2

2
cos(s),

3
√
2

2
sin(s)

)
.(7.13)

By differentiating Eq. (7.11), we have
...
β (s) =

(
3

2
sinh(s),

3

2
cosh(s),−

√
2 cos(s),

√
2 sin(s)

)
.(7.14)

Therefore, from Eqs.(7.9), (7.10), (7.11), and (7.14), we find

det(β, β̇, β̈,
...
β ) = −18,
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then, we get

τβ(s) = −det(β, β̇, β̈,
...
β )

κ2β
= 2.

From Eq. (4.1), the equiform invariant trihedron of the evolute curve β is calculated as follows:

V1 =

(
1

2
sinh(s),

1

2
cosh(s),

√
2

3
cos(s),−

√
2

3
sin(s)

)
,

V2 =

(
1

3
cosh(s),

1

3
sinh(s), 0, 0

)
,

V3 =

(
2

3
sinh(s),

2

3
cosh(s),−

√
2

2
cos(s),

√
2

2
sin(s)

)
.

Also, by using Eqs. (3.10), we obtain

K1 = 0, K2 = 6.

In the following figure, one can see the projections of the evolute curves γ(s) and β(s) into
x1x2x3, x1x2x4-spaces, respectively.

(A) (B)

Figure 1: (A) The evolute curve γ(s), (B) The evolute curve β(s).

CONCLUSION

In the 3-dimensional hyperbolic H3
+(−1) and de Sitter S3

1 spaces, the equiform differential
geometry of involute-evolute curve couple have been investigated. Also, Frenet apparatus for
these curves have been obtained. Moreover, some characterizations of these curves using their
equiform curvatures Ki (i = 1, 2) have been introduced. Finally, some computational examples
to confirm our main results are given and plotted. In future works, we plan to study the involute-
evolute curve couple in different spaces like Galilean and pseudo-Galilean spaces for different
queries and further improve the results in this paper, combined with the techniques and results
in [20, 21, 22, 23, 24, 25, 26].
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[7] B. J. PAVKOVIĆ, I. KAMENAROVIĆ, The equiform differential geometry of curves in the
Galilean space G3, Glasnik Mat., 22(42) (1987), pp. 449–457.
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