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1. I NTRODUCTION

The integral inequalities with a term of delay are utilized a lot in the study and modeling
of partial differential equations with a term of delay. A number of researchers [4, 6, 13] have
already established their basic properties, such as generalizations in the bidimensional and mul-
tidimensional cases, applications to retarded partial differential equations, and existence as well
as uniqueness of solutions .

The integrodifferential inequalities for functions of two orn variables are very significant
for assuming the existence and uniqueness of solutions of the Wendroff-type integrodifferential
inequalities and equations [2, 3, 7, 11, 12]; they are also useful for studying the boundedness of
solutions of nonlinear partial integrodifferential equations with delay for functions of two orn
variables [1, 5, 8, 10].

Pachpatte [9] presented one of the Wendroff-type nonlinear integrodifferential inequalities
for two-variable functions as follows:

Lemma 1.1. (see Theorem 1 [9]) Letφ(x, y) andc(x, y) be nonnegative continuous functions
defined forx ≥ 0, y ≥ 0, andφ(x, 0) = φ(0, y) = 0 for which the inequality

φxy(x, y) ≤ a(x) + b(y) +

x∫
0

y∫
0

c(s, t)(φ(s, t) + φxy(s, t))dsdt,

holds forx ≥ 0, y ≥ 0, wherea(x), b(y) > 0; a′(x) and b′(y) ≥ 0 are continuous functions
defined forx ≥ 0, y ≥ 0. Then

φxy(x, y) ≤ a(x) + b(y) +

x∫
0

y∫
0

c(s, t)

[
[a(0) + b(t)][a(s) + b(0)]

[a(0) + b(0)]

×exp

( s∫
0

t∫
0

[1 + c(m,n)]dmdn

)]
dsdt.

2. M AIN RESULTS

In this section, some results of nonlinear retarded integrodifferential inequalities in two inde-
pendent variables are presented.
In what follows,x0, y0 ∈ R+, with x0 ≤ x, y0 ≤ y.

Theorem 2.1.Letu(x, y), c(x, y), a(x, y), Du(x, y) andDiu(x, y) be nonnegative continuous
functions for alli = 1, 2 defined forx, y ∈ R+, and α, β ∈ C1(R+, R+) be nondecreasing
functions for each variable, withα(x) ≤ x on R+ and β(y) ≤ y on R+. Let c(x, y) be a
nondecreasing function for each variablex, y ∈ R+, andu(x0, y) = u(x, y0) = 0. If

Du(x, y) ≤ c(x, y) +

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)[u(s, t) + Du(s, t)]dsdt,(2.1)
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for x, y ∈ R+, then

Du(x, y) ≤ c(x, y)

[
1 +

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)

× exp

( s∫
α(x0)

t∫
β(y0)

(1 + a(τ , σ))dτdσ

)
dsdt

]
,(2.2)

for x, y ∈ R+.

Proof: Fix anyX, Y ∈ R+. Then, forx0 ≤ x ≤ X andy0 ≤ y ≤ Y, we have

Du(x, y) ≤ z(x, y),(2.3)

wherez(x, y) is a function defined by

z(x, y) = c(X, Y ) +

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)[u(s, t) + Du(s, t)]dsdt,(2.4)

thenz(x0, y) = z(x, y0) = c(X, Y ). By integrating both sides of(2.3),

u(x, y) ≤
α(x)∫

α(x0)

β(y)∫
β(y0)

z(s, t)dsdt.(2.5)

By differentiating(2.4),

Dz(x, y) ≤ a(x, y)[u(x, y) + Du(x, y)]α′(x)β′(y).(2.6)

Now, using(2.3) and(2.5) in (2.6) we get

Dz(x, y) ≤ a(x, y)

[
z(x, y) +

α(x)∫
α(x0)

β(y)∫
β(y0)

z(s, t)dsdt

]
α′(x)β′(y).(2.7)

If we put

v(x, y) = z(x, y) +

α(x)∫
α(x0)

β(y)∫
β(y0)

z(s, t)dsdt,(2.8)

thenv(x0, y) = v(x, y0) = c(X,Y ), and

Dv(x, y) ≤ Dz(x, y) + z(x, y)α′(x)β′(y).

