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ABSTRACT. In addition to solid ground of Riemannian manifolds fundamentals, this article in-
terviews some popular optimization methods on Riemannian manifolds. Several optimization
problems can be better stated on manifolds rather than Euclidean space, such as interior point
methods, which in turns based on self-concordant functions (logarithmic barrier functions). Op-
timization schemes like the steepest descent scheme, the Newton scheme, and others can be ex-
tended to Riemannian manifolds. This paper introduces some Riemannian and non-Riemannian
schemes on manifolds.
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1. INTRODUCTION

Recently, optimization on Riemannian manifolds has become an interesting ongoing research
due to its positives over Euclidean space. The notion of this is that Riemannian optimization
depends on the curved manifolds, thereby constraints can be eliminated and only feasible points
required. Riemannian optimization has several applications in diverse sectors. For instance, ma-
chine learning, computer vision and data mining, Riemannian dictionary learning, and tensor
clustering, see respectively] [8]. Extensive research to solve minimizing problems on Riemann-
ian manifolds available in[2],[40]. The constrained optimization algorithms on a manifold have
lower complexity, dimension as well as better numerical properties. Besides, classical optimiza-
tion schemes like the steepest descent scheme, the Newton scheme, and others can be extended
to Riemannian manifolds; see, e.q.,/[19],/[37], [3]. Nowadays, solid Riemannian optimization
techniques have become available on http://www.manopt.org.

In the last two decades, Interior Point Methods (IPM) have most extremely studied methods for
both linear and certain convex programming problems, due to their excellent computations and
properties; see, e.gl, [23], [31], [43], [44]. Chronologically, conventional methods such as the
steepest descent method, conjugate gradient method or Newton method have been used widely
to minimize a cost functiori [22]. However, several inequality constraint optimization problems
have been raised in trade and industry resulted in developing new optimization techniques; see,
e.g., [30], [42]. The basic concept of the IPM is to transform a constrained problem into a
parameterized unconstrained one using a barrier function, known as a self-concordant function
(S-CF) defined byi[31]. The keyword identified by [13] is the construction of so-called S-CF
for the constraint set (neglecting the equality constraints). The significance of these functions is
demonstrated into two points. Firstly, they connected with logarithmic barrier functions in IPM.
Secondly, the proposed damped Newton method for optimizing S-CF, which involve known pa-
rameters. However, most IPM forms based on eliminating the constraint set and adding a multi-
ple of the barrier function. The central path is a result of set of minimizers work as the multiplier
changes for the problem. This approach applicable to obtain so-called primal central path or
primal-dual central path based on choice of either the original problem or the original problem
and its dual simultaneously, respectively. According to [32], the corresponding algorithm takes

a sequence of short steps. Thus, it's reasonable to consider the corresponding Riemannian met-
ric defined on the interior of the constraint set. Moreover, we can consider the shortest paths in
this metric, or geodesic curves. Affine manifolds are smooth manifolds which are locally mod-
eled on a finite dimensional affine vector space. These manifolds arise naturally in differential
geometry, theoretical physics and optimization theory. While much more is known about their
Riemannian counter parts, there are several outstanding conjectures regarding these manifolds.

2. RIEMANNIAN GEOMETRY PRELIMINARIES

The solid ground to understand the definition of Riemannian manifolds requires definition of
several concepts such as smooth manifolds, charts, atlases and tangent vectors seen as equiva-
lence classes of the exposition of these definitions is mainly inspired frond [2], [11], [12], [24],

[33], [9].

2.1. Charts and Manifolds. Manifolds are sets, which locally identified with patchesf.
A set of these identifications forms so-called charts. Then, atlas is a set of compatible charts
that covers the whole set. Both the atlas and the set constitute a manifold.

