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2 L. AHAROUCH, J. BENNOUNAAND A. BOUAJAJA

1. INTRODUCTION

This work is devoted to some results concerning the existence and the regularity of minima
for the following functional defined o/ **(IRY) (1 < p < N, N > 2) with value onlR, by

Vol + |v|P Lp( N
(1.1) J(v):/ ——— dr — flo|™dx, ve WHP(IRY),
e (@) + ) 7 1!
for some real number such that
1.2) 0<a<p;m,

and wherex is a measurable function aR” that belongs to some Lebesgue space ( we will
specify that later ).

As regards the daturfi, we will assume that belongs to a suitably Lebesgue space which make
sense to second term of functional

Recalling that, the previous problem has been studied by Boccardo and Orsina [3] in bounded
domain, more precisely the authors they proved the existence and regularity of minima for the
following functional:

J(v) = /Qa(:c,v)\VvV’ dx—/gf.v dx,

whereq is a carathéodory function satisfying the following condition:

Bo

(i jer = @0 =5
wheref,, 8, are positive constants aadverified the conditior.2). In the same way we cite
the recent works |1,/2] of Boccardo and Orsina.
The main goal of this work is to extend the previous result to a general domain.
One of the main difficulties is to find a suitable Sobolev space in which the functibmsl
finite, since even the second term is for example finitélih? (IRY) when f € L"(IRYN),
with (¢*)" < r < ¢/, the first term is not in general finite whertz) is small enough. An
additional difficulty also arises : the generate coercivenes'ifi( IR") of the principal part of
the functional/. thus evenJ is lower semi continuous ofii/,”(2) as a consequence of the De
Giorgi theorem, the lack of coerciveness implies thatay not attain its minimum o/, *(Q)
even in the case in whicl is bounded from below (see example 3.2[df [3]), which will lead us
to defined the functional on another spaW,}’q(Q) for someq < p depending orx. In this
setting we prove several existence and regularity minima (depending on the summability of the
datum f) for functional J, wherea satisfies the conditioffl.2) anda satisfies the following
condition:

(1.3) 0<a(r)<M aein R",
with M a positive constant
(1.4) a(r) € LT (RN),
with

Np(1l — «)
15 Y 4 St/
(1.5) 1= N —ap
We also assume that:

*\ / /
(1.6) fe L™(RY) for some (q—> <ry< (i> .
m m
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Notations :

In the sequel we will use several times the following functions of a real variable depending
on a parametet > 0

(1.7) Ti(s) = max(—k,min(k, s)), Gi(s) = Tx(s).

Furthermore, we will denote withor ¢, cs, ....., various constants which may depend on the
data of the problem, whose value may vary from line to line.

If 1 < 0 < N, we denote by* = ]@’_"U the Sobolev embedding exponent for the space
Wy ().

If w : RN — IRis a Lebesgue measurable function, we define, far &l0

18) Ay={zeR" : |ux)| >k}, Bi={zeR" : k<|u(z) <k+1}.

If F is a lebesgue measurable subsef/df, we denote by F| its N-dimensional Lebesgue
measure.
We defined the following functional o1 (RY), with ¢ as in(1.5)

. Vol + [of?
Jw) if / —————— dr < 400
( v (alz) F o) -
+00 Otherwise

(1.9 I(v) =
Our results are the following :

Theorem 1.1.Under the hypothese§.2), (1.3)), (1.4), (1.5) and (1.6)), there exists a minimum
uof T onWh4(RY).

The second result considers the case wifdnas a high summability.

Theorem 1.2.Let f € L"(IR") withr > X. Suppose th, , , and

holds true, then any minimumof 7 on Wh¢(IR™) belongs toV*(IRY) N L>*(IRY); thus J
attains its minimum o '?(IRY).

Remark 1.1.

(1) Observe that— > q—

(2) We do not need the hypothe- in the case where
N q\’ N q\’
- £ _ < (L) .
p<(m> andp<r_<m>

Remark 1.2. Observe that the condition ondoes not depend om, and the result also does
not depend om. The main tool of the proof will be ah> (IR") estimate, which then implies
theW'?(IRY) estimate.

