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2 L. AHAROUCH, J. BENNOUNAAND A. BOUAJAJA

1. I NTRODUCTION

This work is devoted to some results concerning the existence and the regularity of minima
for the following functional defined onW 1,p(IRN) (1 < p < N, N ≥ 2) with value onIR, by

(1.1) J(v) =

∫
IRN

|∇v|p + |v|p

(a(x) + |v|)αp
dx−

∫
IRN

f.|v|m dx, v ∈ W 1,p(IRN),

for some real numberα such that

(1.2) 0 < α <
p−m

p
,

and wherea is a measurable function onIRN that belongs to some Lebesgue space ( we will
specify that later ).
As regards the datumf , we will assume that belongs to a suitably Lebesgue space which make
sense to second term of functionalJ .
Recalling that, the previous problem has been studied by Boccardo and Orsina [3] in bounded
domain, more precisely the authors they proved the existence and regularity of minima for the
following functional:

J̃(v) =

∫
Ω

a(x, v)|∇v|p dx−
∫

Ω

f.v dx,

wherea is a carathéodory function satisfying the following condition:

β0

(1 + |t|)αp
≤ a(x, t) ≤ β1

whereβ0, β1 are positive constants andα verified the condition(1.2). In the same way we cite
the recent works [1, 2] of Boccardo and Orsina.
The main goal of this work is to extend the previous result to a general domain.
One of the main difficulties is to find a suitable Sobolev space in which the functionalJ is
finite, since even the second term is for example finite inW 1,p(IRN) when f ∈ Lr(IRN),
with (q∗)′ ≤ r ≤ q′, the first term is not in general finite whena(x) is small enough. An
additional difficulty also arises : the generate coerciveness inW 1,p(IRN) of the principal part of
the functionalJ . thus evenJ is lower semi continuous onW 1,p

0 (Ω) as a consequence of the De
Giorgi theorem, the lack of coerciveness implies thatJ may not attain its minimum onW 1,p

0 (Ω)
even in the case in whichJ is bounded from below (see example 3.2 of [3]), which will lead us
to defined the functional on another space,W 1,q

0 (Ω) for someq < p depending onα. In this
setting we prove several existence and regularity minima (depending on the summability of the
datumf ) for functionalJ , whereα satisfies the condition(1.2) anda satisfies the following
condition:

(1.3) 0 < a(x) ≤ M a.e in IRN ,

with M a positive constant

(1.4) a(x) ∈ Lq∗(IRN),

with

(1.5) q =
Np(1− α)

N − αp
.

We also assume that:

(1.6) f ∈ Lr0(IRN) for some

(
q∗

m

)′

≤ r0 ≤
( q

m

)′
.
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EXISTENCE AND REGULARITY OF M INIMA OF AN INTEGRAL FUNCTION 3

Notations :

In the sequel we will use several times the following functions of a real variable depending
on a parameterk > 0

(1.7) Tk(s) = max(−k, min(k, s)), Gk(s) = Tk(s).

Furthermore, we will denote withc or c1, c2, ....., various constants which may depend on the
data of the problem, whose value may vary from line to line.
If 1 < σ < N , we denote byσ∗ = Nσ

N−σ
the Sobolev embedding exponent for the space

W 1,σ
0 (Ω).

If u : IRN → IR is a Lebesgue measurable function, we define, for allk ≥ 0

(1.8) Ak =
{
x ∈ IRN : |u(x)| ≥ k

}
, Bk =

{
x ∈ IRN : k ≤ |u(x)| ≤ k + 1

}
.

If E is a lebesgue measurable subset ofIRN , we denote by|E| its N -dimensional Lebesgue
measure.
We defined the following functional onW 1,q(IRN), with q as in(1.5)

(1.9) I(v) =

 J(v) if
∫

IRN

|∇v|p + |v|p

(a(x) + |v|)αp
dx < +∞

+∞ Otherwise
.

Our results are the following :

Theorem 1.1.Under the hypotheses(1.2), (1.3), (1.4), (1.5) and(1.6), there exists a minimum
u of I onW 1,q(IRN).

The second result considers the case wheref has a high summability.

Theorem 1.2. Let f ∈ Lr(IRN) with r > N
p

. Suppose that(1.2), (1.3), (1.4), (1.5) and (1.6)

holds true, then any minimumu of I on W 1,q(IRN) belongs toW 1,p(IRN) ∩ L∞(IRN); thusJ
attains its minimum onW 1,p(IRN).