Definition 2.1. (chart). Letv be a set{J C v, andy is a bijection betweefy and an open set of
R™ . A chart ofuv is a pair(U, ¢). U is the chart's domain anak is the chart’s dimension. Let
q € U, then elements afp(q) = (z1, ..., z,,) are called the coordinates @fn the chart(U, ¢).
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Definition 2.2. (compatible charts)

Let (U, ¢), (W,%) be two charts ob, of dimensions: andm, respectively, are smoothly
compatible(C> - compatible) if eithel/ W = ¢ or UW # ¢ and.p(U, W) is an open
set of R, «(U, W) is an open set o™, .ip o ! 1 (U, W) — (U, W) is a smooth
diffeomorphism. Whe/ (YW # ¢, implies n = m.

Definition 2.3. (atlas). A setB = (U;,y;),i € I of pairwise smoothly compatible charts:
UZ.GI U; = v is a smooth atlas af. Two atlasesB; and B, are compatible if3; U B, is an atlas.
Atlas B and all the charts compatible wif called a unique maximal atlds™.

Definition 2.4. (manifold).
A pair u = (v, BT) defines a smooth manifold wherds a set and3™ is a maximal atlas of
v.

Definition 2.5. (dimension).
Given a manifold: = (v, BY), if the all charts ofB* have the same dimensiom, thenm is
the dimension of..

Definition 2.6. (smooth mapping). Given,X, two smooth manifolds. A mapping: © — X

is of classC" if, for all ¢ in v, there is char{U, ¢) of v and a char{I¥, ) of X such that
qe UgU)cWandypogopt:oU)— (W) is of classC”. This is called the local
expression of in the chartgU, ¢) and(W, ¢). A smooth map is of class.

More definitions related to tangent spaces and tangent vectors are available in [9], page 24.

2.2. Riemannian structure and gradients.

Definition 2.7. (inner product). Giverv a smooth manifold and fix point € v. Thus, An
inner produc(-, -)g on a tangent spacg,v is a bilinear, symmetric positive definite form on
T,v. MathematicallyvX,Y, Z € T,jv,a, 3 € R :

(X, X)q > 0,and(X, X)g=0< X =0,

(aX +8Y,Z)q =X, Z)q+ B{Y, Z)q, and

'<X> Y>q = Oé<Y, X>q

Let v be a smooth manifold antl is a Riemannian metric. Then, the péir, 1) called a
Riemannian manifold. A Riemannian metric is a smoothly varying inner product defined on the
tangent spaces of This means that for eaghe v, h,(-,-) = (-, -)¢ is an inner product offi,v.

Definition 2.8. (gradient).
The gradient of a scalar fielgon a Riemannian manifold at pointg, obtained by grag(q)
as the unique element @fv satisfying:

Dg(q)[X] = (gradg(q), X)q, VX € Tyv.
Then, grady : v — T, represents a vector field an

2.2.1. Riemannian submanifoldd.et (v, f) be a Riemannian manifold, and letbe a sub-
manifold of v and f is the restriction off to the tangent spaces of Then, (v, f) called a
Riemannian submanifold. This means thate v andvX,Y € T, C T,v, the metricsf and
f are compatible in the sense thiatX,Y) = f,(X,Y).

2.2.2. Riemannian quotient manifold$.et (v, f) be a Riemannian manifold, and let= v/ ~
be a quotient manifold of. We will now leverage the Riemannian structurevotfo equipo
with a Riemannian structure as well. Therefore, we first single out one horizontal distribution
as follows.
Hy=Ur =X eTw: f(X,Y)=0,VY € U, Vq € v.
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2.3. Distances and geodesic curvedA line segment o™ is defined as curves with arc-length
parameterization is that they have zero acceleration. First of all, let’s introduce the concept of
tangent vectors to curves or so-called velocity vectors. ConFiderurve of clas§'* such that

I': [a,b] — v, andt € [a, b], define another such curve orby shifting its parameter:

Ly:fa—t,b—t] wv:7—=Ty(r)=T(t+ 7).
Thus, the equivalence clafig] € TT(t)v is a vector tangent tb at timet, (X,Y), £. For
more understanding, we have to see the next definitions.

Definition 2.9. (acceleration along a curve).
Givenwv a smooth manifold equipped with a connectdnLet I be an open interval of R is
aC? curve onu. The acceleration alongis obtained by:

t— Vf(t)F(t) € Trpyv.

