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1. INTRODUCTION

The integral inequalities with a term of delay are utilized a lot in the study and modeling
of partial differential equations with a term of delay. A number of researchers[[4] 6, 13] have
already established their basic properties, such as generalizations in the bidimensional and mul-
tidimensional cases, applications to retarded partial differential equations, and existence as well
as uniqueness of solutions .

The integrodifferential inequalities for functions of two wrvariables are very significant
for assuming the existence and uniqueness of solutions of the Wendroff-type integrodifferential
inequalities and equatioris [2,/3) 7] 11} 12]; they are also useful for studying the boundedness of
solutions of nonlinear partial integrodifferential equations with delay for functions of two or
variables[[1] 5, &, 10].

Pachpatte [9] presented one of the Wendroff-type nonlinear integrodifferential inequalities
for two-variable functions as follows:

Lemma 1.1. (see Theorem 1 [9]) Leto(z, y) andc(x, y) be nonnegative continuous functions
defined forz > 0, y > 0, and¢(x,0) = ¢(0,y) = 0 for which the inequality

by ) < alz) + bly) + / / (5, 1) (D5 ) + by (5. 8))dsdlt,

holds forx > 0, y > 0, wherea(x), b(y) > 0; ¢’(z) and V'(y) > 0 are continuous functions
defined forz > 0, y > 0. Then

bo(,y) < alz / / St[ +lz<t>na<s>+b<o>}

( / / +e(m nﬂdmdn)]dsdt

2. MAIN RESULTS

In this section, some results of nonlinear retarded integrodifferential inequalities in two inde-
pendent variables are presented.
In what follows,z, yo € R, with o < z, yg < y.

Theorem 2.1.Letu(z,y), c(z,y), a(z,y), Du(x,y) and D;u(x, y) be nonnegative continuous
functions for all; = 1,2 defined forz,y € R,, anda, 8 € C'(R,,R,) be nondecreasing
functions for each variable, with(z) < = on Ry and 5(y) < y on R,. Letc(z,y) be a
nondecreasing function for each varialbtey € R, andu(xg, y) = u(z,yo) = 0. If

a(z) B(y)
(2.1) Du(z,y) < c(z,y) + / / a(s,t)[u(s,t) + Du(s,t)|dsdt,

a(zo) B(yo)
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forz,y € R, then
- a(z) B(y)
Du(z,y) < c(z,y) 1+/ /a(s,t)

a(zo) B(yo)

(2.2) X exp / / (I1+a(r,o deU) dsdt]

a(zo) B(yo)

forx,y € R,.

Proof: Fixany X, Y € R,. Then, forxy < z < X andy, < y <Y, we have
(2.3) Du(z,y) < z(z,y),
wherez(x,y) is a function defined by

a(z) Bly)
(2.4) 2(x,y) =c(X,Y) + / / a(s,t)[u(s,t) + Du(s, t)]|dsdt,
(z0) B(yo)
thenz(zo,y) = z(z,y0) = ¢(X,Y). By integrating both sides dp.3),
a(z) B(y)
(2.5) u(z,y) < / / z(s, t)dsdt.
a(zo) B(yo)
By differentiating(2.4)),
(2.6) Dz(z,y) < a(z,y)u(z,y) + Du(z,y)]e/ (z)5'(y)-

Now, using([2.3) and([2.5)) in (2.6) we get

a(z) By)

(2.7) Dz(x,y) < a(x, y)[ / / s, t dsdt] ()5 (y).
0) B(yo)
If we put
o(z) B(y)
(2.8) v(x,y) = z(z,y) / / z(s,t)dsdt,
0) B(yo)

thenv(zg,y) = v(z,y0) = ¢(X,Y), and
Du(w,y) < Dz(w,y) + 2(,y)a/ (x)5'(y)-
By taking Dz(z,y) < a(z,y)v(z,y)a'(z)3 (y) from (2.7) andz(z,y) < v(z,y) from (2.8),

we have

Du(z,y) < [1+ a(@,y)]v(z, y)' (2)5'(y).
Now, it is possible to estimatg(x, y) by
) B)

(2.9) v(z,y) < c(X,Y) exp[ / / (1+af(s,t)) dsdt].

a(zo) B(yo)
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By substituting(2.9)) in (2.7), integrating both sides, and usiagr,, y) = z(z,y0) = ¢(X,Y),
it yields

a(z) B(y)
z(z,y) < c(X,Y) +c(X,Y) / / stexp[/ / 1—|—a7‘0))d7‘da]dsdt
a(zo) B(yo) a(z0) B(yo)

We obtain the inequalit§2.2)) by substituting the value of(z, y) in (2.3) becauseX andY are
arbitraries.