By takingDz(x, y) ≤ a(x, y)v(x, y)α′(x)β′(y) from (2.7) andz(x, y) ≤ v(x, y) from (2.8),
we have

Dv(x, y) ≤ [1 + a(x, y)]v(x, y)α′(x)β′(y).

Now, it is possible to estimatev(x, y) by

v(x, y) ≤ c(X,Y ) exp

[ α(x)∫
α(x0)

β(y)∫
β(y0)

(1 + a(s, t))dsdt

]
.(2.9)
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By substituting(2.9) in (2.7), integrating both sides, and usingz(x0, y) = z(x, y0) = c(X, Y ),
it yields

z(x, y) ≤ c(X, Y ) + c(X, Y )

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t) exp

[ s∫
α(x0)

t∫
β(y0)

(1 + a(τ , σ))dτdσ

]
dsdt.

We obtain the inequality(2.2) by substituting the value ofz(x, y) in (2.3) becauseX andY are
arbitraries.

Remark 2.1. It is enough to putα(x0) = β(y0) = 0, α(x) = x, β(y) = y, andc(x, y) =
c1(x) + c2(y) in Theorem2.1 so as to obtain Theorem 1 in [9].

Theorem 2.2.Letu(x, y), c(x, y), a(x, y), α, andβ be defined as in Theorem2.1, and assuming
that b(x, y) is nonnegative continuous function. If

u(x, y) ≤ c(x, y) +

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)u(s, t)dsdt

+

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)

( s∫
α(x0)

t∫
β(y0)

b(τ , σ)u(τ , σ)dτdσ

)
dsdt,(2.10)

for x, y ∈ R+, then

u(x, y) ≤ c(x, y) exp

[ α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)dsdt

+

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)

( s∫
α(x0)

t∫
β(y0)

b(τ , σ)dτdσ

)
dsdt

]
,(2.11)

for x, y ∈ R+.

Proof: Sincec(x, y) is nonnegative and nondecreasing, from(2.10) we have

u(x, y)

c(x, y)
≤ 1 +

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)
u(s, t)

c(s, t)
dsdt

+

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)

( s∫
α(x0)

t∫
β(y0)

b(τ , σ)
u(τ , σ)

c(τ , σ)
dτdσ

)
dsdt.(2.12)

Define a functionz(x, y) by the right side of the last inequality. Thenz(x, y) > 0, z(x0, y) =

z(x, y0) = 1, u(x,y)
c(x,y)

≤ z(x, y), and

Dz(x, y) ≤ z(x, y)

[
a(x, y) + a(x, y)

( α(x)∫
α(x0)

β(y)∫
β(y0)

b(s, t)dsdt

)]
α′(x)β′(y).
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i.e.

Dz(x, y)z(x, y)

z2(x, y)
− D1z(x, y)D2z(x, y)

z2(x, y)
≤

[
a(x, y)

+a(x, y)

( α(x)∫
α(x0)

β(y)∫
β(y0)

b(s, t)dsdt

)]
α′(x)β′(y).(2.13)

Thus

D2

[
D1z(x, y)

z(x, y)

]
≤

[
a(x, y) + a(x, y)

( α(x)∫
α(x0)

β(y)∫
β(y0)

b(s, t)dsdt

)]
α′(x)β′(y).(2.14)

By keepingy fixed, settingx = s, and integrating fromx0 to x in (2.14), and again by keeping
x fixed, settingy = t, and integrating fromy0 to y in the resulting inequality, we have

z(x, y) ≤ exp

[ α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)dsdt +

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)

( s∫
α(x0)

t∫
β(y0)

b(τ , σ)dτdσ

)
dsdt

]
.

