

AUTOMATIC CONTINUITY OF GENERALIZED DERIVATIONS IN CERTAIN *-BANACH ALGEBRAS

M .ABOULEKHLEF¹, Y. TIDLI²,M.BELAM²

Received 9 February, 2024; accepted 2 July, 2024; published 27 August, 2024.

LABORATORY OF APPLIED MATHEMATICS AND INFORMATION AND COMMUNICATION TECHNOLOGY POLYDISCIPLINARY FACULTY OF KHOURIBGA UNIVERSITY OF SULTAN MOULAY SLIMANE MOROCCO. [aboulekhlef@gmail.com;](mailto: <aboulekhlef@gmail.com>) [y.tidli@gmail.com;](mailto:<y.tidli@gmail.com>) [m.belam@gmail.com](mailto: <m.belam@gmail.com)

ABSTRACT. Consider the map φ of the Banach algebra $\mathfrak B$ in $\mathfrak B$, if there exists a derivation δ of B in B so that for every $x, y \in \mathcal{B}$, $\varphi(xy) = \varphi(x)y + x\delta(y)$. φ is called a generalized derivation of B.In [\[9\]](#page-5-0), Bresar introduced the concept of generalized derivations. We prove several results about the automatic continuity of generalized derivations on certain

Banach algebras.

Key words and phrases: Banach algebras; Automatic continuity; Generalized derivations; Involution.

2010 *[Mathematics Subject Classification.](https://www.ams.org/msc/)* Primary: 46J10, 16Wxx. Secondary: 47B48.

ISSN (electronic): 1449-5910

c 2024 Austral Internet Publishing. All rights reserved.

1. **INTRODUCTION**

In this paper, the algebras considered are assumed complex, commutative, and not necessarily unitary. In all that follows, \mathfrak{B} can be a Banach algebra, $Jr(\mathfrak{B})$ denotes the Jacobson radical of B. The symbols spm(y) and $\rho(y)$ represent spectrum and the spectral radius of $y \in \mathfrak{B}$, respectively. If for every $x, y \in \mathfrak{B}, \delta(xy) = \delta(x)y + x\delta(y)$ then δ is an additive map from \mathfrak{B} to B. This map is called a derivation.

Let's briefly discuss the history of our investigation. Singer-Wermer [\[7\]](#page-4-0) shown in 1955 that if B is commutative and δ is continuous, then $\delta(\mathfrak{B}) \subset \text{Jr}(\mathfrak{B})$. In particular, $\delta = 0$ when B is semisimple. In [\[8\]](#page-5-1) Bresar and al. showed that $\delta(\mathfrak{B}) \subseteq \text{Jr}(\mathfrak{B})$ if there is $\epsilon \geq 0$ so that $\rho(\delta(x)) \leq \epsilon \rho(x)$ for every $x \in \mathfrak{B}$.

2. **PRELIMINARIES**

It's convenient to begin by recalling some definitions and known results. A Banach algebra B is considered prime for each $x, y \in \mathfrak{B}$ if, for any $x \mathfrak{B}y = 0$, it implies that either $x = 0$ or $y =$ 0.By a derivation on B, we mean a linear mapping $\delta : \mathfrak{B} \to \mathfrak{B}$, which satisfies $\delta(xy) =$ $\delta(x)y + x\delta(y)$ for all x and y in B.An additive mapping $\tau : \mathfrak{B} \to \mathfrak{B}$ is called a left (resp. right) centralizer of B if $\tau(xy) = \tau(x)y$ (resp. $\tau(xy) = x\tau(y)$) for all $x, y \in \mathcal{B}$. Bresar introduced the concept of generalized derivation in [\[7\]](#page-4-0).He defines a generalized derivation as follows: If there is a derivation d on \mathfrak{B} such that $\varphi(xy) = \varphi(x)y + x\delta(y)$ for all $x, y \in \mathfrak{B}$, then an additive mapping F is referred to as a generalized derivation.

