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1. I NTRODUCTION

Recently, optimization on Riemannian manifolds has become an interesting ongoing research
due to its positives over Euclidean space. The notion of this is that Riemannian optimization
depends on the curved manifolds, thereby constraints can be eliminated and only feasible points
required. Riemannian optimization has several applications in diverse sectors. For instance, ma-
chine learning, computer vision and data mining, Riemannian dictionary learning, and tensor
clustering, see respectively, [8]. Extensive research to solve minimizing problems on Riemann-
ian manifolds available in [2],[40]. The constrained optimization algorithms on a manifold have
lower complexity, dimension as well as better numerical properties. Besides, classical optimiza-
tion schemes like the steepest descent scheme, the Newton scheme, and others can be extended
to Riemannian manifolds; see, e.g., [19], [37], [3]. Nowadays, solid Riemannian optimization
techniques have become available on http://www.manopt.org.
In the last two decades, Interior Point Methods (IPM) have most extremely studied methods for
both linear and certain convex programming problems, due to their excellent computations and
properties; see, e.g., [23], [31], [43], [44]. Chronologically, conventional methods such as the
steepest descent method, conjugate gradient method or Newton method have been used widely
to minimize a cost function [22]. However, several inequality constraint optimization problems
have been raised in trade and industry resulted in developing new optimization techniques; see,
e.g., [30], [42]. The basic concept of the IPM is to transform a constrained problem into a
parameterized unconstrained one using a barrier function, known as a self-concordant function
(S-CF) defined by [31]. The keyword identified by [13] is the construction of so-called S-CF
for the constraint set (neglecting the equality constraints). The significance of these functions is
demonstrated into two points. Firstly, they connected with logarithmic barrier functions in IPM.
Secondly, the proposed damped Newton method for optimizing S-CF, which involve known pa-
rameters. However, most IPM forms based on eliminating the constraint set and adding a multi-
ple of the barrier function. The central path is a result of set of minimizers work as the multiplier
changes for the problem. This approach applicable to obtain so-called primal central path or
primal-dual central path based on choice of either the original problem or the original problem
and its dual simultaneously, respectively. According to [32], the corresponding algorithm takes
a sequence of short steps. Thus, it’s reasonable to consider the corresponding Riemannian met-
ric defined on the interior of the constraint set. Moreover, we can consider the shortest paths in
this metric, or geodesic curves. Affine manifolds are smooth manifolds which are locally mod-
eled on a finite dimensional affine vector space. These manifolds arise naturally in differential
geometry, theoretical physics and optimization theory. While much more is known about their
Riemannian counter parts, there are several outstanding conjectures regarding these manifolds.

2. RIEMANNIAN GEOMETRY PRELIMINARIES

The solid ground to understand the definition of Riemannian manifolds requires definition of
several concepts such as smooth manifolds, charts, atlases and tangent vectors seen as equiva-
lence classes of the exposition of these definitions is mainly inspired from [2], [11], [12], [24],
[33], [9].

2.1. Charts and Manifolds. Manifolds are sets, which locally identified with patches ofRm.
A set of these identifications forms so-called charts. Then, atlas is a set of compatible charts
that covers the whole set. Both the atlas and the set constitute a manifold.

Definition 2.1. (chart). Letυ be a set,U ⊂ υ, andϕ is a bijection betweenU and an open set of
Rm . A chart ofυ is a pair(U,ϕ). U is the chart’s domain andm is the chart’s dimension. Let
q ∈ U , then elements ofϕ(q) = (x1, ..., xm) are called the coordinates ofq in the chart(U,ϕ).
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Definition 2.2. (compatible charts)
Let (U,ϕ), (W,ψ) be two charts ofυ, of dimensionsn andm, respectively, are smoothly

compatible(C∞ - compatible) if eitherU
⋂
W = ϕ or U

⋂
W 6= φ and�ϕ(U,W ) is an open

set ofRn, �ψ(U,W ) is an open set ofRm, �ψ ◦ ϕ−1 : ϕ(U,W ) → ψ(U,W ) is a smooth
diffeomorphism. WhenU

⋂
W 6= φ, implies n = m.