Finally, sinceu(x,y)
c(x,y)

≤ z(x, y) we obtain the inequality(2.11).

Remark 2.2. (i) It is enough to putα(x0) = β(y0) = 0, α(x) = x, β(y) = y, andc(x, y) =
c1(x) + c2(y) in Theorem2.2 so as to obtain Theorem 3 in [9].
(ii) If b(x, y) = 0, the bound obtained in(2.11) reduces to

u(x, y) ≤ c(x, y) exp

[ α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)dsdt

]
.(2.15)

Theorem 2.3. Under the same hypotheses of Theorem2.2, and assuming thatf(x, y) is non-
negative continuous and nondecreasing function, letK(u(x, y)) be a real-valued, positive, con-
tinuous, strictly nondecreasing, sub-additive, and sub-multiplicative function foru(x, y) ≥ 0,
andH(u(x, y)) be a real-valued, continuous, positive, and nondecreasing function defined for
x, y ∈ R+. If

Du(x, y) ≤ c(x, y) + f(x, y)H

( α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)K(u(s, t))dsdt

)

+

α(x)∫
α(x0)

β(y)∫
β(y0)

b(s, t)Du(s, t)dsdt,(2.16)

for x, y ∈ R+, then

Du(x, y) ≤

{
c(x, y) + f(x, y)H

(
G−1

[
G(ξ) +

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)

×K(f(s, t)p(s, t))dsdt

])}
exp

( α(x)∫
α(x0)

β(y)∫
β(y0)

b(s, t)dsdt

)
,(2.17)
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for all x, y ∈ R+, where

p(x, y) =

α(x)∫
α(x0)

β(y)∫
β(y0)

exp

( s∫
α(x0)

t∫
β(y0)

b(τ , σ)dτdσ

)
dsdt.(2.18)

ξ =

∞∫
α(x0)

∞∫
β(y0)

a(s, t)K(c(s, t)p(s, t))dsdt.(2.19)

G(r) =

r∫
r0

ds

K(H(s))
, r ≥ r0 ≥ 0,(2.20)

whereG−1 is the inverse function ofG, and G(ξ) +
α(x)∫

α(x0)

β(y)∫
β(y0)

a(s, t)K(f(s, t) p(s, t))dsdt ∈

dom(G−1) for x, y ∈ R+.

Proof: From(2.16), we have

Du(x, y) ≤ z(x, y) +

α(x)∫
α(x0)

β(y)∫
β(y0)

b(s, t)Du(s, t)dsdt,(2.21)

wherez(x, y) is a function defined by

z(x, y) = c(x, y) + f(x, y)H

( α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)K(u(s, t))dsdt

)
.(2.22)

We note thatz(x, y) is a positive, continuous, and nondecreasing function forx, y ∈ R+.
Using(2.15) from Theorem2.2 in (2.21), we get

Du(x, y) ≤ z(x, y) exp

( α(x)∫
α(x0)

β(y)∫
β(y0)

b(s, t)dsdt

)
.(2.23)

By integration, first with respect tox from x0 to x, and then with respect toy from y0 to y in
the last inequality, we obtain

u(x, y) ≤ z(x, y)p(x, y),(2.24)

wherep(x, y) is defined in(2.18). From(2.22) we have

z(x, y) = c(x, y) + f(x, y)H(v(x, y)),(2.25)

where

v(x, y) =

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)K(u(s, t))dsdt.(2.26)

Now, using(2.25) in (2.24) we get

u(x, y) ≤ [c(x, y) + f(x, y)H(v(x, y))]p(x, y).(2.27)
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From(2.26) and(2.27) and sinceK is a sub-additive and sub-multiplicative function, we obtain

v(x, y) ≤
α(x)∫

α(x0)

β(y)∫
β(y0)

a(s, t)K([c(s, t) + f(s, t)H(v(s, t))]p(s, t))dsdt

≤
α(x)∫

α(x0)

β(y)∫
β(y0)

a(s, t)K(c(s, t)p(s, t))dsdt

+

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)K(f(s, t)p(s, t))K(H(v(s, t)))dsdt.