Lemma 2.1. Let \mathfrak{B} represent an algebra. Then φ is a generalized derivation of \mathfrak{B} determined *by derivation* δ *if and only if* $\varphi = \delta + \tau$ *, where* τ *is* \mathcal{B} *'s left centralizer and* δ *is* \mathcal{B} *'s derivation.*

Given a subset E of an algebra B. The set defined by $G(E) = \{a \in \mathcal{B}/aE = \{0\}\}\$ is known as the left annihilator of E.In a similar manner, the right annihilator is the set of E defined by $D(E) = \{a \in \mathfrak{B}/Ea = \{0\}\}\.$ We note Ann $(E) = G(E) \cap D(E)$. If $\mathfrak B$ does not have a unit, then we can adjoin one as follows:

Proposition 2.2. *A normed algebra without a unit can be embedded into a unital normed algebra* B# *as an ideal of codimension one.*

Proof. Let $\mathfrak{B}^{\#} = \mathfrak{B} \oplus \mathbb{C}$ Direct sum of \mathfrak{B} and \mathbb{C} (field of complex numbers). $\mathfrak{B}^{\#}$ represents a vector space under the usual operations : $+ : \mathfrak{B}^\# \times \mathfrak{B}^\# \longrightarrow \mathfrak{B}^\#$ $((a, \alpha), (b, \beta)) \longrightarrow (a + b, \alpha + \beta)$ $\cdot \mathfrak{C} \times \mathfrak{B}^{\#} \longrightarrow \mathfrak{B}^{\#}$ $(\lambda, (a, \alpha)) \rightarrow (\lambda b, \lambda \alpha)$ In addition to, $\mathfrak{B}^{\#}$ is an algebra when defining a multiplication in $\mathfrak{B}^{\#}$ by : $\odot : \mathfrak{B}^{\#} \times \mathfrak{B}^{\#}$. → $\mathfrak{B}^{\#}$

$$
(a, \alpha), (b, \beta)) \longrightarrow (a, \alpha) \odot (b, \beta)
$$

$$
(a, \alpha) \odot (b, \beta) := (a, \alpha)(b, \beta) := (ab + \beta a + \alpha b, \alpha \beta)
$$

The operation \odot is closed on $\mathfrak{B}^{\#}$, and $(\mathfrak{B}^{\#}, +, \cdot, \odot)$ is algebra with unit element $(0, 1)$. Now, define the function $\|\cdot\|$ on $\mathfrak{B}^{\#}$ by :

 $\|\cdot\|: \mathfrak{B}^{\#}\longrightarrow \mathbb{R}^+$ $(a, \gamma) \longrightarrow || (a, \gamma) || = ||a|| + |\gamma|$ then $(\mathfrak{B}^{\#}, \| \cdot \|)$ constitutes a normed algebra. Let $B = \{(a, 0) : a \in A\}$, and Identify : $\phi: A \rightarrow B$ $a \rightarrow (a, 0)$ $||(a, 0)|| = ||a|| + |0| = ||a||$ hence ϕ is isometric isomorphe. We write $(a, \lambda) = (a, 0) + \lambda(0, 1)$, since B is an ideal in $A \times \mathbb{C}$ of codimension 1.

 \blacksquare

Now, define the spectrum and the spectral radius: Let $\mathfrak B$ be an algebra :

(1) If \mathfrak{B} is unital with unit $e_{\mathfrak{B}}$ then the spectrum and the spectral radius of x are defined by:

(2.1)
$$
\text{spm}_{\mathfrak{B}}(x) := \{ \lambda \in \mathbb{C} : \lambda e_{\mathfrak{B}} - x \notin \text{Inv } \mathfrak{B} \}
$$

(2.2)
$$
\rho_{\mathfrak{B}}(x) := \sup \{ |\lambda| : \lambda \in \text{spm}_{\mathfrak{B}}(x) \}
$$

where Inv \mathfrak{B} is the set of invertible elements of \mathfrak{B} .

(2) If \mathfrak{B} is nonunital, we define the quasi-product **.** on \mathfrak{B} by

$$
x \cdot y = x + y - xy \quad (x, y \in \mathfrak{B})
$$

An element x of \mathfrak{B} is called quasi-invertible if there is $y \in \mathfrak{B}$ such that $x \cdot y = 0$ and $x \cdot y = 0$. The set of all quasi-invertible elements of \mathfrak{B} is denoted by $q - Inv\mathfrak{B}$. Let $\mathfrak{B}^{\#}$ the Banach algebra obtained by adjoining a unit to \mathfrak{B} , called the unitization of \mathfrak{B} .

