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ABSTRACT. In this paper, classes of integral and integro-differential equations are solved us-
ing a modified differential transform method. This proposed technique is based on differential
transform method (DTM), Laplace transform (LT) procedure and Padé approximants (PA). The
proposed method which gives a good approximation for the true solution in a large region is
referred to modified differential transform method (MDTM). An algorithm was developed to
illustrate the flow of the proposed method. Some numerical problems are presented to check
the applicability of the proposed scheme and the obtained results from the computations are
compared with other existing methods to illustrates its efficiency. Numerical results have shown
that the proposed MDTM method is promising compared to other existing methods for solving
integral and integro-differential equations.
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1. INTRODUCTION

Many mathematical formulations of physical phenomena that are modeled under the differen-
tial senses usually produce an integro-differential equation (IDE), a differential equation (DE),
or likely give an integral equation (IE). However, systems of integral and integro-differential
equations have motivated numerous research in recent years. The integro-differential equation
most often contain the other two equations. Given the importance of the integra and integro-
differential equations, many studies have been done to find new approximation schemes to these
equations or improve the existing methods for their solutions.
Consider the function u(x), let f(x) be known, and K(x, t) be the integral kernel. Then, the
equation of Volterra integral (VIE) of the first kind is defined as:

(1.1) u(x) =

∫ x

a

K(x, t)u(t)dt

while the VIE of the second kind is given as:

(1.2) u(x) = f(x) +

∫ x

a

K(x, t)u(t)dt

Solving the Integro-differential equations by analytical procedures are usually difficult. This
and more drawbacks lead to numerous research on efficient approximate solution methods [1].
The DMT for obtaining the solutions of differential equations was introduced by Zhou [2]. This
method is an iterative scheme for solving the Taylor series of DE.The DMT method has also
been applied to solve initial value and boundary value problems using the concept of Taylor
series [1, 3, 4].
The solutions of these problems are usually in series form. The DTM derives an analytical so-
lution in form of a polynomial which are sufficiently differentiable for approximation to exact
solutions. However, this method has some setbacks. The DTM gives a truncated series solution
which is an accurate approximation of exact solution in a very small region [5, 6, 7].
To improve the precision of differential transform method, we proposed an alternative solution
scheme that would modify the series solution for classes integral and integro-differential equa-
tions as follows: we begin by applying the Laplace transformation approach to DTM obtained
truncated series and use Padé approximants to convert the transformed series into a meromor-
phic function and further applying the inverse Laplace transform to obtain the desired analytical
solution. This would be a better approximation or periodic solution compare to truncated series
solution of DTM.
The remaining part of the paper is structured as follow: Section 2 discusses brief overview and
preliminary results of DTM, Padé approximants and Laplace transform. Three problems each
for both integral and integro-differential equations are presented to illustrates the efficiency and
simplicity of the method in section 3. In Section 4, we present the conclusion and discussion
for further reference.

2. PRELIMINARIES

This section presents some definitions of DTM and Padé approximants.

2.1. Differential Transform Method.

Definition 2.1. [8, 9]
Suppose the function f(x) is analytical at x0 in domain of interest (DOI), then

(2.1) F (k) =
f (k)(x0)

k!
.
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The inverse differential transform of F (k) is

(2.2) f(x) =
∞∑
k=0

F (k)(x− x0)k.

From (2.1) and (2.2), we have

(2.3) f(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)k.

Let U(k), G(k) and H(k) be the differential transforms (DT) of u(x), g(x) and h(x) respec-
tively at x0 = 0. The key operations of the DTM is presented in Table 1.

Table 2.1: Key operations of the Differential Transform

Original function Transformed function
u(x) = g(x) + h(x) U(k) = G(k) +H(k)

u(x) = cg(x) U(k) = cG(k)

u(x) = dng(x)
dxn

U(k) = (k+n)!
k!

G(k + n)

u(x) = g(x)h(x) U(k) =
∑k

i=0G(i)H(k − i)
u(x) = xn U(k) = δ(k − n)

u(x) = exp(cx) U(k) = ck

k!

u(x) = cos(ωx) U(k) = ωk

k!
cos(kπ

2
)

u(x) = sin(ωx) U(k) = ωk

k!
sin(kπ

2
)

Theorem 2.1. [8]
If f(y) = ym, then

F (k) =

{
(Y (0))m, k = 0;
1

Y (0)

∑k
r=1(

(m+1)r−k
k

)Y (r)F (k − r), k ≥ 1.