Remark 2.1. It is enough to puty(zy) = 5(yo) = 0, a(z) = z, B(y) = y, andc(z,y) =
c1(z) + ¢2(y) in Theorenp.1]so as to obtain Theorem 1 in/[9].

Theorem 2.2.Letu(z,y), c(z, y), a(z, y), o, and 3 be defined as in Theorenl| and assuming
thatb(z, y) is nonnegative continuous function. If

a(z) B(y)
u(z,y) < c(z,y)+ / / (s,t)dsdt
a(zo) B(yo)
) B)
(2.10) / a(s,t) ( / / T,0)u(T, o dea) dsdt,
a(zo) B(yo) a(zo) B
forz,y € R, then
a(z) By

u(z,y) < c(z,y)exp / / s, t)dsdt

a(z) Bly)
(2.11) + / / a(s,t) < / / T,O deU) dsdt]
a(zo) B(yo) o

forz,y e R,.

Proof: Sincec(z,y) is nonnegative and nondecreasing, fr{i0) we have

“(‘”’ < 1+// ddt
c(z,y s,1

a(:c

N st<//

a(zo) B(yo) a(zo) B

) dsdt.

Define a functiorz(z, y) by the right side of the last inequality. Ther,y) > 0, z(zo,y) =

z(x,y0) = 1, Z((my)) < z(z,y), and

) BY)
Dz(m,y)ﬁz(m,y)[ (z,y) + a(x,y) </ /bStdet)] ()5 (y)-

) B(yo)
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ie.
DZ(.T,y)Z(J?,y) . Dlz<xay)D2'Z<x7y) alx
2 (x,y) 22(z,y) = |
a(z) B(y)
(2.13) —i—a(x,y)( / / b(s,t)dsdt)]a’(x)ﬁ'(y).
a(zo) B(yo)
Thus
Dy (z.y) a(z) B(y)
12\, Y
(2.14) DQIW] < [ (x,y) +a(z,y ( /)ﬁ/) s tdsdt)] ()3 (y).

By keepingy fixed, settingr = s, and integrating fromx, to = in (2.14)), and again by keeping
x fixed, settingy = ¢, and integrating fronyo to y in the resulting inequality, we have

a(z) By

xywp[// stdsdt+a// St(// mm>dsdt]

a(zo) a(zo) B

Finally, smcelc‘((j’;’)) < z(z,y) we obtain the inequality2.11)).

Remark 2.2. (i) It is enough to putv(xg) = B(yo) = 0, a(x) = z, B(y) =y, andc(z,y) =
c1(z) + ¢2(y) in TheorenR.2|so as to obtain Theorem 3 in/[9].
(ii) If b(x,y) = 0, the bound obtained if2.11]) reduces to

a(z) B(y)

(2.15) u(z,y) < c(x,y)exp [ / / a(s,t)dsdt].

(o) B(yo)
Theorem 2.3. Under the same hypotheses of Theofeth and assuming thaf(z, y) is non-
negative continuous and nondecreasing functionklét(z, v)) be a real-valued, positive, con-
tinuous, strictly nondecreasing, sub-additive, and sub-multiplicative function(fary) > 0,
and H (u(z,y)) be a real-valued, continuous, positive, and nondecreasing function defined for
x,y € Ry If

a(z) B(y)
Du(z,y) < c(x,y)+f(x,y)H</ /a(s,t)K(u(s,t))dsdt)

(o) B(yo)
a(z) B(y)

(2.16) +/ /b(s,t)Du(s,t)dsdt,
a(zo) B(yo)

forz,y € R, then

5 —I—
\%
\{:i

Du(z,y) < {C(ﬂ:,y)Jrf(fE,y) (

(2.17) x K(f(s,t)p(s, ))dsdt] ) } exp ( /

a(zo) B(yo)

5(740)

\g

b(s,t) dsdt)
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forall z,y € R, , where

a(z) Bly) s t
(2.18) p(z,y) = / exp ( / / b(T,O')deO’) dsdt.
a(zo) B(yo) a(z0) B(yo)
(2.19) = / / a(s,t)K(c(s,t)p(s,t))dsdt.
a(z0) B(yo)
(2.20) G(r)—/L r>1o>0
| IO
(z) B(y)
whereG~! is the inverse function ofy, and G(¢) + f [ a f(s,t) p(s,t))dsdt €
a(zo) B(yo)
dom(G~1) forz,y € R,.
Proof: From (2.16]), we have
) By)
(2.21) Du(x,y) < z(z,y) + //bstDustdsdt

a(xo) B(yo)
wherez(z, y) is a function defined by

(2.22) 2(z,y) = c(z,y) + f(z,y) ( / / s, t) K t))dsdt).

a(zo) B(yo)

We note that(z, y) is a positive, contlnuous and nondecreasing function:fgre R, .