We define spectrum in non-unital Banach algebra :

 $\operatorname{spm}_{\mathfrak{B}}(x) = \{0\} \cup \big\{\mu \in \mathbb{C} \backslash \{0\} : \frac{1}{\mu}$ $\frac{1}{\mu}x \notin q$ – Inv \mathfrak{B} and it's clear $spm_{\mathfrak{B}}(x) = sp_{\mathfrak{B}^{\#}}((x, 0))$ and $\rho_A(x) = \rho_{A\#}((x, 0))$

Lemma 2.3. [\[10\]](#page-5-2)

If τ *is a left centralizer on a Banach algebra* B*, then* τ *is both linear and continuous.*

Definition 2.1. The intersection of all maximal left (right) ideals in an algebra \mathfrak{B} is its (Jacobson) radical, represented by $Jr(\mathfrak{B})$.

If $Jr(\mathfrak{B}) = 0$, then algebra \mathfrak{B} is considered semisimple.

Definition 2.2. An involution $*$ into \mathfrak{B} is a mapping $* : \mathfrak{B} \to \mathfrak{B}$ that fulfills these conditions:

$$
(a+b)^{*} = a^{*} + b^{*}
$$

\n
$$
(ab)^{*} = b^{*}a^{*}
$$

\n
$$
(ab)^{*} = \bar{\mu}a^{*}
$$

with involution \ast , \mathfrak{B} is known as the \ast -algebra.

Remark 2.1. In the case that \mathfrak{B} is involutive, define an involution on $\mathfrak{B}^{\#}$ as follows: $(a, \mu)^{*}$:= $(a^*, \bar{\mu})$, $\forall (a, \mu) \in \mathfrak{B}^{\#}$

Given J a non-zero *-ideal of \mathfrak{B} . Then, * induces an involution on the quotient algebra \mathfrak{B}/J , denoted as *,defined by: $(a + J)^* = (a)^* + J$, for every $a \in \mathfrak{B}$.

Recalling that B is said to as $*$ -semi-simple if $Jr_*(\mathfrak{B}) = (0)$, and we obtain $\text{Jr}_*(\mathfrak{B}/J) = \bigcap \{ \bar{M} : M \text{ represents }^* - \text{ maximum ideal in } \mathfrak{B} \}$

 $= \bigcap \{M : \text{ represents }^* - \text{ maximum ideal in } \mathfrak{B}\}\$

$$
= \overline{\mathrm{Jr}}_*(\mathfrak{B}) = \mathrm{Jr}_*(\mathfrak{B})/J
$$

An *-ideal J of \mathfrak{B} is an ideal which is closed under involution; that is $J^* = \{a^* \in \mathfrak{B} : a \in J\} \subseteq$ J.

Proposition 2.4. [\[11\]](#page-5-3) *Let* $\mathfrak A$ *be an *-simple algebra, if* $\mathfrak A$ *is not simple. Then there exists a unitary simple subalgebra J of* $\mathfrak A$ *such that* $A = J \oplus J^*$

Lemma 2.5. *[*[\[4\]](#page-4-1)*, Corollary 3.2.10]*

Let \mathfrak{B} *be a Banach algebra,* $x \in \mathfrak{B}$ *, and suppose that* $\rho(yx) = 0$ *for all* $y \in \mathfrak{B}$ *. Then* $x \in \text{Jr}(\mathfrak{B})$.

Recall the concept of separating space of a linear operator, let \mathfrak{B} and \mathfrak{B} be two Banach algebras, and given $\psi : \mathfrak{B} \longrightarrow \mathfrak{B}$ a linear mapping. The separating space of ψ is determined $by:$

 $\mathfrak{S}(\psi) = \{\beta \in \mathfrak{B} : \text{there exists } (\alpha_m)_m \text{ in } \mathfrak{B} \text{ such that } \alpha_m \to 0 \text{ and } \psi(\alpha_m) \to \beta \}$

We know that $\mathfrak{S}(\psi)$ is a closed linear subspace of \mathfrak{B} . By the closed graph theorem, ψ is continuous if and only if $\mathfrak{S}(\psi) = \{0\}$ [\[2,](#page-4-2) 5.1.2]

Lemma 2.6. [\[5\]](#page-4-3) *Let* U*,* V*, and* W *be Banach spaces, T be a linear operator from* U *into* V*, and S* be a continuous operator from $\mathfrak V$ *into* $\mathfrak W$ *. Then* :

(1) ST is continuous if and if $S\mathfrak{S}(T) = \{0\}.$

$$
(2) S\mathfrak{S}(T) = \mathfrak{S}(ST)
$$

Lemma 2.7. [\[4\]](#page-4-1)