Proof. From the definition (2.1)

(2.4) F (0) = [ym(x)]x=0 = ym(0) = (Y (0)m

Differentiating f(y) = ym with respect to x, we get;
df(y)
dx

= mym−1(x)dy(x)
dx

or equivalently,

(2.5) y(x)
df(y(x))

dx
= mf(y(x))

dy(x)

dx
By applying the DT to Eq.(2.5) gives:

(2.6)
k∑
r=0

Y (r)(k − r + 1)F (k − r + 1) = m

k∑
r=0

(r + 1)Y (r + 1)F (k − r)

From Eq.(2.6),
(k+1)Y (0)F (k+1) = m

∑k
r=0 (r + 1)Y (r + 1)F (k − r)−

∑k
r=1 Y (r)(k − r + 1)F (k − r + 1).
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or equivalently,
(k + 1)Y (0)F (k + 1) = m

∑k+1
r=1 rY (r)F (k − r + 1)−

∑k
r=1 Y (r)(k − r + 1)F (k − r + 1).

Thus,
(k + 1)Y (0)F (k + 1) =

∑k+1
r=1 {(m+ 1)r − k − 1}Y (r)F (k − r + 1).

Replacing k + 1 by k yields:

(2.7) kY (0)F (k) =
k∑
r=1

{(m+ 1)r − k}Y (r)F (k − r)

From Eq. (2.7), if follows that:

(2.8) F (k) =
1

Y (0)

k∑
r=1

(
(m+ 1)r − k

k
)Y (r)F (k − r)

Combining Eqs.(2.4) and (2.8), we obtain the transformed function of f(y) = ym as:

F (k) =

{
(Y (0))m, k = 0;
1

Y (0)

∑k
r=1(

(m+1)r−k
k

)Y (r)F (k − r), k ≥ 1.

This proof shows that other complicated nonlinear functions can be solved in an analogous
way. Also, nonlinear functions and their transforms are given in the following theorems.

Theorem 2.2. [8]
If f(y) = eay, then

F (k) =

{
eaY (0), k = 0;

a
∑k−1

r=0(
r+1
k
)Y (r + 1)F (k − 1− r), k ≥ 1.

Theorem 2.3. [8]
If f(y) = sin(αy) and g(y) = cos(αy), then

F (k) =

{
sin(αY (0)), k = 0;

α
∑k−1

r=0(
k−r
k
)G(r)Y (k − r), k ≥ 1.

and

G(k) =

{
cos(αY (0)), k = 0;

−α
∑k−1

r=0(
k−r
k
)F (r)Y (k − r), k ≥ 1.

Theorem 2.4. [1]
Suppose the DT of the functions u(x) and g(x) are U(k) and G(k), then:

If f(x) =
∫ x
x0
u(t)dt, then F (k) = U(k−1)

k
, F (0) = 0.

If f(x) =
∫ x
x0
g(t)u(t)dt, then F (k) =

∑k−1
l=0 G(l)

U(k−l−1)
k

, F (0) = 0.

If f(x) = g(x)
∫ x
x0
u(t)dt, then F (k) =

∑k−1
l=0 G(l)

U(k−l−1)
k−l , F (0) = 0.

By means of the DT, the differential equation in DOI is transformed to an algebraic equation
in the K-domain and the function f(t) is obtained using the finite-term Taylor series expansion
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plus a remainder, as

(2.9) f(t) =
N∑
k=0

F (k)
(t−t0)k

k!
+RN+1(t)

In a small region, the series solution in Eq.(2.9) converges rapidly, however, the convergence
results are often slow in the wide region and thus, their truncations yield inaccurate results. For
further reference on DTM see [10, 11, 12].