Definition 2.10. (geodesic).
Let I be an open interval dR, and a curvd’ : I — v. Thus,v is geodesic if and only if it
has zero acceleration on all its domain.

Definition 2.11. (length of a curve). The length of a curve of cla&ss T : [a,b] — v, on a
Riemannian manifoldv, f), with T'(t)- £ f,(X,Y), is defined by

B - - B
Lengt(T) = [ \/(E(®). FO)ra = [ @it

Definition 2.12. (Riemannian distance).
It's called sometimes (geodesic distance). Then, it's given by dist:

vxv—RT:(pq)— dist(p,q) = %nf Lengh(T),
€
where is the set of atl'! curvesl : [0,1] — v : ['(0) = p, andI'(1) = gq.

2.4. Parallel translation. It’s difficult to compare vectors from different tangent spaces on
manifolds. As a result parallel translation comes to transport vectors between tangent spaces
without lost the information. The idea, vector transport defines how to transport a véctor

T,v from a pointg € v to a pointR,(Y) € v, Y € T,v. However, let's introduce the Whitney

sum then quote the definition of vector transport.

I,eT,=X)Y): Y, XeTwqgev
Therebyl, & T, is the set of pairs of tangent vectors belonging to a same tangent space.
Definition 2.13. (vector transport). A vector transport on a manifolts a smooth mapping
Transp: T, & T, — T, : (X,Y) — Transpy(X),

satisfiesvg € v

(1) There exists a retraction R associated with Transp, suctthatspy (X) € (X) €
Trq(Y)v,

(2) Transpy(X) = X,VX € T,v, (consistency),

(3) Transpy (aX+bY) = aTranspy (X)+bTranspy (Z),VX,Y, Z € T,v € R(Linearity)
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2.5. Curvature.

Definition 2.14. (Riemannian curvature tensor). Givena Riemannian manifold, an¥ a
Riemannian connection, then the Riemannian curvature tédhisgr(v) x x(v) x (v) — x(v)
is obtained by

%(Cn)f = VCV,,f - vnVC§ - V[C,n]g'
The Riemannian manifold is if and only if & vanishes identically.

3. OPTIMIZATION ON SMOOTH MANIFOLDS

Several optimization problems can be better stated on manifolds rather than Euclidean space,
such as interior point methods, which in turns based on self-concordant functions (logarithmic
barrier functions), see([19], [20], [34]). Therefore, many optimization problems are extended
to non-Euclidean spaces; see, elg.| [37], [3]/ [20]. For instance, finding the largest eigenvalue
of a symmetric matrix, and Optimization problems subject to nonlinear differentiable equality
constraints on Euclidean space. Such as these examples are endowed with a Riemannian metric
[37]. Moreover, [32] have revealed that a Riemannian metric can be represented by a self-
concordant barrier function. Thereby a metric gives a good clarification of the optimal direction
for algorithms. Further up, the self-concordant concept has been applied in [39] to present a
gentle interpretation of a logarithm cost function optimized on a manifold. This study extended
by [35]. Besides, optimization schemes like the steepest descent scheme, the Newton scheme,
and others can be extended to Riemannian manifolds; see/ elg./[19]/[37], [3]. Thisis in turn
raising a question, what are results of extending the meaning of Riemannian metric to affine
connections on Riemannian manifolds? However, for more understanding, this article reviews
some Riemannian and non-Riemannian approaches.

3.1. Riemannian Schemes.

3.1.1. Steepest descent method on manifoiB {/OM). SDMOM is the simplest classical
algorithm for the optimization on Riemannian manifolds, introduced by [25], [26] and [18].
Unfortunately,S DMOM has a slow linear convergence rate. On the other hand in 90s, this
method applied to solve problems in the control theory; see, e.9., [19], [20],[10],1[38], [27].

3.1.2. Newton method on manifoldd’(\/ OM). Compare to th& DMOM, the NMOM has
faster quadratic convergence rate. It has been extended to a Riemannian sub-mawifaby of
(Gabay,1982). Further progress of tNeé\/OM on Riemannian manifolds have proposed by
[40], [37], [27], 28], [14], [13].