Definition 2.3. (atlas). A setB = (Ui, ϕi), i ∈ I of pairwise smoothly compatible charts:⋃
i∈I Ui = υ is a smooth atlas ofυ. Two atlasesB1 andB2 are compatible ifB1∪B2 is an atlas.

AtlasB and all the charts compatible withB called a unique maximal atlasB+.

Definition 2.4. (manifold).
A pair µ = (υ,B+) defines a smooth manifold whereυ is a set andB+ is a maximal atlas of

υ.

Definition 2.5. (dimension).
Given a manifoldµ = (υ,B+), if the all charts ofB+ have the same dimensionm, thenm is

the dimension ofµ.

Definition 2.6. (smooth mapping). Givenµ,ℵ, two smooth manifolds. A mappingg : µ → ℵ
is of classCr if, for all q in υ, there is chart(U,ϕ) of υ and a chart(W,ψ) of ℵ such that
q ∈ U, g(U) ⊂ W andψ ◦ g ◦ ϕ−1 : ϕ(U) → ψ(W ) is of classCr. This is called the local
expression ofg in the charts(U,ϕ) and(W,ψ). A smooth map is of classC∞.
More definitions related to tangent spaces and tangent vectors are available in [9], page 24.

2.2. Riemannian structure and gradients.

Definition 2.7. (inner product). Givenυ a smooth manifold and fix pointg ∈ υ. Thus, An
inner produc〈·, ·〉q on a tangent spaceTqυ is a bilinear, symmetric positive definite form on
Tqυ. Mathematically,∀X, Y, Z ∈ Tqυ, α, β ∈ R :
�〈X,X〉q > 0, and〈X,X〉q = 0 ⇔ X = 0 ,
�〈αX + βY, Z〉q = α〈X,Z〉q + β〈Y, Z〉q, and
�〈X, Y 〉q = α〈Y,X〉q.

Let υ be a smooth manifold andh is a Riemannian metric. Then, the pair(υ, h) called a
Riemannian manifold. A Riemannian metric is a smoothly varying inner product defined on the
tangent spaces ofυ. This means that for eachq ∈ υ, hq(·, ·) = 〈·, ·〉q is an inner product onTqυ.

Definition 2.8. (gradient).
The gradient of a scalar fieldg on a Riemannian manifoldυ at pointg, obtained by gradg(q)

as the unique element ofTqυ satisfying:

Dg(q)[X] = 〈gradg(q), X〉q,∀X ∈ Tqυ.

Then, gradg : υ → Tυ represents a vector field onυ.

2.2.1. Riemannian submanifolds.Let (υ, f) be a Riemannian manifold, and letῡ be a sub-
manifold of υ and f̄ is the restriction off to the tangent spaces ofῡ. Then,(ῡ, f̄) called a
Riemannian submanifold. This means that∀q ∈ ῡ and∀X, Y ∈ Tqῡ ⊂ Tqυ, the metricsf and
f are compatible in the sense thatfq(X, Y ) = f̄q(X, Y ).

2.2.2. Riemannian quotient manifolds.Let (υ, f) be a Riemannian manifold, and letῡ = υ/ ∼
be a quotient manifold ofυ. We will now leverage the Riemannian structure ofυ to equipῡ
with a Riemannian structure as well. Therefore, we first single out one horizontal distribution
as follows.

Hq := U⊥q = X ∈ Tqυ : fq(X, Y ) = 0,∀Y ∈ Uq,∀q ∈ υ.
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2.3. Distances and geodesic curves.A line segment onRn is defined as curves with arc-length
parameterization is that they have zero acceleration. First of all, let’s introduce the concept of
tangent vectors to curves or so-called velocity vectors. ConsiderΓ a curve of classC1 such that
Γ : [a, b] → υ, andt ∈ [a, b], define another such curve onυ by shifting its parameter:

Γt : [a− t, b− t] → υ : τ → Γt(τ) = Γ(t+ τ).