2.2. Padé approximation. Given the Taylor series expansion of y(x), the Padé approximant
is defined as the ratio of two polynomials that derived from the coefficients of y(x). The [L/M ]
PA to y(x) are defined by [

L

M

]
=

PL(x)

QM(x)

where the polynomials PL(x) and QM(x) are of degrees at most L and M . The formal power
series.

y (x) =
∞∑
i=1

aix
i,

(2.10) y (x)− PL (x)

QM (x)
= O

(
xL+M+1

)
are used to obtain the coefficients of PL(x) and QM(x). It is obvious that [L/M ] will remain
unchanged when the denominator and numerator is multiply by certain constant, thus the nor-
malization condition

(2.11) QM (0) = 1.

is impose on the equation and PL(x) andQM(x) are said to have no common factors. Rewriting
the coefficients of the functions PL(x) and QM(x) as

(2.12)
{

PL (x) = p0 + p1x+ p2x
2 + · · ·+ pLx

L

QM (x) = q0 + q1x+ q2x
2 + · · ·+ qMx

M

then, by (2.11) and (2.12), the coefficient equations are linearized after multiplying (2.10) by
QM(x). Eq (2.10) is presented as

(2.13)


aL+1 + aLq1 + · · ·+ aL−M+1qM = 0
aL+2 + aL+1q1 + · · ·+ aL−M+2qM = 0

.

.
aL+M + aL+M−1q1 + · · ·+ aLqM = 0

(2.14)



a0 = p0
a0 + a0q1 = p1

a2 + a1q1 + a0q2 = p2
.
.

aL + aL−1q1 + · · ·+ a0qL = pL

Equation (2.13) is a set of linear equation. To obtain the solution of this equation, we solve
for all the unknown q′s. Once the values of all the q′s are known, then equation (2.14) would
inevitably give the explicit formula for the unknown p′s, and solution is complete.
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However, in the case of non-singularity of equations (2.13) and (2.14) would be directly solved
to get (2.15) [13].

(2.15)
[
L

M

]
=

det


aL−M+1

.

.

.
aL∑L

j=M aj−Mx
j

aL−M+2

.

.

.
aL+1∑L

j=M−1 aj−M+1x
j

...
.
.
.
...
...

aL+1

.

.

.
aL+M∑L
j=0 ajx

j



det


aL−M+1

.

.

.
aL
xM

aL−M+2

.

.

.
aL+1

xM−1

...
.
.
.
...
...

aL+1

.

.

.
aL+M
1


In the case where the lower index on a sum exceed the upper and eq.(2.15) holds, then, we

replaced the sum with zero. The symbolic calculus software, MATLAB is used to obtain diag-
onal elements of Padé approximants of various orders including: [2 /2], [4/4] or [6/6].
Generally, Padé approximant, obtained from a partial Taylor sum is more accurate than the lat-
ter. However; Padé, being a rational expression, has poles, which are not present in the original
function. It is a simple algebraic task to expand the form of an [N, M ] Padé in Taylor series
and compute the Padé coefficients by matching with the above [14, 15, 16]. The following Al-
gorithm explains the MDTM procedures for solving integral and integro-differential equations.

Algorithm 1. Step 1: Given y(n) = f(t) +
∫ x
0
K(x, t)u(t)dt, 0 ≤ t ≤ 1, the exact solution y(t)

Step 2: Set M = 2,
Step 3: Compute Y (k) = 1

k!
[ d

k

dxk
y(t)]t=0, k = 0, 1, 2, , N

Step 4: Expand y1(t) =
∑N

k=0 Y (k)tk.

Step 5: Obtain L(y1(t)) = L(
∑N

k=0 Y (k)tk).
Step 6: Substitute 1/s = z in Step 5
Step 7: Compute [M/M ]L(y1(t))
Step 8: Substitute z = 1/s in Step 7
Step 9: Compute y2(t) = L−1([M/M ]L(y1(t)))
Step 10: If y2(t) = y(t) Then Stop. Else M =M + 1 and go to step 7

3. NUMERICAL RESULTS

In this section, we have been solved six problems related by integral and integro- differential
equations problems.