3.1.3. Quasi-Newton method on manifoldg/y M OM). To overcome the computational cost

of the NM OM due to inverse of a symmetric matrix calculation, & M O M has been pre-

sented by/[37]. This method uses only the first order information of the cost function to approx-
imate the Hessian inverse and has a super-linear local convergence rate. As a result, researchers
developed diverse algorithm forms of theVAM O M. For example, Davidon-Fletcher-Powell

(DF P)[15] method and the Broydenl[6],/[5] Fletchéer [16] Goldfarb![42] Shanno [83]'(G.S)

method. In the early 80s, [18] firstly generalized tBhé'G'S method to a Riemannian mani-

fold. Further up,[[7] improved th& FGS method on the Grassmann manifold and reduced the
computational cost.
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3.1.4. Trust-region methodI{RM). To avoid the inverse Hessian matrix calculation with high
convergence rate, [[1] proposéd? M. One of T’"RM applications, for instance, is Grassmann
manifold for the matrix completion problern![8]. Practically, each iteratiofi’ &/ involves
solving the Riemannian Newton equation![38], which leads to increase the algorithm complex-
ity. This is resulted in developing the method by [40] without solving Riemannian Newton
eqguation.

3.2. Non-Riemannian SchemesThe classical optimization methods on a manifold are en-
dowing with a metric structure to be into a Riemannian manifold, lsee [29]. For example, the
gradient is replaced by the Riemannian gradient. To minimize a cost function, [30] described a
general context for developing numerical algorithms on a manifold. Based on this development,
the corresponding steepest descent and Newton methods reduced the computational complexity
compared with the Riemannian methods.

4. SELF-CONCORDANT FUNCTIONS ON RIEMANNIAN MANIFOLDS (S-CFoN RM)

The S-CF play a vital role in solving certain convex constrained optimization problems. Its
extension to Riemannian manifolds has been derived by [39]. This author deliberated the fol-
lowing convex programming problem

(4.1) minjg.(x) : g;(x) < 0,i=1,2,,n,x € v

Wherewv is a complete:.-dimensional Riemannian manifold. Interior point methods associated
with barrier functions were used for solving. Besides, this barrier function is selected to be
self-concordant.

Assumption 1.
Let v be a geodesic complete smooth manifold of finite dimension and le¢ a symmetric
affine connection on it. In addition, the geodesic between two points is unique, then.

(4.2) g:v— R,

(4.3) VwValg) = VoVw(9),
For any vector fieldV , .9 has an open domain and closed map.

Definition 4.1. g is a self-concordant function respect to
(4.4) V = [Vipg()| < vg[Vipg(@))??, YW e Ty,

wherew is the tangent space of vat poiptandv, is a positive constantv, = 2 can be
selected as a constant according td [21].

Assumption 2
(4.5) Virg(q) >0, Vqe&dom(g), W € Tyv.

Thereby, we can define a Dikin-type ellipsoie?(¢; r) based on the second-order covariant
differentials as follows.
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Definition 4.2.
(4.6) X%g;r) = (p € v|[Viy,,9(0)]** < r),Yq € dom(g),r > 0,

Such thatV,p is the vector field defined by the geodesic connecting the pgiatglp. Basi-

cally, definition of S-CF depends on second order and third order covariant differentials with
respect to the same vector fieltf. Furthermore,[[21] in his work pointed out four gentle
properties of the S-CF.

Assumption 3.
Let (v, h) be a Riemannian manifold, we observeWythe Levi-Civita connection induced by
the metrich. Consider a mapping : v — R, such tha{(g(q), q),q € dom(g)] is a closed set
in the product manifoldR.

Definition 4.3. The functiong is called r-self-concordant,> 0, with respect to the Levi-Civita
connectionV defined orv if:

Vo) (Y, Y, ) < 2r(V5(y)(Y,,Y,) Yy € v,YY, € Tyv.

Yoy -ty

Definition 4.4. (Newton decrement).
Let the auxiliary quadratic cost defined &jw as follows.