Thus, the equivalence class[Γt] ∈ TΓ(t)υ is a vector tangent toΓ at timet, 〈X,Y 〉q ,. For
more understanding, we have to see the next definitions.

Definition 2.9. (acceleration along a curve).
Givenυ a smooth manifold equipped with a connection∇. Let I be an open interval of R is

aC2 curve onυ. The acceleration alongΓ is obtained by:

t→ ∇Γ̇(t)Γ̇
(t) ∈ TΓ(t)υ.

Definition 2.10. (geodesic).
Let I be an open interval ofR, and a curveΓ : I → υ. Thus,υ is geodesic if and only if it

has zero acceleration on all its domain.

Definition 2.11. (length of a curve). The length of a curve of classC1, Γ : [a, b] → υ, on a
Riemannian manifold(υ, f), with Γ(t). , fq(X, Y ), is defined by

Length(Γ) =

∫ β

α

√
〈Γ̇(t), Γ̇(t)〉Γ(t)dt) =

∫ β

α

||Γ̇(t)||Γ(t)dt.

Definition 2.12. (Riemannian distance).
It’s called sometimes (geodesic distance). Then, it’s given onυ by dist:

υ × υ → R+ : (p, q) 7→ dist(p, q) = inf
Γ∈

Lengh(Γ),

where is the set of allC1 curvesΓ : [0, 1] → υ : Γ(0) = p, andΓ(1) = q.

2.4. Parallel translation. It’s difficult to compare vectors from different tangent spaces on
manifolds. As a result parallel translation comes to transport vectors between tangent spaces
without lost the information. The idea, vector transport defines how to transport a vectorX ∈
Tqυ from a pointq ∈ υ to a pointRq(Y ) ∈ υ, Y ∈ Tqυ. However, let’s introduce the Whitney
sum then quote the definition of vector transport.

Tυ ⊕ Tυ = (X, Y ) : Y,X ∈ Tqυ, q ∈ υ
Thereby,Tυ ⊕ Tυ is the set of pairs of tangent vectors belonging to a same tangent space.

Definition 2.13. (vector transport). A vector transport on a manifoldυ is a smooth mapping

Transp: Tυ ⊕ Tυ → Tυ : (X,Y ) 7→ TranspY (X),

satisfies∀q ∈ υ
(1) There exists a retraction R associated with Transp, such thatTranspY (X) ∈ (X) ∈

TRq(Y )υ,
(2) Transp0(X) = X,∀X ∈ Tqυ, (consistency),
(3) TranspY (aX+bY ) = aTranspY (X)+bTranspY (Z),∀X, Y, Z ∈ Tqυ ∈R(Linearity)
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2.5. Curvature.

Definition 2.14. (Riemannian curvature tensor). Givenυ a Riemannian manifold, and∇ a
Riemannian connection, then the Riemannian curvature tensorR : χ(υ)× χ(υ)× (υ) → χ(υ)
is obtained by

<(ζη)ξ = ∇ζ∇ηξ −∇η∇ζξ −∇[ζ,η]ξ.

The Riemannian manifold isυ if and only if< vanishes identically.