Problem 3.1. Consider the linear Volterra integral equation [1]

(3.1) u(t) = 1− t− t2

2
+

∫ t

0

(t− x)u(x)dx, 0 < x < 1.

and exact solution u(t) = 1− sinh(t).
Clearly, u(0) = 1, from Theorem (2.4) and using operations from Table (2.1), we have:
(3.2)

U(k) = δ(k)−δ(k−1)−δ(k − 2)

2
+
k−1∑
l=0

δ(l − 1)
U(k − l − 1)

k − l
−
k−1∑
l=0

δ(l − 1)
U(k − l − 1)

k
, k ≥ 1,
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transforming the initial condition by Eq.(2.1) to get U(0) = 1. Subsequently, we find

U(1) = −1, U(2) = 0, U(3) = −1
6
, U(4) = 0, U(5) = − 1

120
, U(6) = 0, U(7) = − 1

5040
.

Applying the inverse transformation rule of Eq.(2.2), the approximate solution of Eq.(3.1) is
given as follows:

(3.3) u1(t) =
∞∑
k=0

U(k)tk = 1− t− t3

6
− t5

120
− t7

5040
+ . . .

which in the limit of infinitely many terms yields the exact solution of Eq.(3.1).
To improve the accuracy of (3.3), the proposed MDTM was implemented on first three terms of
(3.3) as follows:
Applying the Laplace transform to the first three terms from (3.3) [17], yields

L(u1(t)) =
1

s
− 1

s2
− 1

s4

For simplicity, let s = 1
z
; then

L(u1(t)) = z − z2 − z4.
The Padé approximants [2

2
] gives [2

2

]
L(u1(t)) =

z3 + z2 − z
z2 − 1

Recalling z = 1
s
, we obtain [2

2
] in terms of s[

2

2

]
L(u1(t)) =

−s2 + s+ 1

−s3 + s

Applying the inverse Laplace transform (ILT) to
[
2
2

]
L(u1(t)) gives the modified approximate

solution:

u2(t) = −
et

2
+
e−t

2
+ 1 = 1− sinh(t).

Problem 3.2. Consider the nonlinear Volterra integral equation [1]

(3.4) y(t) +

∫ t

0

(y(x) + y2(x))dx =
3

2
− 1

2
e−2t

and exact solution
y(t) = e−t.

It is obvious that y(0) = 1, then, from Theorem (2.4) and using operations from Table (2.1), the
recurrence relation follows:

(3.5) Y (k) +
Y (k − 1)

k
+

k−1∑
l=0

Y (l)
Y (k − l − 1)

k − l
=

3

2
δ(k)− 1

2

(−2)k

k!
, k ≥ 1.

Transforming the initial condition by (2.1) to get Y (0) = 1.
Consequently, we find

Y (1) = −1, Y (2) =
1

2
, Y (3) = −1

6
, Y (4) =

1

24
, Y (5) = − 1

120
, Y (6) =

1

720
, Y (7) = − 1

5040
.

Under the inverse transformation rule (2.2), the following approximate solution of equation
(3.4) is obtained
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(3.6) y1(t) =
∞∑
k=0

Y (k)tk = 1− t+ t2

2
− t3

6
+

t4

24
− t5

120
+

t6

720
− t7

5040
+ . . . .

which yields the exact solution of Eq.(3.4) in limit of infinitely many terms.
Next, we implement MDTM on first four term of (3.6) as follows:
Applying the LT to the first four terms from (3.6), yields

L(y1(t)) =
1

s
− 1

s2
+

1

s3
− 1

s4
.

For simplicity, let s = 1
z
; then

L(y1(t)) = z − z2 + z3 − z4.

The Padé approximants
[
2
2

]
L(y1(t)) gives[

2

2

]
L(y1(t)) =

z

z + 1
.

Recalling z = 1
s
, we obtain

[
2
2

]
L(y1(t)) in terms of s[

2

2

]
L(y1(t)) =

1

s+ 1

Applying the ILT to
[
2
2

]
L(y1(t)) gives the modified approximate solution

y2 (t) = e−t.

Problem 3.3. Given the following nonlinear Volterra integral equation [1]

(3.7) y(t) = cos(t) +
1

2
sin(2t) + 3t− 2

∫ t

0

(
1 + y2(x)

)
dx

whose exact solution is y(t) = cos(t).
By simplifying (3.8), to get

y(t) = cos(t) +
1

2
sin(2t) + 3t− 2t−

∫ t

0

y2(x)dx.