(4.7) &-q(W) := g(q) + Vwg(q) + 0.5V,9(q),
then,
(4.8) We(g,q) == argminwer,€,-q(W),

This means that the Newton decremé¥it(g, ¢) is defined as the minimum solution to the

Theorem 4.1. Consider the following S-Ck : v — R, ¢ a given point indom(g) C v , and
We is the Newton decrement definedjathus

(4.9 VwéViwg(q) = —Vwy(q),YW € T,v,

(4.10) (Vwe?9(9)"° = mazlg(q)|W € Ty, Viyglg) < 1.

4.0.1. Damped Newton method for S-CBamped Newton methodX/N M) of S-CFs can be
understood by the next theorem.

Theorem 4.2.[21]. Consider the following

(4.11) X(q) = mazwer,o|Viwg(@)l/(Viyg(q)* : g € dom(g).
For someg € dom(g), ifA,(¢) < 1, thus there exists a unique poijt € dom(g):

9(qy) = min[g(q), q € dom(g)].
The feasible algorithm aD N M is obtained by two main steps.
(1) Find a feasible poing® € dom(g).
(2) ¢; = expg—1(1/1 + Ayl — 1)We),
whereexp,, ,t W¢ is the exponential map of the Newton decrement at
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5. AFFINE CONVEX FUNCTIONS

Definition 5.1. An affine differential manifold A/, I') is called auto-parallely complete if any
auto-parallel:(¢) starting atp € M is defined for all values of the parametet R.

Theorem 5.1.[4] Let M be a (Hausdorff, connected, smooth) compachanifold endowed
with an affine connectiofr, and letp € M. If the holonomy group HeII') (regarded as a
subgroup of the groupr! (7, M) of all the linear automorphisms of the tangent sp@g&/) has
compact closure, thefiV/, I') is auto-parallely complete.

Let (M,T) be an auto-parallely complete affine differential manifold. FaF“afunction
f: M — R, we define the tensor Hgssof components

(Hess f);; = Oxioxi 9 Qh

Definition 5.2. A C? function f: M — R is called:
(1) linear affine with respect tb if Hess- f = 0, throughout M,;

(2) affine convex (convex with respectlfpif Hess-f = 0 (positive semidefinite), through-
out M, (seel[41].

Pf w0

The functionf is:

(1) linear affine if its restrictiorf (z(¢)) on each auto-parallel curudt) satisfiesf (z(t)) =
at + b, for some numbers, b that may depend on(t);
(2) affine convex, if its restrictiorf(z(¢)) is convex on each auto-parallel cunvg).

Example 5.1. Consider the bilevel programming problem
f(z,y) = (xr —1)*+ (y —1)?, subjectto g(z,y) =2 — 50y = 500 =0

(1) we find the first and the second partial derivatives

2 2 2
O g U oy, By Py O,
(2) ”
dridy P?j = Jaa
fun=2-T}(22—2)+T%,(2y - 2)
f12=0-T1,(2z —2) +T%,
f,22(23/ —2)
=2-TL(20 —2)+T%,(2y — 2)
3)

fa fae (22— (20 -2) =TH(2y —2)  —T(20 —2) —TT(2y — 2)
a2z [ B —T1(20 — 2) + T1,(2y —2) 2 —T5y(2x — 2) — T5,(2y — 2)

Positive semidefinite whefi;. f2; — f3, > 0, f11 > 0
(4) We must find connections

2~ T} (20—2) — T4, (2y = 2) = 0
(Q_F%1(2$_2)_F%1(2?/—2)>-(2_1—‘%2@37_2)_1%2(29_2))_(_F%2(233_2)_F%2(2?J—2))2 >0
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We prefer to introduce the slackness variables> 0, w, > 0, to transform it into an
equality system

2-T1,(22 —2)—T7,(2y —2) —w; =0
(2—Fh(2x—2)—I’%1(2y—2)).(2—F§2(2x—2)—F§2(2y—2))—(—F%Q(2x—2)—Ff2(2y—2))2—w2 =0
We eliminate the critical points of, if they exists. A possible connection has the

components
1 :
I, = W[Q —T%,(2y — 2) —w;] where (2x-2) 0, T'}, arbitrary
x JR—
2 1 wy + (—T1(27 — 2) = T'}(2y — 2))°

5 = (2y — 2)[ (2 —T1 (22 — 2)T%,(2y — 2)) + (22 — 2)Tyy — 2]

where (2y-2)£ 0, (2 — Tj,(2z — 2) — T%,(2y — 2)) # 0 andl'i,, T'%,, '}, are arbitrary
given.