Theorem 1.3. Assume thafl.2), (1.3)), (1.4), (L.5), and f € L"(R") with

/
* N
P <r<—.
m —+ ap p
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Then any minimuna of I on W'?(IRY) belongs toWP(IRY) N L*(IRY); thus J attains its
minimum on// - (IRY), where
Nt (p(1 = a) = m)

N —rp '

S =

Remark 1.3.

p—m
p

we have

% !
( P ) X
m + ap P
(2) We do not need the hypothesgsj) in the case where
* / / * / I N
() < () ang (L) <rcmn((£)5),

m+ ap m m + ap m p

Remark 1.4. Remark that if the minima are not bounded, we still have that they belong to

WEP(IRYN). The WP (IRY) regularity result will be proved combining the information that
belongs taL*(IRY) with the fact that: is minimum.

(1) Sincel < a <

. . N
Remark 1.5. As a consequence of the previous theorem,#f — and f € L'(IR"), we have
that any minimumu belongs toV'?(IRY) and toL*(IRY), for everys < +oc.

If we decrease the summability ¢f we find minima of/ which do not in general belong any
moreW P (IRN).

Theorem 1.4.Under the assumptionf.2) — (L.6), if f € L"(IRY) with

p*(]. - Oé) / - . p* /
m - m+ap)
Then any minimuma of 7 on W'»(IRY) belongs toW!*(IRY) N L*(IRY); thus J attains its

minimum oni?**(IRY), where

Nr(p(l—a)—m)
N —r(m+ap)

p:

Remark 1.6. Note that the conditioff < o < 2— "

p
(e (et

p—m

implies that

* / y / N
Remark 1.7. If a tends to both ( L > and (%) converge to—, so that
p

P m + ap
theore an cannot applied ity = p—m
P

The paper is organized as follow : in the next section we prove the existence of a minimum
for I, in the third section we give the proof of theorfim| (proof of bounded minima), while
the fourth section is devoted to the proof of Theor@n3sandI.4]
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2. EXISTENCE OF MINIMA

In order to prove that there exists a minimum/aén W1¢(IRY), we are going to prove that
I is both coercive and weakly lower semicontinuous/iéh?(RY).

Theorem 2.1.Letm suchthatl < m < p(1—a). Suppose that the hypothege<)), (1.4)), (1.5)), (1.6)
anda(x) > 0 a.e inIRN. ThenlI is coercive and weakly lower semicontinuousigh?(IR").

Proof. It is clear that, by theorem du to De Giorgi (séé [8]), the functioh#& weak lower
semicontinuous. For what concerns the coercivity, it is enough to considé# ¢(IR") such
that/(v) is finite.

We have

[Vl + Jof? o
| velt e = [ o) + ol e

hence, by the Holder inequality, singe< p, we have

p p %
/ |W|q+|v|qu§c(/ de>
s wv (afx) + o))
x(/ (alz) + [v]) 32 dx) '
RN
By easy calculation, we show that:

* apq
(2.1) ¢ =—",
pP—q
and that, from Sobolev embedding theorem we obtain:

/ ]VU\Q+\v\qd:E§c(/ de)p
RV r (a(z) +[v])oP

« 1+</ |qu+|quczm>q |
RN

SIS

which implies that ifR = ||[v|| 1.y

Vo el NP s
(2.2) Rpg(/ VIR ) (14 RT) v
rv (a(z) + [v])* ( )
On the other hand, sindé-)" <, < (£)’, we have
ey || < o[ i) ([ o)
RN RN RN
< cR.

Hence, from[(2.2) and (2.3) it follows that
RP

(14 Re)i~!
then recalling(2.1)), it is easy to check that:

p—q" (£—1> > 1.
q
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Thus, we deduce that:

lim I(v) = 400,
R—+00

and then the coercivenessiobn 1W1¢(IRY) is proven.
|
It is will known that (seel[b]), sincé is coercive and weakly semi-continuous, there exists
minimum of I on W¢(IR"). From which theorerf.1]follows.

3. BOUNDED MINIMA

In this section, we will prove the boundedness of minimuny ofto do this we need the
following lemma. We first recall that by theorgm 1.2 there exisits W*'¢(IR") such that

I(u) = min {I(u), ve W"(RY)},
i.e
(3.1) I(u) < I(v) forall ve WY(RY).
Lemma 3.1. [4] Letw be a function i/ (2) such that, fork is greater than somg,

|Vw|” do < ck?| Ay

Zte
Y

Ag
wheres >0, 0<6<1.
Then the norm ofy in L>(2) is bounded by a constant which depends:gho, N, ¢, ko

The proof of this lemma can be found in the appendix_of [4], its proof based on the lemma
due of Stammpacchia [10].