Therefore

v(x, y) ≤ Φ(x, y),(2.28)

whereΦ(x, y) is a function defined by

Φ(x, y) =

∞∫
α(x0)

∞∫
β(y0)

a(s, t)K(c(s, t)p(s, t))dsdt

+

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)K(f(s, t)p(s, t))K(H(v(s, t)))dsdt,(2.29)

then

Φ(x0, y) = Φ(x, y0) =

∞∫
α(x0)

∞∫
β(y0)

a(s, t)K(c(s, t)p(s, t))dsdt = ξ.(2.30)

Clearly,Φ(x, y) is a positive and nondecreasing function fory. So

D1Φ(x, y) ≤ K(H(Φ(x, y)))

β(y)∫
β(y0)

a(x, t)K(f(x, t)p(x, t))dt α′(x).

From(2.20) we have

D1G(Φ(x, y)) =
D1Φ(x, y)

K(H(Φ(x, y)))
≤

β(y)∫
β(y0)

a(x, t)K(f(x, t)p(x, t))dt α′(x).(2.31)

Now, by settingx = s and integrating fromx0 to x in (2.31), and using(2.30) we get

Φ(x, y) ≤ G−1

[
G(ξ) +

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)K(f(s, t)p(s, t))dsdt

]
.(2.32)

Finally, by substituting(2.25), (2.28), and(2.32) in (2.23) we obtain the inequality(2.17).
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Remark 2.3. (i) From the inequalities(2.27), (2.28), and(2.32) in the proof of Theorem2.3
we get the following inequality

u(x, y) ≤

{
c(x, y) + f(x, y)H

(
G−1

[
G(ξ)

+

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)K(f(s, t)p(s, t))dsdt

])}
p(x, y).

(ii) It is enough to putα(x0) = β(y0) = 0, α(x) = x, β(y) = y, c(x, y) = c1(x) + c2(y),
f(x, y) = 1, H(x) = K(x) = x, anda(x, y) = b(x, y) so that Theorem3.3 reduces to Theorem
1 in [9].

Corollary 2.4. Under the same hypotheses of Theorem2.3, and if

Du(x, y) ≤ c(x, y) +

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)K(u(s, t))dsdt

+

α(x)∫
α(x0)

β(y)∫
β(y0)

b(s, t)Du(s, t)dsdt,(2.33)

for x, y ∈ R+, then

Du(x, y) ≤

{
c(x, y) + T−1

[
T (ξ) +

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)K(p(s, t))dsdt

]}

× exp

( α(x)∫
α(x0)

β(y)∫
β(y0)

b(s, t)dsdt

)
,(2.34)

for all x, y ∈ R+, wherep(x, y) andξ are defined in Theorem2.3.

T (r) =

r∫
r0

ds

K(s)
, r ≥ r0 ≥ 0,

whereT−1 is the inverse function ofT, and T (ξ)+
α(x)∫

α(x0)

β(y)∫
β(y0)

a(s, t)K(p(s, t))dsdt ∈ dom(T−1)

for x, y ∈ R+.

Proof: The proof of this Corollary follows the same steps as in Theorem2.3.

Remark 2.4. (i) It is enough to putH(x) = x andf(x, y) = 1 in Theorem2.3 so as to obtain
the result in Corollary2.4.
(ii) It is enough to putα(x0) = β(y0) = 0, α(x) = x, β(y) = y, c(x, y) = c1(x) + c2(y),
K(x) = x, anda(x, y) = b(x, y) so as Corollary2.4 reduces to Theorem 1 in [9].