By the same way to show that the constraint function,

0 0 0? 0? 0?
9,50, S g, 2, 29
Ox dy Ox 0xdy dy
Pg 5,09
Oxi Oy’ i g 949
g11=0-—T} — 500}
g1z =0—T}, — 503,
g2 =0— F%z - 50F32
—T1 — 5002, >0
(=T = 500%).(—Ty — 5003,) — —Tj, — 5007,)* > 0
—T1, —50I%, —w; =0
(_Fh - 501?1)-(_1%2 - 50F§2) - _F%z - 5011%2)2 —wy =0
I'l, = (=50I'%, — wy), wherel'?, arbitrary

—1 u)g(—Fl — 50P2 $2)2
FZ _ 12 12 Fl
. 50( (T —s0r3,)

where(—T'}, — 501%,) # 0 andT'},, ['?,, '}, are arbitrary given.

The following unconstrained functioh(z, y, \) = f(z,y) + Ag(z,y) is called the
Lagrangian of f w.r.t g,and is called the Lagrange multiplier, wheke> 0,

L(z,y,\) = (z — 1)* + (y — 1)* + A(z — 50y + 500)

2—522x—2+)\, %z?y—2—50/\, g—§:$—50y+500,
L L L 5
Ox? " OOy T Oy?
0?L n OL

— — [ =L
0xi 0y’ Y Qxh

4

AJMAA Vol. 17(2020), No. 2, Art. 14, 12 pp. AIMAA


https://ajmaa.org

10 ALl S RASHEED, FAIK MAYAH AND AHMED A H AL-JUMAILI

Liy=2-TH2z -2+ X)) —T%(2y —2—50))
Lis=0—-T}22—2+\) —I'%,(2y — 2 — 50))
Loy =2-T022 -2+ )\) —T3%(2y — 2 —50))
Now to show that
2-T1,(20 —2+X) —T%(2y —2—50)) >0
[2—T71,(22 — 2+ A) = T3 (2y — 2 — 50\)(2 — '3, (22 — 2 — 50\)—
(=T'35,(2y — 2 — 50)) — (=T, (22 — 2 — 50)) — I'%,(2y — 2 — 501))%] > 0
2-T1,22 -2+ X)) —TH(2y — 2 —50\) —w; =0
[2—T1,22 — 2+ A) =T} (2y — 2 — 500)(2 — 'y, (22 — 2 — 50\)—
(—I'35,(2y — 2 — 50)) — (—T'},(22 — 2+ \) = I'%,(2y — 2 — 50)))?] —wy =0

1
I} =
2y — 2 —50))
where(2y — 2 — 50)\) # 0 andT’{, arbitrary given.

(2-T1(2z -2+ X) —w)

. —1 wy + (=11, (22 — 2+ A) = T2,(2y — 2 — 50)))?

r
2 2 —-24+N | 2-THL2r -2+ —T3H(2y — 2 —50)))
+(2y — 2 = 50\)I5,]

where(2x — 2+ \) # 0,
(2-T1,22 —2+X) =T (2y — 2 —50\) £ 0
andrl'i,, I'%, T2, are arbitrary given.

6. CONCLUSION

It can be seen that several optimization methods have been reported in this article. Starting
with the basic concepts of the Riemannian manifolds to understand the fundamentals up to self-
concordant functions with affine connections on manifolds. Riemannian and non-Riemannian
approaches was interviewed too. and we have examples in affine convexity, optimization prob-
lems.
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