Let **B** *be a Banach algebra such that* $xy = yx$ *. Then* $\rho(x + y) \leq \rho(x) + \rho(y)$ and $\rho(xy) \leq$ $\rho(x)\rho(y)$ for all $x, y \in \mathfrak{B}$

Lemma 2.8. *[Singer and Wermer* [\[7\]](#page-4-0)*]*

Let **B** be a commutative Banach algebra and let δ be a continuous derivation on **B** then $d(x) \in$ $Jr(\mathfrak{B})(x \in \mathfrak{B})$

3. **MAIN RESULT**

Proposition 3.1. Assume that φ is a generalized derivation of a Banach algebra \mathfrak{B} . If \mathfrak{B} is *semi-simple and commutative,* φ *must be continuous.*

Proof. Given $y \in \mathfrak{S}(\varphi)$ there is a sequence (α_n) in \mathfrak{B} such that $\alpha_n \to 0$ in \mathfrak{B} and $\varphi(\alpha_n) \to y$ in \mathfrak{B} . As $\rho(\tau(\alpha_n)) \leq \rho(\alpha_n)$ and $\rho(\delta(\alpha_n)) \leq \epsilon \rho(\alpha_n)$ for some $\epsilon \geq 0$ we have $\rho(\varphi(\alpha_n)) = \rho(\delta(\alpha_n) + (\tau(\alpha_n)) \leq \rho(\delta(\alpha_n)) + \rho(\tau(\alpha_n))$, and $\rho(\alpha_n) \to 0$ Then $\rho(\varphi(\alpha_n)) \leqslant (\epsilon + 1)\rho(\alpha_n) \to 0$. However, in contrast.. $\rho(\varphi(\alpha_n)) \to \rho(y)$. Therefore $\rho(y) = 0$ because $\mathfrak{S}(\varphi)$ is an ideal in \mathfrak{B} . Thus for every z in B, $yz \in \mathfrak{S}(\varphi)$ we conclude that $\rho(yz) = 0$ since we conclude $y \in Jr(\mathfrak{B})$. Therefore, $\mathfrak{S}(\varphi) \subset \mathrm{Jr} \mathfrak{B}$. Since B is semi-simple, $\mathfrak{S}(\varphi) = 0$ consequently φ is continuous.

Theorem 3.2. *All generalized derivations on a Banach *-algebra* B *which is *-simple are continuous.*

Proof. Let $\mathfrak B$ be an algebra $*$ simple, there exists simple unital subalgebra J of $\mathfrak B$ such that : $A = J \oplus J^*$ (Proposition [2.4\)](#page-3-0); following algebraic isomorphism: $J \approx \mathfrak{B} / J^*$, therefore, *J* represents the maximal ideal in \mathfrak{B} . From where *J* (resp; J^*) is closed in \mathfrak{B} . Consequently, the algebra \mathfrak{B}/J (resp; \mathfrak{B}/J^*) is a simple Banach *-algebra. Since J represents an ideal of \mathfrak{B} , then so is $\varphi(J) + J$; therefore $\varphi(J) + J/J$ represents an ideal of \mathfrak{B}/J . Since \mathfrak{B}/J constitutes simple algebra, so

$$
\varphi(J) + J/J = {\overline{0}} \text{ or } \varphi(J) + J/J = \mathfrak{B}/J.
$$
 Since J represents a

maximal ideal in B, since $\varphi(J) + J = J$, so $\varphi(J) \subset J$. Think about the function $\tilde{\varphi}$ on \mathfrak{B}/J , which is given by:

 $\widetilde{\varphi}(a+J) = \varphi(a) + J.$

We show that $\tilde{\varphi}$ represents a generalized derivation determined by a derivation $\tilde{\delta}$ on \mathfrak{B}/J . Note that it is easy to show $\tilde{\varphi}$ is linear operator. Moreover, for $a, b \in \mathfrak{B}, \tilde{\varphi}(a+J)(b+J)) =$ $\widetilde{\varphi}(ab+J) = \varphi(ab)+J = \varphi(a)b + a\delta(b)+J$. But then, $\widetilde{\varphi}(a+J)(b+J)+(a+J)\widetilde{\delta}(b+J) = (a+J)\widetilde{\varphi}(a+J)(b+J)$ $J)(\delta(b)+J)+(\delta(a)+J)(b+J) = (\varphi(a)+J)(b+J)+(a+J)(\delta(b)+J) = a\delta(b)+\delta(a)b+J.$ So $\tilde{\varphi}$ is a generalized derivation on the simple Banach algebra \mathcal{B}/J , then $\tilde{\varphi}$ is continuous. Now, we show that φ is continuous, we consider the canonical surjection $\pi : \mathfrak{B} \to \mathfrak{B}/J; a \to a+J$ which is continuous. To show that φ is continuous, first we observe that $\pi \circ \varphi = \tilde{\varphi} \circ \pi$ because for every $a \in \mathfrak{B}$, we have $\pi \circ \varphi(a) = \pi(\varphi(a)) = \varphi(a) + J$ and $\widetilde{\varphi} \circ \pi(a) = \widetilde{\varphi}(a + J) = \varphi(a) + J$. Since $\widetilde{\varphi}$ o π is continuous, then; we have $\mathfrak{S}(\widetilde{\varphi} \circ \pi) = {\overline{0}}$, And $\overline{\pi \mathfrak{S}(\varphi)} = \mathfrak{S}(\widetilde{\varphi} \circ \pi) = {\overline{0}}$ (Lemma [2.6\)](#page-3-1) and this implied that $\mathfrak{S}(\varphi) \subset J$. Following the same steps, we show that $\mathfrak{S}(\varphi) \subset J^*$, then $\mathfrak{S}(\varphi) \subset J \cap J^* = \{0\}.$ Therefore φ is continuous.

Theorem 3.3. Let \mathcal{B} be a *-prime Banach *-algebra. Then all generalized derivation φ on \mathcal{B} *is continuous.*

Proof. Since \mathfrak{B} is a *-prime algebra, there is a minimal prime nonzero P such that $P \cap P^* = \{0\}$ and $P = Ann(P^*), P^* = Ann(P)$.

Let $\mathfrak{S}(\varphi)$ be the ideal separating in B. Suppose $\mathfrak{S}(\varphi) \not\subset P$, then P is a closed ideal. On the other hand, if p is a nonzero element of P, then $\overline{p\mathfrak{S}(\varphi)} = \mathfrak{S}(\varphi)$. Therefore: $p\mathfrak{S}(\varphi) \subset P$, then $\overline{p\mathfrak{S}(\varphi)} = \mathfrak{S}(\varphi) \subset \overline{P} = P$. Which contradicts the assumption. Following $\mathfrak{S}(\varphi) \subset P$. By the same reasoning, we show that $\mathfrak{S}(\varphi) \subseteq P^*$. Which gives, $\mathfrak{S}(\varphi) \subseteq P \cap P^* = \{0\}$. Therefore, φ is continuous .

REFERENCES

- [1] B. AUPETIT, Caracterisation spectrale des algebres de Banach commutatives, *Pacific Math. J.,* **63** (1976), pp. 23-35.
- [2] H. G. DALES, Banach algebras and automatic continuity, *Lond. Math. Soc.,* **24** (2000).
- [3] P. G. DIXON, Automatic continuity of positive functionals on topological involution algebras, *Bull. Aust. Math. Soc.* **23** (1981).
- [4] B. AUPETIT, *A Primer on Spectral Theory*, *Springer*, 1990.
- [5] A. M. SINCLAIR, Automatic continuity of linear operators, *Lond. Math. Soc.,* **21** (1976).
- [6] B. E. JOHNSON, The uniqueness of the (complete) norm topology, *Bull. Amer. Math. Soc.,* **73** (1967), pp. 537-539.
- [7] I. M. SINGER and J. WERMER, Derivations on commutative normed algebras, *Math. Ann.*, **129** (1955), pp. 260-264.
- [8] M. BRESAR and M. MATHIEU, Derivations mapping into the radical III, *J. Funct. Anal.*, **133** (1995), pp. 21-29.
- [9] M. BRESAR, On the distance of the composition of two derivations to the generalized derivations, *Comm. Glasgow Math. J.,* **33** (1991), pp. 89-93.
- [10] B. E JOHSON, *Continuity of Centralizers on Banach Algebras*, (1966).
- [11] Y. TIDLI and L. OUKHTITE and A. TAJMOUATI, On automatic continuity of derivations for Banach algebras with involution, *Eur. J. Math. Compu. Scien.,* **4** (2017).