3. OPTIMIZATION ON SMOOTH M ANIFOLDS

Several optimization problems can be better stated on manifolds rather than Euclidean space,
such as interior point methods, which in turns based on self-concordant functions (logarithmic
barrier functions), see([19], [20], [34]). Therefore, many optimization problems are extended
to non-Euclidean spaces; see, e.g., [37], [3], [20]. For instance, finding the largest eigenvalue
of a symmetric matrix, and Optimization problems subject to nonlinear differentiable equality
constraints on Euclidean space. Such as these examples are endowed with a Riemannian metric
[37]. Moreover, [32] have revealed that a Riemannian metric can be represented by a self-
concordant barrier function. Thereby a metric gives a good clarification of the optimal direction
for algorithms. Further up, the self-concordant concept has been applied in [39] to present a
gentle interpretation of a logarithm cost function optimized on a manifold. This study extended
by [35]. Besides, optimization schemes like the steepest descent scheme, the Newton scheme,
and others can be extended to Riemannian manifolds; see, e.g., [19], [37], [3]. This is in turn
raising a question, what are results of extending the meaning of Riemannian metric to affine
connections on Riemannian manifolds? However, for more understanding, this article reviews
some Riemannian and non-Riemannian approaches.

3.1. Riemannian Schemes.

3.1.1. Steepest descent method on manifolds (SDMOM ). SDMOM is the simplest classical
algorithm for the optimization on Riemannian manifolds, introduced by [25], [26] and [18].
Unfortunately,SDMOM has a slow linear convergence rate. On the other hand in 90s, this
method applied to solve problems in the control theory; see, e.g., [19], [20], [10], [38], [27].

3.1.2. Newton method on manifolds (NMOM ). Compare to theSDMOM , theNMOM has
faster quadratic convergence rate. It has been extended to a Riemannian sub-manifold ofRn by
(Gabay,1982). Further progress of theNMOM on Riemannian manifolds have proposed by
[40], [37], [27], [28], [14], [13].

3.1.3. Quasi-Newton method on manifolds (QNMOM ). To overcome the computational cost
of theNMOM due to inverse of a symmetric matrix calculation, theQNMOM has been pre-
sented by [37]. This method uses only the first order information of the cost function to approx-
imate the Hessian inverse and has a super-linear local convergence rate. As a result, researchers
developed diverse algorithm forms of theQNMOM . For example, Davidon-Fletcher-Powell
(DFP )[15] method and the Broyden [6], [5] Fletcher [16] Goldfarb [42] Shanno [43] (BFGS)
method. In the early 80s, [18] firstly generalized theBFGS method to a Riemannian mani-
fold. Further up, [7] improved theBFGS method on the Grassmann manifold and reduced the
computational cost.
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3.1.4. Trust-region method (TRM ). To avoid the inverse Hessian matrix calculation with high
convergence rate, [1] proposedTRM . One ofTRM applications, for instance, is Grassmann
manifold for the matrix completion problem [8]. Practically, each iteration ofTRM involves
solving the Riemannian Newton equation [38], which leads to increase the algorithm complex-
ity. This is resulted in developing the method by [40] without solving Riemannian Newton
equation.

3.2. Non-Riemannian Schemes.The classical optimization methods on a manifold are en-
dowing with a metric structure to be into a Riemannian manifold, see [29]. For example, the
gradient is replaced by the Riemannian gradient. To minimize a cost function, [30] described a
general context for developing numerical algorithms on a manifold. Based on this development,
the corresponding steepest descent and Newton methods reduced the computational complexity
compared with the Riemannian methods.

4. SELF -CONCORDANT FUNCTIONS ON RIEMANNIAN M ANIFOLDS (S-CF ON RM)

The S-CF play a vital role in solving certain convex constrained optimization problems. Its
extension to Riemannian manifolds has been derived by [39]. This author deliberated the fol-
lowing convex programming problem

min[g◦(x) : gi(x) 6 0, i = 1, 2, , n, x ∈ υ](4.1)

Whereυ is a completen-dimensional Riemannian manifold. Interior point methods associated
with barrier functions were used for solving. Besides, this barrier function is selected to be
self-concordant.

Assumption 1.
Let υ be a geodesic complete smooth manifold of finite dimension and let∇ be a symmetric
affine connection on it. In addition, the geodesic between two points is unique, then.

g : υ → R,(4.2)

∇W∇Q(g) = ∇Q∇W (g),(4.3)

For any vector fieldW ,Q.g has an open domain and closed map.