Corollary 2.5. Under the same hypotheses of Theorem2.2, and if

Du(x, y) ≤ M +

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)u(s, t)dsdt +

α(x)∫
α(x0)

β(y)∫
β(y0)

b(s, t)Du(s, t)dsdt,(2.35)
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for x, y ∈ R+, whereM > 0 is constant, then we obtain the following results:

(1) Du(x, y) ≤ M

{
1 +

( ∞∫
α(x0)

∞∫
β(y0)

a(s, t)p(s, t)dsdt

)

× exp

( α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)p(s, t)dsdt

)}
exp

( α(x)∫
α(x0)

β(y)∫
β(y0)

b(s, t)dsdt

)
.

(2) u(x, y) ≤ M

{
1 +

( ∞∫
α(x0)

∞∫
β(y0)

a(s, t)p(s, t)dsdt

)

× exp

( α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)p(s, t)dsdt

)}
p(x, y),

for all x, y ∈ R+, wherep(x, y) is defined in Theorem2.3.

Proof: The results of this Corollary can be obtained by settingK(x) = x andc(x, y) = M
in Corollary2.4.

3. RETARDED NONLINEAR I NTEGRODIFFERENTIAL I NEQUALITIES IN n
I NDEPENDENT VARIABLES

This section is devoted to presenting some results of nonlinear retarded integrodifferential
inequalities inn independent variables.

In what follows,D = D1D2...Dn, whereDi = ∂
∂xi

, for i = 1, 2, ..., n. Forx = (x1, x2, ..., xn),

t = (t1, t2, ..., tn), x0 = (x0
1, x

0
2, ..., x

0
n) ∈ Rn

+(whereRn
+ = [0,∞) is a subset ofRn, n ≥ 1),

we assume:
Forx, t ∈ Rn

+, we writet ≤ x wheneverti ≤ xi, i = 1, 2, .., n, andx ≥ x0 ≥ 0 ∈ Rn
+. For any

X = (X1, X2, ..., Xn) ∈ Rn
+, we writex0 ≤ x ≤ X wheneverx0

i ≤ xi ≤ Xi, i = 1, 2, ..., n.

α̃(x) = (α1(x1), α2(x2), ..., αn(xn)) ∈ Rn
+, and β̃(x) = (β1(x1), β2(x2), ..., βn(xn)) ∈ Rn

+.

We assumẽα(x) ≤ x and β̃(x) ≤ x wheneverαi(xi) ≤ xi andβi(xi) ≤ xi respectively for
i = 1, 2, ..., n, and

α̃(x)∫
α̃(x0)

dt =

α1(x1)∫
α1(x0

1)

α2(x2)∫
α2(x0

2)

...

αn(xn)∫
αn(x0

n)

...dtn...dt1, and

β̃(x)∫
β̃(x0)

dt =

β1(x1)∫
β1(x0

1)

β2(x2)∫
β2(x0

2)

...

βn(xn)∫
βn(x0

n)

...dtn...dt1.

The main results are established in the following theorems.

Theorem 3.1.Letu(x), c(x) anda(x) be nonnegative continuous functions defined forx ∈ Rn
+,

andα̃ ∈ C1(Rn
+, Rn

+) be a nondecreasing function for each variable, withα̃(x) ≤ x on Rn
+. We

consider thatc(x) is nondecreasing for each variablex ∈ Rn
+. If

u(x) ≤ c(x) +

α̃(x)∫
α̃(x0)

a(t)u(t)dt,(3.1)
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for x ∈ Rn
+, then

u(x) ≤ c(x) exp

( α̃(x)∫
α̃(x0)

a(t)dt

)
,(3.2)

for x ∈ Rn
+.

Proof: As c(x) is nonnegative and nondecreasing, then from(3.1) we have

u(x)

c(x)
≤ 1 +

α̃(x)∫
α̃(x0)

a(t)
u(t)

c(t)
dt.(3.3)

wherez(x) is a function defined by the right side of(3.3). Thenz(x) > 0, z(x0
1, x2, ..., xn) = 1,

z(..., x0
i , xi+1, ..., xn) = 1, ∀i = 2, ..., n, u(x)

c(x)
≤ z(x), and

Dz(x) ≤ a(x)z(x)α̃′(x).