Using (2.15) from Theoren2.2]in (2.21)), we get

a(z) By)
(2.23) Du(z,y) < z(z,y) exp ( / / b(s,t)dsdt).
a(zo0) B(yo)

By integration, first with respect to from x, to x, and then with respect tg from ¢, to y in
the last inequality, we obtain

(2.24) u(r,y) < z(x, y)p(r,y),
wherep(z, y) is defined in(2.18)). From (2.22)) we have
(2.25) 2(x,y) = ez, y) + [z, y) H(v(z,y)),
where
a(z) B(y)
(2.26) v(x,y) = / / a(s,t)K(u(s,t))dsdt.
a(zo) B(yo)
Now, using(2.25)) in we get
(2.27) u(z,y) < [e(z,y) + [z, y)H(v(z,y))p(x, y).
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From (2.26) and({2.27)) and sinceX’ is a sub-additive and sub-multiplicative function, we obtain

a(z) By)
o(ey) < / /a(s,t)K([c(s,t)—|—f(s,t)H(v(s,t))]p(s,t))dsdt
a(zo) B(yo)
a(z) By)
< / / a(s,t)K(c(s,t)p(s,t))dsdt
a(zo) B(yo)
a(z) By)
+ / (f(s,t)p(s,t))K(H(v(s,t)))dsdt.
a(zo) Byo)
Therefore
(2.28) v(z,y) < @(x,y),
where®(z, y) is a function defined by
B(z,y) = / /a(s,t)K( (5, 1)p(s, £))dsdt
a(zo) B(yo)
By)
(2.29) +/ /a(s,t)K(f(s,t)p(s,t))K(H(v(s,t)))dsdt,
B(yo)

then
(2.30) O(zg,y) = P(x,y0) = / / a(s,t)K(c(s,t)p(s,t))dsdt = .

Clearly,®(z,y) is a positive and nondecreasing function §oSo

B(y)
Dib(r,y) £ K(H@(.0)) [ e (f(e.Op(o, )it ().
B(yo)
From (2.20) we have
B(y)
(2.31) DiG(D(z,y)) — K(%géyy?))) < / ol ) K (f(z, O)pla, 1))t o/ ().
B(yo)
Now, by settingr = s and integrating from, to z in ), and using(2.30) we get
o(z) B(y)
(2.32) O(z,y) <G G+ / / a(s, t)K(f(s,t)p(s,t))dsdt].
a(zo) B(yo)

Finally, by substituting(2.25)), (2.28)), and(2.32) in (2.23)) we obtain the inequality2.17)).
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Remark 2.3. (i) From the inequalitieg2.27), (2.28)), and (2.32) in the proof of Theorerf2.3]
we get the following inequality

u(z,y) < {c(fc,y)Jrf(x,y)H(Gl[G(é)

a(z) B(y)
+ / / a(s,t)K(f(s,t)p(s,t))dsdt])}p(x,y).
a(zo) B(yo)
(ii) It is enough to put(zo) = B(yy) = 0, a(z) = z, Bly) = vy, c(z,y) = a(x) + c2(y),
f(z,y) =1, H(z) = K(z) = x,anda(z, y) = b(z,y) so that Theoreff.3|reduces to Theorem
1in [9].
Corollary 2.4. Under the same hypotheses of Thedgeshand if
a(z) Bly)
/ a(s,t)K(u(s,t))dsdt
a(xo) B(yo)
a(z) Bly)
(2.33) + / / b(s,t)Du(s,t)dsdt,
a(zo) B(yo)

Du(z,y) < c(z,y)+

—

forz,y € R, then

a(z) By)
T(€) + / / a(s,t)K(p(s,t))dsdt]}

a(zo) B(yo)

a(z) B(y)
(2.34) X exp( / /b(s,t)dsdt),
a(z0) B(yo)

for all z,y € R, wherep(z, y) and¢ are defined in Theorefh3]