Definition 4.1. g is a self-concordant function respect to

∇ ⇐⇒ |∇3
Wg(q)| 6 νg[∇2

Wg(q)]
3/2, ∀W ∈ Tqυ,(4.4)

whereυ is the tangent space of vat pointq andυg is a positive constant.υg = 2 can be
selected as a constant according to [21].

Assumption 2

∇2
Wg(q) > 0, ∀q ∈ dom(g), W ∈ Tqυ.(4.5)

Thereby, we can define a Dikin-type ellipsoidX0(q; r) based on the second-order covariant
differentials as follows.
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Definition 4.2.

X0(q; r) = (p ∈ υ|[∇2
Wqpg(q)]

0.5 < r),∀q ∈ dom(g), r > 0,(4.6)

Such thatWqp is the vector field defined by the geodesic connecting the pointsq andp. Basi-
cally, definition of S-CF depends on second order and third order covariant differentials with
respect to the same vector fieldW . Furthermore, [21] in his work pointed out four gentle
properties of the S-CF.

Assumption 3.
Let (υ, h) be a Riemannian manifold, we observe by∇ the Levi-Civita connection induced by
the metrich. Consider a mappingg : υ → R, such that[(g(q), q), q ∈ dom(g)] is a closed set
in the product manifoldR.

Definition 4.3. The functiong is called r-self-concordant,r > 0, with respect to the Levi-Civita
connection∇ defined onυ if:

|∇3
g(y)(Yy, Yy, Yy)| 6 2r(∇2

g(y)(Yy, Yy))
3/2∀y ∈ υ,∀Yy ∈ TY υ.

Definition 4.4. (Newton decrement).
Let the auxiliary quadratic cost defined onTqυ as follows.

ξg.q(W ) := g(q) +∇Wg(q) + 0.5∇2
Wg(q),(4.7)

then,

Wξ(g, q) := argminW∈Tqυξg.q(W ),(4.8)

This means that the Newton decrementWξ(g, q) is defined as the minimum solution to the
ξξg.q(W ).

Theorem 4.1. Consider the following S-CFg : υ → R, q a given point indom(g) ⊆ υ , and
Wξ is the Newton decrement defined atq, thus

∇W ξ∇Wg(q) = −∇Wg(q),∀W ∈ Tqυ,(4.9)

(∇W ξ
2g(q))0.5 = max[g(q)|W ∈ Tqυ,∇2

Wg(q) 6 1].(4.10)

4.0.1. Damped Newton method for S-CF.Damped Newton method (DNM ) of S-CFs can be
understood by the next theorem.

Theorem 4.2. [21]. Consider the following

λg(q) := maxW∈Tqυ|∇Wg(q)|/(∇2
Wg(q))

0.5 : q ∈ dom(g).(4.11)

For someq ∈ dom(g), ifλg(q) < 1, thus there exists a unique pointq∗g ∈ dom(g):

g(q∗g) = min[g(q), q ∈ dom(g)].

The feasible algorithm ofDNM is obtained by two main steps.

(1) Find a feasible pointq0 ∈ dom(g).
(2) qi = expqi−1(1/1 + λg(qi − 1)Wξ),

whereexpqi−1
t Wξ is the exponential map of the Newton decrement atqi−1.
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5. AFFINE CONVEX FUNCTIONS

Definition 5.1. An affine differential manifold(M,Γ) is called auto-parallely complete if any
auto-parallelx(t) starting atp ∈M is defined for all values of the parametert ∈ R.

Theorem 5.1. [4] LetM be a (Hausdorff, connected, smooth) compactn-manifold endowed
with an affine connectionΓ, and letp ∈ M . If the holonomy group Holp(Γ) (regarded as a
subgroup of the groupGl(TpM) of all the linear automorphisms of the tangent spaceTpM ) has
compact closure, then(M,Γ) is auto-parallely complete.

Let (M,Γ) be an auto-parallely complete affine differential manifold. For aC2 function
f : M → R, we define the tensor HessΓf of components

(HessΓf)ij =
∂2f

∂xi∂xj
− Γh

ij

∂f

∂xh
.