Therefore

Dn

(
D1...Dn−1z(x)

z(x)

)
≤ a(x)α̃′(x).(3.4)

By integrating(3.4) with respect toxn from x0
n to xn, we have

D1...Dn−1z(x)

z(x)
≤

αn(xn)∫
αn(x0

n)

a(x1, ...xn−1, tn)dtnα
′
1(x1)....α

′
n−1(xn−1),

thus
z(x)D1...Dn−1z(x)

z2(x)
− Dn−1z(x)(D1...Dn−2Dz(x))

z2(x)

≤
αn(xn)∫

αn(x0
n)

a(x1, ...xn−1, tn)dtnα
′
1(x1)....α

′
n−1(xn−1),

hence

Dn−1

(
D1...Dn−2z(x)

z(x)

)
≤

αn(xn)∫
αn(x0

n)

a(x1, ...xn−1, tn)dtnα
′
1(x1)....α

′
n−1(xn−1).

The integration of this inequality with respect toxn−1 from x0
n−1 to xn−1 yields

D1...Dn−2z(x)

z(x)
≤

αn−1(xn−1)∫
αn−1(x0

n−1)

αn(xn)∫
αn(x0

n)

a(x1, ...xn−2, tn−1, tn)dtndtn−1α
′
1(x1)....α

′
n−2(xn−2).

By continuing this process, we arrive at

D1z(x)

z(x)
≤

α2(x2)∫
α2(x0

2)

...

αn(xn)∫
αn(x0

n)

a(x1, t2, t3, ..., tn−1, tn)dtn...dt2α
′
1(x1).(3.5)
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By integrating(3.5) with respect tox1 from x0
1 to x1, we get

z(x) ≤ exp

( α̃(x)∫
α̃(x0)

a(t)dt

)
.

Finally, becauseu(x)
c(x)

≤ z(x) we obtain the inequality(3.2).

Remark 3.1. When n = 2, x ∈ R2
+, (x0

1, x
0
2) = (0, 0), α1(x1) = x, α2(x2) = y, and

c(x) = c1(x) + c2(y) then Theorem3.1 reduces to Lemma 1 in [9].

Theorem 3.2.Under the same hypotheses of Theorem2.3, and if

Du(x) ≤ c(x) + f(x)H

( α̃(x)∫
α̃(x0)

a(t)K(u(t))dt

)
+

α̃(x)∫
α̃(x0)

b(t)Du(t)dt,(3.6)

for x ∈ Rn
+, then

Du(x) ≤

{
c(x) + f(x)H

(
G−1

[
G(ξ)

+

α̃(x)∫
α̃(x0)

a(t)K(f(t)p(t))dt

])}
exp

( α̃(x)∫
α̃(x0)

b(t)dt

)
,(3.7)

for all x ∈ Rn
+, where

p(x) =

α̃(x)∫
α̃(x0)

exp

( s∫
α̃(x0)

b(τ)dτ

)
dt.(3.8)

ξ =

∞∫
α̃(x0)

a(t)K(c(t)p(t))dt.(3.9)

G(r) =

r∫
r0

ds

K(H(s))
, r ≥ r0 ≥ 0,(3.10)

whereG−1 is the inverse function ofG, andG(ξ)+
α̃(x)∫

α̃(x0)

a(t)K(f(t)p(t))dsdt ∈ dom(G−1) for

x ∈ Rn
+.

Proof: It is possible to get the above result by following the same steps as in Theorem2.3
and making simple modifications.