Du(z,y) < {c(:z:,y)—l—T_1

[ d
T(T’)Z/FSS),TZTOZO,

To

a(z) Bly)
whereT ! is the inverse functionof,and T'(§)+ [ [ a(s,t)K(p(s,t))dsdt € dom(T~)
a(z0) B(yo)
forx,y e R,.
Proof: The proof of this Corollary follows the same steps as in The@&n

Remark 2.4. (i) It is enough to put (z) = z and f(z,y) = 1 in Theorenf.3|so as to obtain
the resultin Corollar{2.4]

(ii) It is enough to putv(zo) = B(yo) = 0, afx) = z, B(y) = y, c(z,y) = a(z) + ea(y),
K(z) =z, anda(z, y) = b(z,y) so as Corollarf2.4|reduces to Theorem 1 inl[9].

Corollary 2.5. Under the same hypotheses of Thedgezhand if

a(z) Bly) a(z) By)
(2.35) Du(z,y) < M + / / a(s, t)u(s,t)dsdt + / / b(s,t)Du(s,t)dsdt,
a(zo) B(yo) a(zo) B(yo)
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forz,y € R, whereM > 0 is constant, then we obtain the following results:

(1) Du(z,y) < M{l + < / / a(s,t p(s,t)dsdt)
a(zo) B(yo)
) B) ) By)
xexp(/ a(s stdsdt)}exp(/ /bstdsdt)

a(zo) B(yo) a(zo) B(yo)

@) ulog) < { (// (5. 1)p stdsdt)
xexp(// (5, 8)p stdsdt)}( W),

a(zo) B

\

for all z,y € R, wherep(z, y) is defined in Theoref3]

Proof: The results of this Corollary can be obtained by settifig) = = andc(z,y) = M
in Corollary(2.4,

3. RETARDED NONLINEAR INTEGRODIFFERENTIAL INEQUALITIESIN N
INDEPENDENT VARIABLES

This section is devoted to presenting some results of nonlinear retarded integrodifferential
inequalities inn independent variables.

Inwhatfollows,D = D, D,...D,,, whereD; = 52~ fori =1,2,....,n. Forz = (z1,2s, ..., &),
t = (ti,to, ... tn), 2° = (2,29, ...,20) € R (whereR" = [0, 00) is a subset oR™,n > 1),
we assume:
Forz,t € R, we writet < x whenevert; < z;,7=1,2,..,n,andz > zy > 0 € R’.. For any
X =(X1,Xs, ..., X,,) € RY, we writez” < 2 < X whenever) < z; < X;,i=1,2,...,n

a(zr) = (o (x1), aa(x2), ..., an(zn)) € RY, and B(z) = (B,(21), Bo(x2), ... B, (22)) € R .

We assumeéi(z) < = andj3(z) < x whenevery,(z;) < z; andf,(z;) < z; respectively for
i=1,2,..,n,and

a(x) ai(zr) az(z2)  an(zn) B(x) Bi(z1) Ba(x2)  Bp(zn)
/ dt = / by dty, and / dt = / / / by dty.
a(x0) a1(z) az(zf)  an(ah) B(x0) B1(2) Ba(x3)  Bn(aR)

The main results are established in the following theorems.

Theorem 3.1.Letu(z), c(x) anda(x) be nonnegative continuous functions defined:ferR’
anda € C*'(R",R"}) be a nondecreasing function for each variable, with) < = on R". We
consider that(z) is nondecreasing for each variabhlec R” . If

(3.2) u(z) < c(z) + / a(t)u(t)dt,
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for z € R, then
&(z)
(3.2) u(z) < c(x)exp ( / a(t)dt),
a(z0)
forz € R7.
Proof: As ¢(z) is nonnegative and nondecreasing, then f(ni) we have

a(zx)
(3.3) wz) gy / o)™ gy

c(x)
a(x9)

wherez(z) is a function defined by the right side §£.3)). Thenz(z) > 0, z(29, 2o, ..., x,,) = 1,
(@ iy ) =1, Vi=2 .. n ue) < z(z), and

’ c(x)

Dz(z) < a(x)z(z)d (x).