Lemma 3.2. Letu be a minimum of on Wh¢(IRY), then there exists two positive constant
c1, ¢ such that:

[Vul?
(3.2) /—dxgck;m fldx+c FLIGH ()™ dz ¥V k> 0,
4, (a(@) + ul)or 1 Akl | > Ak! |.|G(u)]

whereA, is as in(L.8) and Gy, is the function defined iff.7).
Proof. We have,/(u) < I(0) = 0, then

Tl + [l [
——dz < flul™ dx < +o0.
/RN (0@ + Ju)® TS Jp

On the other hand, we have for &ll> 0,

VI LW [V o
/RN (ale) + T © /{ﬁ (@) + Ju)) +/{u2k} @) B’

Vu| + |u _
< — 1 dz + k"7 mead|u| > k} < 400,
/]RN (a(z) + |ul)o
we takev = T (u) as test function ir§3.1)) to obtain:V & > 0.

I VAL o ) .
/Ak e S W =) de /Ak\f|.((\ul bt k)™ — k™) do,
< b [ Ifldrse

j / LG de

A
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Proof of Theorer 1]2Let us considet a positive number such that< ¢ < ¢ < p. Suppose
that

. 1 m
l<o<g<p, with —+ — <1,
r g

( see the remark below for the possibility of this choice).
By Lemmd3.2], Holder and Sobolev inequalities, we have:
(3.3

|vu|p _1 * _m
—————dvdr < c|f|loE" A" 4 el fllor / Gr(w)|” da| Ao
/Ak (a(z) + [ul)or A,

m
O'*

IN

k™| Ap|'T + ¢ [/ |Vul|” dx} ’ J A
Ag

On the other hand, by Hélder inequality, we obtain:

o = —|Vu|°' a(x u) dx
Vurde = [ o () + ) d

< {/Ak%dxr {/Ak(a(x)+]u|);w§ dx]l_z.

Moreover, from(3.3)), we deduce, since € L>°(IRY),

Ag

IVul” do < ek | Ay~ P% U (1 + |u])r= da:] ’
(3.4) A -

+c|Ak’(1—!!i—i)Z{ IVl dxr V (1 + [u]) 3% dm] "
Ak Ak

Applying Young's inequality with exponent§ and*—, on the second terms of the right side,
we get:

p—o

IVul” do < ck'% | Ay|07P% U (1 + |ul)re dx} ’
(3.5) A A

el Ay | () U 1+ [u])#> dm} "
A

3

Because it can be easily verified thakif> 1, one has that + |u| < 2(k + |G(u)|) on A, we
can write:

Ak‘(l_dﬂ*_%)pfm+5:gz

/ Va7 de < o RG], (7T 4 g
A
b—o

D | [ Gl a
A, -

3

aop

4| A () [ G () [+ d;L‘:|
A

Now, observe that we can choosesuch that 270~ 5 (see also remark below for the
g

p —_—
possibility of this choice). By this property we deduce, by using the Hoder's and Sobolev’s
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inequalities,

/ [Vul” dz < c{k(%+a)0|Ak|(1*%)+kpaffi|Ak|(1*%*1) z_ypse
A

T

mo

—i—kT’Ak\(I’_%_QP%)% {/ |Vul? d:z:}
Ag

ap
o | mo o p—m
+ ’Ak’(l’—m—7+7—ap7*)p_lm |:/ ‘VU‘U dZL':| }
Ak

Applying Young’s inequality with exponentj?“ andﬁ (respectively”;}’j1 andp_’"Tap), on the
second (respectively third ) terms of the right side, we get:

e a0 | [ v
A

< - V| d + ckit=a |Ak|(p_%_apa%)ﬁ
4 Ja,

ap
g =Bz ) { [ v da:] "
Ak

< Z
4

|Vul® dz + c|Ak|(p*m’%+%*apo%)m’

A
so that we have:

(3.6)

/ |vu|o' dr < C{k(%+a)a|Ak|(1—%) +kpaf£|Ak|(1—aﬂ*fl) g_ P9
A

r)p—m T p—m

m—ap

+k%|Ak’(p—%—ap%)ﬁ + |Ak|(p—m—%+%—oap§*)p_ 1 }
As can seen by means of straightforward calculations, the assumptierenaiay, imply that:

b r N’p—m b N P p—m—ap
We note that, from the fact that belongs tolV'1¢(IRY), it follows that the sequencgAy|)s
tends to zero ak tends to infinity, thus there exiskg such that ifc > £y, we have

|Ak\<7’_m—%+%—ai’%)m < ‘Ak|(p—m—%+%) 1

and so(3.6) implies that:

/ Vul” de < c{k(%+°‘)"|Ak|(1*%)+]<;5051|Ak|(10*m*%+%) 1
Ak

2 e
+k%|Ak|(P—%—apf%)ri@} V> ko,
which implies that:

/ (Vu|? dx < ck™ | Ag|",
Ak
where

(m ap m )
g=max | — +q, , ,
p p—m’ p(l—a)
and

. o o o 1 o om 1
p = min 1——,< ———Oép—>—, (p—m——+—) .
rp r o* p(l—a) r

AIJMAA Vol. 12, No. 1, Art. 5, pp. 1-16, 2015
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p—m
p

: N :
We also observe that — i* > ( sincer > — ande belongs ta0, 1) sincel < a <
o

p
Thus from Lemma 3]1 it follows that belongs taL>(RY).
On the other hand, since

IVl + [uf? [
——————dx < fl|ul™ de < 400,
/BN (0@ + Ju)® TS Jp

the L>(IR") estimate implies that

1 V p p
_ / IVl + [uf? dxg/ Pt ful” <
(lall oo mny + llull oo mvy) P S Ry ry (a(x) + |ul)o?

and sou belongs toV'?(IRY).
Finally, Theoreni 1]2 is completely proves.

Remark 3.1. Remark that
aop . .
(1) —— < o isequivalenttar < q.

p—0
1 m mNr
2) - +— < lisequivalenttar > ———,
()r+a* a Nr— N +mr
mNT p—m N .
3 < g, for ever 1,—, 1,N) andr > —, which
@) vy < ¢ yaé( p)pE( ) andr 5

implies that we can choogesatisfiesl) and2).

4. SUMMABILITY OF UNBOUNDED MINIMA

In this section, we will prove Theorerfis3jandI.4} We first begin with the technical results,
which will be used later

Lemma 4.1. Letu be a minimum of in Wh¢(IRY), then for allk € IV, we have
|VulP c
(4.1) /—dxg— fl|ul™dz Vk € IN,
b, (@) + e = T f,

where A, and By, are as in(1.8)) .
Moreover, ifa € L>*(IR"), we have

(4.2) |VulP dz < (1 + k)t |f]-Ju|™ dz Yk € IN,
By, A

wherec is a constant independent bf

Proof. - Let us observe that, i = 0, sinceu is a minimum of/, we get

p p
/ Wul i 4, [t da,
ry a(w) + |ul)oP RN

this implies that:

[Vul? m m
ey T S |f]-|ul™ dx = | f]-Ju|™ de.
(o<ul<1y (a(z) + |u]) RN Ao
Thus(4.1)) (and then(4.2)) is proven.

AIJMAA Vol. 12, No. 1, Art. 5, pp. 1-16, 2015 AIJMAA
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- Assume now that > 0 and letv = u — T (u — Ty(u)), observe that € W14(R"Y)
and by a simple calculation, we get

/ Vol + [v]”
TN T Nen dr < 400.
ry (a(z) + [v])o?

We takev as test function irf3.1)), we obtain:

VulP + |ul? . VolP + |v|P -
fo ot s e [ o ae < [ e = [ i e
then
[ melt vt
r (a(z) + [u])*P r (a(z) + [v])*
|f]- (Ju]™ = |o|™) de <m A |f|.Jul™t da,
which implies that:

[Vl + [uf Vol? + fof?
———— dx — —d
o () + T ™ g Calw) + o)
m
— Jul™dr < —— md
<% [t de < 25 i an

By definition ofv, the previous inequality implies that:
/ { [VulP + |u” kP } i
B, La(z) +u])or (a(z) + k)or

’Vu’p—|—|u|l’ B ’VU’I)_'_‘,UV) } i
+/Ak+1{<a($)+‘u|)ap (o) + o)y [ 0= k+1/ 71 ul™ de

since the function

sP

(a(x) +s)°r’

is increasing for all: € IRY, we have:

/., @ S / [Vuf { EET R |u|>ap} o

2m
_— Jul™ d
b [Pl de

A
pla(2) + [u))*” — (a(z) + )™
< /AkH |Vul d

fois—

(4.3)

B (a(z) + v])*r(a(z) + [u])o?