So,

(3.8) y(t) = cos(t) +
1

2
sin(2t) + t−

∫ t

0

y2(x)dx

Clearly, y(0) = 1, from Theorem (2.4) and using Table (2.1), we obtained the recurrence rela-
tion:

(3.9) Y (k) =
1

k!
cos
(πk

2

)
+

2(k−1)

k!
sin
(πk

2

)
+ δ(k − 1)−

k−1∑
l=0

Y (l)
Y (k − l − 1)

k − l
.

Transforming the initial condition by (2.1) to get Y (0) = 1. Consequently, we find

Y (1) = 0, Y (2) = −1

2
, Y (3) = 0, Y (4) =

1

4!
, Y (5) = 0, Y (6) = − 1

6!
, Y (7) = 0, Y (8) =

1

8!
.
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The approximate solution of Eq.(3.8) is obtained using the inverse transformation rule (2.2) as
follows:

(3.10) y1(t) =
∞∑
k=0

Y (k)tk = 1− t2

2
+

t4

4!
− t6

6!
+
t8

8!
+ . . .

which yields the exact solution of (3.8) in the limit of infinitely many terms. Taking just the first
two terms from (3.10), we implement the MDTM as follows:
Applying the LT procedure to the first two terms from (3.10), yields

L(y1(t)) =
1

s
− 1

s3
.

For simplicity, let s = 1
z
; then

L(y1(t)) = z − z3.
The Padé approximants [2

2
]L(y1(t)) gives[

2

2

]
L(y1(t)) =

z

z2 + 1
.

Recalling z = 1
s
, we obtain

[
2
2

]
L(y1(t)) in terms of s[

2

2

]
L(y1(t)) =

s

s2 + 1
.

The modified approximate solution y2 (t) = cos(t) is obtained using the inverse Laplace trans-
form to the

[
2
2

]
L(y1(t)).

Problem 3.4. Given the following nonlinear Volterra integral equation [18]

(3.11) y
′
(t) =

3

2
et − 1

2
e3t +

∫ t

0

et−xy3(x)dx, y(0) = 1

whose exact solution is y(t) = et.
By simplifying (3.11), to get

(3.12) y
′
(t) =

3

2
et − 1

2
e3t + et

∫ t

0

e−xy3(x)dx, y(0) = 1.

Using operations in Table(2.1) and Theorem (2.4), we obtain the recurrence relation as follows:

(3.13) Y (k + 1) =
1

k + 1

[ 3

2(k!)
− 3k

2(k!)
+

k−1∑
l=0

1

l!

G(k − l − 1)

k − l

]
where G(k) is the differential transform for g(x) = e−xy3(x).

(3.14) G(k) =
k∑
i=0

(−1)i

i!
H(k − i)

where H(k) is the differential transform for h(x) = y3(x)

(3.15) H(k) =

{
1, k = 0;∑k

r=1(
4r−k
k

)Y (r)F (k − r), k ≥ 1.
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Transforming the initial condition by (2.1) to get Y (0) = 1.
Then substituting in (3.15) and (3.14), respectively, to get H(0) = 1, G(0) = 1. Consequently,
we find

Y (1) = 1, Y (2) =
1

2
, Y (3) =

1

3!
, Y (4) =

1

4!
, Y (5) =

1

5!
, Y (6) =

1

6!
, Y (7) =

1

7!
.

The approximate solution of Eq.(3.12) is obtained using the inverse transformation rule (2.2)
as follows:

(3.16) y1(t) =
∞∑
k=0

Y (k)tk = 1 + t+
t2

2
+

t3

6
+

t4

24
+

t5

120
+

t6

720
+

t7

5040
+ . . . .

which yields the exact solution of (3.12) in the limit of infinitely many terms.
Taking the first three terms from (3.16), we implement the MDTM as follows:
Applying the LT to the first three terms from (3.16), yields

L(y1(t)) =
1

s
+

1

s2
+

1

s3
.

For simplicity, let s = 1
z
; then

L(y1(t)) = z + z2 + z3.

The Padé approximants [2
2
]L(y1(t)) gives[

2

2

]
L(y1(t)) = −

z

z − 1
.

Recalling z = 1
s
, we obtain

[
2
2

]
L(y1(t)) in terms of s[

2

2

]
L(y1(t)) =

1

s− 1
.