Therefore
Dy...D,_ .
(3.4) Dn( . Z@)Iz(x)) < a(x)&/ ().
By integrating(3.4) with respect tar,, from z? to z,,, we have
an(xn)
Dy..D,_
! 12() < / a(xy, ... p_1,ty)dt, o (21)..a, (1),
z(x)
an(m%)

thus

z(@)D1..Dpyz(x)  Dnoaz(x)(Dr...Dyp—aDz(x))

2 () 2 ()
an(zn)
< a(zy, . p1, ty)dtyay (21)..a, 1 (Tp-1),
om (29,
hence
Dy..D e
Dn_1< Lt n22<x>> < / a(wy, .y, ty)dty oy (21)..a, 1 (Tn-1).
z(x)
om ()

The integration of this inequality with respectitg_; from z°_, to z,,_; yields
Oén—l(xn—l) an(xn)

Di..D,_
! ( )2Z<I) < / / a(wy, . Tp_9,ty1,tn)dtydt, 1) (21)....c_o(Tn_2).
2(x

anfl(zg,1) O‘"(m%)
By continuing this process, we arrive at

as(z2) an(zn)

D
(3.5) Z12<x)§ / / (21, oyt oo bty o). dbacl, (1),
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By integrating(3.5) with respect tar; from z9 to z;, we get

&a(x)
z(x) < exp ( / a(t)dt).

a(z0)
Finally, becausécf% < z(z) we obtain the inequalit.

Remark 3.1. Whenn = 2, z € R%, (29,29) = (0,0), ai(z1) = z, as(x2) = y, and
c(x) = c1(z) + c2(y) then Theorerf.1|reduces to Lemma 1 in][9].

Theorem 3.2. Under the same hypotheses of ThedgeBhand if
a(x) a(x)

(3.6) Du(z) < c(z) + f(:L‘)H( / a(t)K(u(t))dt) + / b(t) Du(t)dt,
a(z0) a(x0)

forz € R, then

&(x) &(x)
(3.7) + / (V) K (f(£)p(t))dt >}exp< b(t)dt),
&(x0) a(x0)

forall z € R}, where

(3.8) p(z) = / eXp< / b(T)dT)dt.

(3.9) = / a(t)K (c(t)p(t))dt.
a(z0)
(3.10) G(r) = /%, r=re =0,
whereG ™! is the inverse function @, andG(¢) + a}x) a(t)K(f(t)p(t))dsdt € dom(G~1) for
a(z0)

:UER’}r.

Proof: It is possible to get the above result by following the same steps as in Th@osem
and making simple modifications.

Remark 3.2. (i) Based on the inequaliti¢8.6) and the equatioff3.8)), we can obtain the fol-
lowing result:

a()

G(e) + / a(t)K(f(t)p(t))dtD}p(x)-

a(zV)

(3.11) wu(x) < {c(x)—i—f(ac)H(G‘1
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(i) Itis enough to putn = 2, = € R%, (29,29) = (0,0), ay(z1) = z, aa(z2) =y, c(x) =
a(z) + ea(y), f(x) =1, H(z) = K(z) = 1, anda(z) = b(x) so as Theoreifi.2) reduces to
Theorem 1 in([9].

Corollary 3.3. Under the same hypotheses of ThedBeZhand if

a(z) a(z)

(3.12) Du(z) < ¢(z) + / a(t) K (u(t))dt + / b(t) Du(t)dt,
a(z0) a(z0)
for x € R7, then

a(x) &(x)

T(E) + / a(t)K(p(t))dt”exp< / b(t)dt),

&(z0) a(z0)
for all z € R”;, wherep(z) and¢ are defined in Theoref2] and

[d
T(r)= F‘l),rzrozo,

To

(3.13) Du(x) < {c(a:) + 77!

a(x)
whereT~! is the inverse function of7, and T'(§) + [ a(t)K(p(t))dt € dom(T~') for
a(z0)

z € RY}.
Proof: We note that the proof of this Corollary follows the same steps as in Thédgm

Remark 3.3. It is enough to putd(z) = = and f(z) = 1 in Theorenf3.2| so as to obtain the
result in Corollary3.3|

Theorem 3.4. Under the same hypotheses of Thedse2hand if
() B(x)
(3.14) Du(z) < c(x) + / a(t) K (u(t))dt + / b(t)Du(t)dt,
&(x0) B(x0)
for z € R, then

a(z) B(o)
(3.15) Du(x) < {c(x)—I—T_l T(€) + / a(t)K(p(t))dt] }exp( b(t)dt),
6(x?) Beo)
and
a(x)
(3.16) u(z) < {c(aj) +T7H T+ / a(t)K(p(t))dt] }p(m),
a(x9)

for all z € R}, whereT and¢ are defined in Corollar.3} and
B(x) s

p(z) = / exp( / b(T)dT)dt.