—_— Ju|™ dx.
e AL

Since|v| = |u| — 1 on A1, we easily obtain that there exists a positive constant ¢
(independent of) such that

(a(z) + [uD)? = (a(z) + [0)* < c(alz) + o)™
Thus[4.3) becomes

/ S AT c/ [Vul” do+ 2" [l de
B, (a(x) + Jul)or = Sy, (a(@) + |v])(a(x) + [u])or k+1J4, " '

AIJMAA Vol. 12, No. 1, Art. 5, pp. 1-16, 2015 AIJMAA
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Since|v| > k on A1, we have:

P P 2
/ _ vl < 5/ Vel e 2 L da
B, (a(@) + [u])*® k Jay,, (a(z) + |u])or k+1 /a4,

Finally, we have:

|Vul? c m
(4.4) /B T da < k+1/Ak L™ da.

Moreover, ifa € L>®(IRY), we get:

a(z) + [u(@)| < |laljw +k+1<c(k+1), forall z € By,
thus and}4.4), we deduce that:

|VulP c
———dr < —— Ju|™ d
/Bk(1+k)ap $_k+1 Ak|fHu‘ Z,

which implies that:

(4.5) VulP de < c(k+1)*"1 [ |f].|ul™ d.
By, Ay

I
Proof of Theorer 1]3Let us now prove the following

Theorem 4.2. Letw a minimum off on W'4(IRY). Under the hypotheses of Theorgrs, the
following assertions hold true :

(1) Assertion I: For all v > 1, we have
(4.6) / |VulP|ulfO~Y de < ¢ + 62/ | f||u|*PTP=PE g
RN RN

wherec; andc, are two positive constants.
(2) Assertion Il: There exists a positive constagtsuch that

/ |ul® dz < es.
RN

(3) Assertion lll: There exists a positive constantsuch that

/ [VulP de < cy.
RN

We cite the following (simple but fundamental) lemma.
r(N —p)[p(l —a) —m]
p(N —rp)

) s=qp"=r'(ap+w—p+1),

. ’
ii)fyzlifandonlyifrz( b ) ,
m+ ap

Lemma 4.3. Lety = , we have

1. . N
iii) LS — ifand only ifr < —.
Pt p

AIJMAA Vol. 12, No. 1, Art. 5, pp. 1-16, 2015 AJMAA
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Proof of Theorern 4]2. (1) Proof of Assertion I: Lety > 1, we have by using4.5))

+oo
/ (VPO de = Z/ |VulPlulPO~Y de
RN
+oo
(4.7) < Z/ (Vu|P(1 + k)PO7Y dz
< CZ/ | f|-Ju|™(1 + Ek)ertrr=r=t gg
k=0 7 Ak

Recalling that, folk € IV, we have:

+oo
4.8) / At =3 /B 1Sl da

hence
+oo
Sa +k;)“”+7p""1/ L ul™ da
— A
(49) F=0 +oo ’ +oo
= (W4 k)TN f] ful™ da.
k=0 h=Fk * Bn
Therefore, by changing the order of summation, and recalling that:
h
(4.10) D> E <14,
k=0

with ¢ = ¢(1), we have:

“+o00

SRt [yl o

k=0
+oo h
(4.11) =) (14 k)rtrrs 1/ | f|-Ju|™ da

h=0 k=0 B

“+oo

= [l da,
h=0 B
using (4.7) we obtain:

vl an < cZHk”‘W [ 1 s
RN

< cz / L™ (1 4+ )77 da

< c/ ] dx+c/ | o g
Q Q

AIJMAA Vol. 12, No. 1, Art. 5, pp. 1-16, 2015 AIJMAA


http://ajmaa.org

EXISTENCE AND REGULARITY OF MINIMA OF AN INTEGRAL FUNCTION 13

Finally, by the fact tha% |f]-Ju|™ dx < 400, we deduc.