Remark 3.2. (i) Based on the inequalitie(3.6) and the equation(3.8), we can obtain the fol-
lowing result:

u(x) ≤

{
c(x) + f(x)H

(
G−1

[
G(ξ) +

α̃(x)∫
α̃(x0)

a(t)K(f(t)p(t))dt

])}
p(x).(3.11)
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(ii) It is enough to putn = 2, x ∈ R2
+, (x0

1, x
0
2) = (0, 0), α1(x1) = x, α2(x2) = y, c(x) =

c1(x) + c2(y), f(x) = 1, H(x) = K(x) = 1, anda(x) = b(x) so as Theorem3.2 reduces to
Theorem 1 in [9].

Corollary 3.3. Under the same hypotheses of Theorem3.2, and if

Du(x) ≤ c(x) +

α̃(x)∫
α̃(x0)

a(t)K(u(t))dt +

α̃(x)∫
α̃(x0)

b(t)Du(t)dt,(3.12)

for x ∈ Rn
+, then

Du(x) ≤

{
c(x) + T−1

[
T (ξ) +

α̃(x)∫
α̃(x0)

a(t)K(p(t))dt

]}
exp

( α̃(x)∫
α̃(x0)

b(t)dt

)
,(3.13)

for all x ∈ Rn
+, wherep(x) andξ are defined in Theorem3.2, and

T (r) =

r∫
r0

ds

K(s)
, r ≥ r0 ≥ 0,

whereT−1 is the inverse function ofT, and T (ξ) +
α̃(x)∫

α̃(x0)

a(t)K(p(t))dt ∈ dom(T−1) for

x ∈ Rn
+.

Proof: We note that the proof of this Corollary follows the same steps as in Theorem3.2.

Remark 3.3. It is enough to putH(x) = x andf(x) = 1 in Theorem3.2 so as to obtain the
result in Corollary3.3.

Theorem 3.4.Under the same hypotheses of Theorem3.2, and if

Du(x) ≤ c(x) +

α̃(x)∫
α̃(x0)

a(t)K(u(t))dt +

β̃(x)∫
β̃(x0)

b(t)Du(t)dt,(3.14)

for x ∈ Rn
+, then

Du(x) ≤

{
c(x) + T−1

[
T (ξ) +

α̃(x)∫
α̃(x0)

a(t)K(p(t))dt

]}
exp

( β̃(x)∫
β̃(x0)

b(t)dt

)
,(3.15)

and

u(x) ≤

{
c(x) + T−1

[
T (ξ) +

α̃(x)∫
α̃(x0)

a(t)K(p(t))dt

]}
p(x),(3.16)

for all x ∈ Rn
+, whereT andξ are defined in Corollary3.3, and

p(x) =

β̃(x)∫
β̃(x0)

exp

( s∫
β̃(x0)

b(τ)dτ

)
dt.

Proof: Again, the proof of this theorem follows the same steps as in Theorem3.2.
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Remark 3.4. If α̃(x) = β̃(x), then Theorem3.4 reduces to Corollary3.3.

4. APPLICATIONS

This section suggests some applications of our results in order to study the boundedness and
continuity of solutions of some nonlinear partial integrodifferential equations with delay.

APPLICATION 1: Suppose the following equation for functions of two independent vari-
ables

Du(x, y) = f(x, y) +

α(x)∫
α(x0)

β(y)∫
β(y0)

h(x, y, s, t, u(s, t), Du(s, t))dsdt,(4.1)

with the boundary conditionsu(x0, y) = u(x, y0) = 0, for x, y ∈ R+, wheref : R+×R+ → R
andh : R2

+ × R× R −→ R are continuous functions so that

|f(x, y)| ≤ M,

and

|h(x, y, s, t, u(s, t), Du(s, t))| ≤ a(s, t)|u(s, t)|+ b(s, t)|Du(s, t)|,
for x, y ∈ R+, whereM > 0 is constant anda(x, y) andb(x, y) are nonnegative continuous
functions defined forx, y ∈ R+. If u(x, y) is any solution of Problem(4.1), then

|Du(x, y)| ≤ M +

α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)|u(s, t)|dsdt +

α(x)∫
α(x0)

β(y)∫
β(y0)

b(s, t)|Du(s, t)|dsdt.