B(=°) B(=°)
Proof: Again, the proof of this theorem follows the same steps as in TheB&m
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Remark 3.4. If &(z) = 3(x), then Theorer3.4 reduces to Corollarg.3]
4. APPLICATIONS

This section suggests some applications of our results in order to study the boundedness and
continuity of solutions of some nonlinear partial integrodifferential equations with delay.

APPLICATION 1: Suppose the following equation for functions of two independent vari-
ables

a(z) By)
@ Duleg) = feg)+ [ [ hoys (st Duls )dsdt,
a(zo) B(yo)

with the boundary conditions(z, y) = u(x,y9) = 0,forz,y € R, wheref : R, xR, — R
andh : R7 x R x R — R are continuous functions so that

[f(z,y)| < M,
and
|h(z,y,s,t,u(s,t), Du(s,t))| < a(s,t)|u(s,t)| + b(s,t)|Du(s,t)],

for z,y € R,, whereM > 0 is constant and(z,y) andb(x,y) are nonnegative continuous
functions defined for, y € ]R+ If u(x, y) is any solution of Problenft.1)), then

) B)
|Du(z,y)] < M + / / (s,t)|u(s,t)|dsdt + / / (s,t)|Du(s,t)|dsdt.
a(zo) B(yo) a(zo) B(yo)

Now, it is possible to obtain the bound on the solutidn, y) of (4.1]) by applying Corollary
(inequality 2)

co oo a(z) B(y)
lu(z,y)| < M{l + < / / a(s,t)p(s,t)dsdt) exp ( / / a(s,t)p(s,t)dsdt) }p(x,y),
(o) B(yo)

a(zo) B(yo)
for all z,y € R, wherep(z, y) is defined in Corollar2.5|

APPLICATION 2: Suppose the following equation for functionsmahdependent variables

a(zx)
Du(z) = Q(ff?)Jrf(ﬂf)H( / Q(Jf,t,U(t)aK(U(t)))dt>
a(z0)

a(x)
(4.2) + / Wz, t,u(t), Du(t))dt,

a(z0)
with the conditionsu(z?, zs,...,z,) = 0, w(xy, ..., 1,20, 041, ..., 2,) = 0 for any: =
2,...,n,wheref, K, andH are definedin Theorefh2] ¢ : R} — Rand@, W : R} xRxR —
R are continuous functions so that

lq(z)| < M,
and
|Q(z, t,u(t), K(u(?)))] < a()K(|u(t)]),
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(W, £, u(t), Du(t))] < b(t)| Du(t)],

for z € R%, whereM > 0 is constanta(x) andb(z) are nonnegative continuous functions
defined forz € R'}. If u(x) is any solution of Problenf.2)), then

a(x) &(x)
yDu<x>!§M+f(x)H< / a(t)K(\u(t)\)dt)Jr / b(t)| Du(t)|dt.
a(z0) a(z0)

Now, it is possible to obtain the bound on the solutign) of by applying Theorer(3.2]
and RemarR.2| (inequality3.11) with ¢(z) = M
a(x)
<%®+t/a®KUﬁm&W4>}M@,
a(z0)

for all z € R", wherep(x), G and¢ are defined in Theorefh2]

u(z)] < {J\er(fv)H(G1

APPLICATION 3: Suppose the following equation for functionsmahdependent variables

a(z) B(z)
(4.3) Du(x) = q(z) + / Q(z, t,u(t), K(u(t)))dt + / W (x,t,u(t), Du(t))dt,
&(2?) B(z®)

with the conditionsu(z?, zs,...,z,) = 0, w(xy, ..., ;1,20 Ti41, ..., 0,) = 0 for any: =
2,...,n, whereK is defined in Theorefd.2 ¢ : R? — RandQ, W : R} x R x R — R are
continuous functions so that

lq(z)| < M,
and

Q. t, u(t), K(u(t)))| < a®)K([u(t)]),

(W, £, u(t), Du(t))] < b(t)| Du(t)],

for z € R%, whereM > 0 is constanta(z) andb(z) are nonnegative continuous functions
defined forz € R’} If u(x) is any solution of Problenj.3)), then

&(z) B(=)
|Du(z)| < M + / a(t)K (Ju(t)|)dt + / b(t)| Du(t)|dt.
a(z0) B(x0)

Now, it is possible to obtain the bound on the solutign) of by applying Theorer3.4]
with ¢(z) = M

a(x)
T@H—/a@K@@M&}@»
a(z0)
for all = € R}, wherep(z), T and¢ are defined in Theoref4]

u()] < {M+T1
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