The modified approximate solution y2 (t) = et is obtained using inverse Laplace transform to[
2
2

]
L(y1(t)).

Problem 3.5. Consider the following linear boundary value problem for integro-differential
equation [18]

(3.17) y(4)(t) = t(1 + et) + 3et + y(t)−
∫ t

0

y(x)dx, 0 < t < 1

whose boundary conditions are given as

(3.18) y(0) = y
′
(0) = 1, y(1) = 1 + e, y

′
(1) = 2e.

and exact solution y(t) = 1 + tet.
Transforming Eq.(3.17) and Eq.(3.18), we obtain

(3.19) Y (k + 4) =
k!

(k + 4)!

[
δ(k − 1) +

k∑
i=0

δ(i− 1)

(k − i)!
+

3

k!
+ Y (k)− Y (k − 1)

k

]
.

(3.20) Y (0) = 1, Y (1) = 1, Y (2) =
A

2
, Y (3) =

B

3!
.

Substitute (3.20) in (3.19), to get

Y (4) =
1

3!
, Y (5) =

1

4!
, Y (6) =

(A+ 4)

6!
, Y (7) =

(B − A+ 6)

7!
,
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Y (8) =
(11−B)

8!
, Y (9) =

1

8!
, Y (10) =

(A+ 8)

10!
.

The approximate solution of equation (3.17) is obtained using the inverse transformation rule
(2.2) as follows:

(3.21)

y1(t) = 1+t+
A

2
t2+

B

3!
t3+

1

3!
t4+

1

4!
t5+

(A+ 4)

6!
t6+

(B − A+ 6)

7!
t7+

(11−B)

8!
t8+

1

8!
t9+

(A+ 8)

10!
t10+. . .

To find the values of constants A and B, we will substitute the initial conditions
y1(1) = 1 + e, y

′
1(1) = 2e in Eq.(3.21), then

1 + 1 +
A

2
+
B

3!
+

1

3!
+

1

4!
+

(A+ 4)

6!
+

(B − A+ 6)

7!
+

(11−B)

8!
+

1

8!
+

(A+ 8)

10!
= 1 + e,

that gives

(3.22)
1818721

3628800
A+

961

5760
B = −17228

14175
+ e

and

y
′

1 = 1+At+
B

2
t2+

2

3
t3+

5

24
t4+

(A+ 4)

5!
t5+

(B − A+ 6)

6!
t6+

(11−B)

7!
t7+

9

8!
t8+

(A+ 8)

9!
t9+. . . ,

y
′
1(1) = 2e, then

(3.23)
365401

362880
A+

421

840
B = −696401

362880
+ 2 e

From (3.22) and (3.23), A = 1.999995083333181, B = 3.000016585166542.
For approximations of A and B. It is obvious that

limn→∞A = 2, limn→∞B = 3.
We implement MDTM to the first six terms as follows:
Substituting A = 2, B = 3 in (3.21), then applying the Laplace transform yields

L (y1 (t)) =
1

s
+

1

s2
+

2

s3
+

3

s4
+

4

s5
+

5

s6
.

For simplicity, let s = 1
z
; then

L (y1 (t)) = z + z2 + 2z3 + 3z4 + 4z5.

Table 3.1 shows the Algorithm 1 work for solving Problem 3.5.

Table 3.1: The Algorithm 1 work for Problem 3.5

[M
M
]L (y1 (t)) Padé approximant MDTM solution

[2
2
]L (y1 (t)) − z

z2+z−1 e
t
2 (cosh(

√
5t
2
) +

√
5
5
sinh(

√
5t
2
)

[3
3
]L (y1 (t)) z3−z2+z

z2−2z+1
tet + 1

The Padé approximants
[
3
3

]
L (y1 (t)) gives[

3

3

]
L (y1 (t)) =

z3− z2 + z

z2 − 2z + 1
.

Recalling z = 1
s
, we obtain

[
3
3

]
L (y1 (t)) in terms of s[
3

3

]
L (y1 (t)) =

s2 − s+ 1

s3 − 2s2 + s
.
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The modified approximate solution y2 (t) = tet+1. is obtained using the inverse Laplace trans-
form to

[
3
3

]
L (y1 (t)).