Definition 5.2. A C2 functionf : M → R is called:

(1) linear affine with respect toΓ if HessΓf = 0, throughout M;
(2) affine convex (convex with respect toΓ) if HessΓf � 0 (positive semidefinite), through-

out M, (see [41].

The functionf is:

(1) linear affine if its restrictionf(x(t)) on each auto-parallel curvex(t) satisfiesf(x(t)) =
at+ b, for some numbersa, b that may depend onx(t);

(2) affine convex, if its restrictionf(x(t)) is convex on each auto-parallel curvex(t).

Example 5.1.Consider the bilevel programming problem

f(x, y) = (x− 1)2 + (y − 1)2, subject to g(x, y) = x− 50y = 500 = 0

(1) we find the first and the second partial derivatives

∂f

∂x
= 2(x− 1),

∂f

∂y
= 2(y − 1),

∂2f

∂x2
= 2,

∂2f

∂x∂y
= 0,

∂2f

∂y2
= 2

(2)
∂f

∂xi∂yi
− Γh

ij = f,ij

f,11 = 2− Γ1
11(2x− 2) + Γ2

11(2y − 2)

f,12 = 0− Γ1
12(2x− 2) + Γ2

12

f,22(2y − 2)
= 2− Γ1

22(2x− 2) + Γ2
22(2y − 2)

(3)(
f,11 f,12

f,12 f,22

)
=

(
2− Γ1

11(2x− 2)− Γ2
11(2y − 2) −Γ1

12(2x− 2)− Γ2
12(2y − 2)

−Γ1
12(2x− 2) + Γ2

12(2y − 2) 2− Γ1
22(2x− 2)− Γ2

22(2y − 2)

)
Positive semidefinite whenf,11.f,22 − f 2

,12 ≥ 0, f,11 ≥ 0
(4) We must find connections

2− Γ1
11(2x− 2)− Γ2

11(2y − 2) ≥ 0

(2−Γ1
11(2x−2)−Γ2

11(2y−2)).(2−Γ1
22(2x−2)−Γ2

22(2y−2))−(−Γ1
12(2x−2)−Γ2

12(2y−2))2 ≥ 0
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We prefer to introduce the slackness variablesω1 ≥ 0, ω2 ≥ 0, to transform it into an
equality system

2− Γ1
11(2x− 2)− Γ2

11(2y − 2)− ω1 = 0

(2−Γ1
11(2x−2)−Γ2

11(2y−2)).(2−Γ1
22(2x−2)−Γ2

22(2y−2))−(−Γ1
12(2x−2)−Γ2

12(2y−2))2−ω2 = 0

We eliminate the critical points off , if they exists. A possible connection has the
components

Γ1
11 =

1

(2x− 2)
[2− Γ2

11(2y − 2)− ω1] where (2x-2)6= 0, Γ1
11 arbitrary

Γ2
22 =

1

(2y − 2)
[
ω2 + (−Γ1

12(2x− 2)− Γ2
12(2y − 2))2

(2− Γ1
11(2x− 2)Γ2

11(2y − 2))
+ (2x− 2)Γ1

22 − 2]

where (2y-2)6= 0, (2− Γ1
11(2x− 2)− Γ2

11(2y − 2)) 6= 0 andΓ1
12,Γ

2
12,Γ

1
22 are arbitrary

given.