Now, it is possible to obtain the bound on the solutionu(x, y) of (4.1) by applying Corollary
2.5 (inequality 2)

|u(x, y)| ≤ M

{
1 +

( ∞∫
α(x0)

∞∫
β(y0)

a(s, t)p(s, t)dsdt

)
exp

( α(x)∫
α(x0)

β(y)∫
β(y0)

a(s, t)p(s, t)dsdt

)}
p(x, y),

for all x, y ∈ R+, wherep(x, y) is defined in Corollary2.5.

APPLICATION 2: Suppose the following equation for functions ofn independent variables

Du(x) = q(x) + f(x)H

( α̃(x)∫
α̃(x0)

Q(x, t, u(t), K(u(t)))dt

)

+

α̃(x)∫
α̃(x0)

W (x, t, u(t), Du(t))dt,(4.2)

with the conditionsu(x0
1, x2, ..., xn) = 0, u(x1, ..., xi−1, x

0
i , xi+1, ..., xn) = 0 for any i =

2, ..., n, wheref, K, andH are defined in Theorem3.2. q : Rn
+ → R andQ, W : Rn

+×R×R −→
R are continuous functions so that

|q(x)| ≤ M,

and

|Q(x, t, u(t), K(u(t)))| ≤ a(t)K(|u(t)|),
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|W (x, t, u(t), Du(t))| ≤ b(t)|Du(t)|,

for x ∈ Rn
+, whereM > 0 is constant,a(x) andb(x) are nonnegative continuous functions

defined forx ∈ Rn
+. If u(x) is any solution of Problem(4.2), then

|Du(x)| ≤ M + f(x)H

( α̃(x)∫
α̃(x0)

a(t)K(|u(t)|)dt

)
+

α̃(x)∫
α̃(x0)

b(t)|Du(t)|dt.

Now, it is possible to obtain the bound on the solutionu(x) of (4.2) by applying Theorem3.2
and Remark3.2 (inequality3.11) with c(x) = M

|u(x)| ≤

{
M + f(x)H

(
G−1

[
G(ξ) +

α̃(x)∫
α̃(x0)

a(t)K(f(t)p(t))dt

])}
p(x),

for all x ∈ Rn
+, wherep(x), G andξ are defined in Theorem3.2.

APPLICATION 3: Suppose the following equation for functions ofn independent variables

Du(x) = q(x) +

α̃(x)∫
α̃(x0)

Q(x, t, u(t), K(u(t)))dt +

β̃(x)∫
β̃(x0)

W (x, t, u(t), Du(t))dt,(4.3)

with the conditionsu(x0
1, x2, ..., xn) = 0, u(x1, ..., xi−1, x

0
i , xi+1, ..., xn) = 0 for any i =

2, ..., n, whereK is defined in Theorem3.2. q : Rn
+ → R andQ,W : Rn

+ × R × R −→ R are
continuous functions so that

|q(x)| ≤ M,

and

|Q(x, t, u(t), K(u(t)))| ≤ a(t)K(|u(t)|),

|W (x, t, u(t), Du(t))| ≤ b(t)|Du(t)|,

for x ∈ Rn
+, whereM > 0 is constant,a(x) andb(x) are nonnegative continuous functions

defined forx ∈ Rn
+. If u(x) is any solution of Problem(4.3), then

|Du(x)| ≤ M +

α̃(x)∫
α̃(x0)

a(t)K(|u(t)|)dt +

β̃(x)∫
β̃(x0)

b(t)|Du(t)|dt.

Now, it is possible to obtain the bound on the solutionu(x) of (4.3) by applying Theorem3.4
with c(x) = M

|u(x)| ≤

{
M + T−1

[
T (ξ) +

α̃(x)∫
α̃(x0)

a(t)K(p(t))dt

]}
p(x),

for all x ∈ Rn
+, wherep(x), T andξ are defined in Theorem3.4.
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