Q
Proof of Assertion II: Let as in Lemma&L.2] We obtain,
LemmaZL2]

by Sobolev embedding and

p_

(/ |u|5dx>p = (/ Iul””*d:v)%s/ VP |ulP0Y da

< c+ c/ | f]|u] PP g,
RN
The above inequality and Hoélder inequality implies

p

P 1 1
(/ !uxsdx)” g(/ |fvdx) (/ w’(apﬂwwx) |
RN RN RN

Recalling:), i77) of Lemmd4.2, we deduce by Young’s inequality that:

(4.13) / lul® dz < es.
RN
(2) Proof of Assertion 1lI: From (4.12]), we get
(4.14) / IVl |u[POY de < ¢y,
RN

on the other hand, we have:

/ |VulP do = / |Vul? dx—l—/ \Vul? dx
RN {lul<1} {lu[=1}

c |VulP dx +/ \VaulP|ulP0~Y dz
N

IN

jul<1} R
< c/ | fllul™ d:c+/ VulPluP0~Y de,
RN RN

thus, by(4.14) implies that:

(4.15) / \Vul? dz < c5.
RN
Sinceu € L*(RY), with s = p*y > p* andu € L4(IRY), this implies (since
q<p<p)
(4.16) u € LP(RY).

From (4.13)), (4.15) and(4.16)), we deduce that:
u € WP (IRN) N L*(RM).

1
Proof of Theorem 1]4.

Theorem 4.4. Letu a minimum off in W¢(IRY). Under the hypotheses of Theorgnd, the
following assertions hold true :
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(1) Assertion I: For all A > 0, we have:

[Vul? / -2
4.17 — —  _dx < ap=Atm g
(4.17) | o < ata [ )+ e

wherecs; andcg are two positive constants.
(2) Assertion II: There exists a positive constantsuch that

/ |ul® dz < e5.
RN

(3) Assertion lll: There exists a positive constagtsuch that

/ |Vul|f de < cs.
RN

The following lemma is simple but fundamental for the proof of the previous theorem.

Lemma 4.5. Let A\ = pIN —r(m+ap)] = rNp(l — o) —m]

, we have the following prop-

_ N —rp
erties .
. A
I)s:—p:r’(ap—)\+m),
p—p ,
ii))\>0ifandonlyifr<( P )
m—+ ap
iy 2~ 41-2<2
pr' p s

Proof of Theoreri 4]4. (1) Proof of assertion | : Let A\ > 0 and letu € W(IRY) a
minimum of /, we have:

|vu|p d _ |vu’p ap—X\
———dr = —ap(a(x) + |u)*P~* dx
(4.18) /IRN (a(z) + |ul)* /II_E]C:’O (a(z) + [ul)

_ VulP
< cZ(l—i—/{:)ap ’\/ mdm

k=0 By

By (4.1), inequality(4.19)) can be written as

VulP <=
(4.19) /,RN(a(|—U|Ad“” < CZ(HI{;)W—H/Ak |f||u|™ da.

2) + [u])
on the other hand, bfl.g) one has
+o00
Skt [l do
k=0 Ak

+oo
Zl+k°‘p = 12/ ]|l de.

Reasoning as in the proof of Theor, we have:
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—+00

SR [ g do

(4.20) k=0 A
<SR [l de
e,

From (4.19) and(4.20), we deduce that:

/ _ N < cio(uk)ap*/ (]l da
v (alo) + S O b
“+o0o
< e [ Ul de
k=0 v Bk
< of Ao [ napre ds
RN RN

Since/ |f|.|ul™ dx < +o00, the assertion | is proved.
N

R
(2) Proof of assertion Il : Let A > 0 be as in Lemm@.5| Sincep* = s, we have by the
Sobolev embedding

I3 P
=

(foterae) = (
(4.21) RN

Applying Holder inequality, we have:

P P

(4.22) (/RN u® dm)s <ec URN % dxr URN(a(x) + )P dm] o

On the other hand, by assertion | and Holder inequality , we deduce that:

1
7

(4.23) / _ NVl < cg + Co { / || (eP=A+m) dx} ’
' ry (a@) + Ju) T RN '

From (4.21)), (4.22) and(4.23)), we obtain:

(/ lul® dx) < c/ \Vul? dz

RN RN

c [1 —l—/ Ju| (P A+m) dx} "
RN

1—2
X {/ (a(z))7 7 d —I—/ |u|7-7 dx} :
RN RN

From[4.5] (4.24) becomes
E FEAR
(/ lul® d:v) < g+ 10 {/ lul® dx} :
RN Q
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Finally, fromiii) of Lemmg4.5|we deduce by Young's inequality that

/ lul® dz < eq1.
RN
(3) Proof of assertion Il : By assertion Il and4.24)), we have:

/ (Vul? dz < ¢is.
RN

hence, since* = s andp > ¢, we have:
u€ LP(IRY).

Finally, we deduce that:
ue WH(RY).
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