By the same way to show that the constraint function,

∂g

∂x
= 1,

∂g

∂y
= −50,

∂2g

∂x2
= 0,

∂2g

∂x∂y
= 0,

∂2g

∂y2
= 0

∂2g

∂xi∂yi
− Γh

ij

∂g

∂xh
, g,ij

g,11 = 0− Γ1
11 − 50Γ2

11

g,12 = 0− Γ1
12 − 50Γ2

12

g,22 = 0− Γ1
22 − 50Γ2

22

−Γ1
11 − 50Γ2

11 ≥ 0

(−Γ1
11 − 50Γ2

11).(−Γ1
22 − 50Γ2

22)−−Γ1
12 − 50Γ2

12)
2 ≥ 0

−Γ1
11 − 50Γ2

11 − ω1 = 0

(−Γ1
11 − 50Γ2

11).(−Γ1
22 − 50Γ2

22)−−Γ1
12 − 50Γ2

12)
2 − ω2 = 0

Γ1
11 = (−50Γ2

11 − ω1), whereΓ2
11 arbitrary

Γ2
22 =

−1

50

(
ω2(−Γ1

12 − 50Γ2
12x

2)2

(−Γ1
11 − 50Γ2

11)
+ Γ1

22

)
where(−Γ1

12 − 50Γ2
11) 6= 0 andΓ1

12,Γ
2
12,Γ

1
22 are arbitrary given.

The following unconstrained functionL(x, y, λ) = f(x, y) + λg(x, y) is called the
Lagrangian of f w.r.t g,andλ is called the Lagrange multiplier, whereλ > 0,

L(x, y, λ) = (x− 1)2 + (y − 1)2 + λ(x− 50y + 500)

∂L

∂x
= 2x− 2 + λ,

∂L

∂y
= 2y − 2− 50λ,

∂L

∂λ
= x− 50y + 500,

∂2L

∂x2
= 2,

∂2L

∂x∂y
= 0,

∂2L

∂y2
= 2

∂2L

∂xi∂yi
− Γh

ij

∂L

∂xh
= L,ij
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L,11 = 2− Γ1
11(2x− 2 + λ)− Γ2

11(2y − 2− 50λ)

L,12 = 0− Γ1
12(2x− 2 + λ)− Γ2

12(2y − 2− 50λ)

L,22 = 2− Γ1
22(2x− 2 + λ)− Γ2

22(2y − 2− 50λ)

Now to show that

2− Γ1
11(2x− 2 + λ)− Γ2

11(2y − 2− 50λ) ≥ 0

[2− Γ1
11(2x− 2 + λ)− Γ2

11(2y − 2− 50λ)(2− Γ1
22(2x− 2− 50λ)−

(−Γ2
22(2y − 2− 50λ)− (−Γ1

12(2x− 2− 50λ)− Γ2
12(2y − 2− 50λ))2] ≥ 0

2− Γ1
11(2x− 2 + λ)− Γ2

11(2y − 2− 50λ)− ω1 = 0

[2− Γ1
11(2x− 2 + λ)− Γ2

11(2y − 2− 50λ)(2− Γ1
22(2x− 2− 50λ)−

(−Γ2
22(2y − 2− 50λ)− (−Γ1

12(2x− 2 + λ)− Γ2
12(2y − 2− 50λ))2]− ω2 = 0

Γ2
11 =

1

(2y − 2− 50λ)

(
2− Γ1

11(2x− 2 + λ)− ω1

)
where(2y − 2− 50λ) 6= 0 andΓ1

11 arbitrary given.

Γ1
22 =

−1

(2x− 2 + λ)

[
ω2 + (−Γ1

12(2x− 2 + λ)− Γ2
12(2y − 2− 50λ))2

(2− Γ1
11(2x− 2 + λ)− Γ2

11(2y − 2− 50λ))
+

+(2y − 2− 50λ)Γ2
22

]
,

where(2x− 2 + λ) 6= 0,

(2− Γ1
11(2x− 2 + λ)− Γ2

11(2y − 2− 50λ) 6= 0

andΓ1
12,Γ

2
12,Γ

2
22 are arbitrary given.

6. CONCLUSION

It can be seen that several optimization methods have been reported in this article. Starting
with the basic concepts of the Riemannian manifolds to understand the fundamentals up to self-
concordant functions with affine connections on manifolds. Riemannian and non-Riemannian
approaches was interviewed too. and we have examples in affine convexity, optimization prob-
lems.
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