Figure 1 shows comparison between approximated solutions for each choice of Padé approxi-
mant and the exact solution y(t) comparing with the DTM solution for Problem 3.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

1

1.5

2

2.5

3

3.5

y

Exact Solution y(t)=MDTM [3/3]
MDTM [2/2]
DTM

Figure 1: comparison between approximated and the exact solutions for Problem 3.5

Problem 3.6. Consider the following nonlinear boundary value problem for integro-differential
equation [19]

(3.24) y(4)(t) = 1 +

∫ t

0

e−xy2(x)dx, 0 < t < 1

whose boundary conditions

(3.25) y(0) = y
′
(0) = 1, y(1) = y

′
(1) = e.

and exact solution y(t) = et.
Transforming Eq.(3.24) and Eq.(3.25), we obtain

(3.26) Y (k + 4) =
k!

(k + 4)!

[
δ(k) +

k−1∑
i=0

(−1)i

i!

G(k − i− 1)

k

]
.

where G(k) is the differential transform of g(y) = y2.

(3.27) Y (0) = 1, Y (1) = 1, Y (2) =
A

2
, Y (3) =

B

3!
.

By Theorem (2.1), the differential transform G(k) in equation (3.26) is

G(0) = (Y (0))2 = 1,

G(k) =
k∑
r=1

(3r − k
k

)
Y (r)G(k − r).
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Therefore, G(1) = 2, then

Y (4) =
1

4!
, Y (5) =

1

5!
, Y (6) =

1

6!
.

The approximate solution of equation (3.24) is obtained using the inverse transformation rule
(2.2) as follows:

(3.28) y1(t) =
∞∑
k=0

Y (k)tk = 1 + t+
A

2
t2 +

B

3!
t3 +

1

4!
t4 +

1

5!
t5 +

1

6!
t6 +

(A− 3)

7!
t7 + . . .

Now, to find the values of constants A and B, we will substitute the initial conditions y1(1) =
y

′
1(1) = e, in Eq.(3.28), then

1 + 1 +
A

2
+
B

6
+

1

24
+

1

120
+

1

720
+
A− 3

5040
= e,

(3.29)
A

2
+
B

6
= e− 646

315
And

y
′

1 = 1 + At+
B

2
t2 +

1

3!
t3 +

1

4!
t4 +

1

5!
t5 + . . . , y

′
(1) = e,

then

1 + A+
B

2
+

1

6
+

1

24
+

1

120
+
A− 3

720
= e,

thus

(3.30) A+
B

2
= e− 97

80

From (3.29) and (3.30), A = 0.993365409074278, B = 1.024832838769536.
For approximations of A and B, It is obvious that

lim
n→∞

A = 1, lim
n→∞

B = 1.

Substituting A = 1, B = 1 in (3.28) yields the exact solution of (3.24) in the limit of infinitely
many terms.
Taking just the first three terms from (3.28), the MDTM is implemented as follows:
Applying the Laplace transform to the first three terms from the series solution (3.28), yields

L(y1(t)) =
1

s
+

1

s2
+

1

s3
.

For simplicity, let s = 1
z
; then

L(y1(t)) = z + z2 + z3.

The Padé approximants
[
2
2

]
L(y1(t)) gives[

2

2

]
L(y1(t)) = −

z

z − 1
.

Recalling z = 1
s
, we obtain

[
2
2

]
L(y1(t)) in terms of s[

2

2

]
L(y1(t)) =

1

s− 1
.

The approximate solution y2 (t) = et. is obtained by inverse Laplace transform to
[
2
2

]
L(y1(t)).
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4. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed the MDTM for solving classes of integral and integro-differential
equations. The obtained solutions, in comparison with the DTM and exact solutions (see Prob-
lem 3.5) illustrates a remarkable accuracy. The present method reduces the computational dif-
ficulties of the other traditional methods and all the calculations can be made by simple ma-
nipulations. Examples presented also indicates that MDTM greatly improves the convergence
rate of DTM’s truncated series solution with true analytic solution, and thus, implies that the
scheme is promising and can be applied in other applications. All computations are carried out
using the Matlab programming software.
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