Remark 1.1.

(1) Observe that
N

p
>

(
q∗

m

)′

.

(2) We do not need the hypotheses(1.6) in the case where

N

p
<

( q

m

)′
and

N

p
< r ≤

( q

m

)′
.

Remark 1.2. Observe that the condition onr does not depend onα, and the result also does
not depend onα. The main tool of the proof will be anL∞(IRN) estimate, which then implies
theW 1,p(IRN) estimate.

Theorem 1.3.Assume that(1.2), (1.3), (1.4), (1.5), (1.6) andf ∈ Lr(IRN) with(
p∗

m + αp

)′

≤ r <
N

p
.
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4 L. AHAROUCH, J. BENNOUNAAND A. BOUAJAJA

Then any minimumu of I on W 1,p(IRN) belongs toW 1,p(IRN) ∩ Ls(IRN); thusJ attains its
minimum onW 1,p(IRN), where

s =
Nr (p(1− α)−m)

N − rp
.

Remark 1.3.

(1) Since0 < α <
p−m

p
we have(

p∗

m + αp

)′

<
N

p
.

(2) We do not need the hypotheses(1.6) in the case where(
p∗

m + αp

)′

<
( q

m

)′
and

(
p∗

m + αp

)′

≤ r < min

(( q

m

)′
,
N

p

)
.

Remark 1.4. Remark that if the minima are not bounded, we still have that they belong to
W 1,p(IRN). TheW 1,p(IRN) regularity result will be proved combining the information thatu
belongs toLs(IRN) with the fact thatu is minimum.

Remark 1.5. As a consequence of the previous theorem, ifr =
N

p
andf ∈ L1(IRN), we have

that any minimumu belongs toW 1,p(IRN) and toLs(IRN), for everys < +∞.

If we decrease the summability off , we find minima ofI which do not in general belong any
moreW 1,p(IRN).

Theorem 1.4.Under the assumptions(1.2)− (1.6), if f ∈ Lr(IRN) with(
p∗(1− α)

m

)′

≤ r <

(
p∗

m + αp

)′

.

Then any minimumu of I on W 1,ρ(IRN) belongs toW 1,ρ(IRN) ∩ Ls(IRN); thusJ attains its
minimum onW 1,ρ(IRN), where

ρ =
Nr (p(1− α)−m)

N − r(m + αp)
.

Remark 1.6. Note that the condition0 < α <
p−m

p
implies that(

p∗(1− α)

m

)′

≤ r <

(
p∗

m + αp

)′

.

Remark 1.7. If α tends to
p−m

p
both

(
p∗

m + αp

)′

and
(

p∗(1−α)
m

)′
converge to

N

p
, so that

theorem1.3 and1.4 cannot applied ifα =
p−m

p
.

The paper is organized as follow : in the next section we prove the existence of a minimum
for I, in the third section we give the proof of theorem1.2 (proof of bounded minima), while
the fourth section is devoted to the proof of Theorems1.3 and1.4.
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2. EXISTENCE OF MINIMA

In order to prove that there exists a minimum ofI onW 1,q(IRN), we are going to prove that
I is both coercive and weakly lower semicontinuous onW 1,q(IRN).

Theorem 2.1.Letm such that1 < m < p(1−α). Suppose that the hypotheses(1.2), (1.4), (1.5), (1.6)
anda(x) > 0 a.e inIRN . ThenI is coercive and weakly lower semicontinuous onW 1,q(IRN).

Proof. It is clear that, by theorem du to De Giorgi (see [8]), the functionalI is weak lower
semicontinuous. For what concerns the coercivity, it is enough to considerv in W 1,q(IRN) such
thatI(v) is finite.
We have ∫

IRN

|∇v|q + |v|q dx =

∫
IRN

|∇v|q + |v|q

(a(x) + |v|)αq
(a(x) + |v|)αq dx,

hence, by the Hölder inequality, sinceq < p, we have∫
IRN

|∇v|q + |v|q dx ≤ c

(∫
IRN

|∇v|p + |v|p

(a(x) + |v|)αp
dx

) q
p

×
(∫

IRN

(a(x) + |v|)
αpq
p−q dx

)1− q
p

.

By easy calculation, we show that:

(2.1) q∗ =
αpq

p− q
,

and that, from Sobolev embedding theorem we obtain:∫
IRN

|∇v|q + |v|q dx ≤ c

(∫
IRN

|∇v|p + |v|p

(a(x) + |v|)αp
dx

) q
p

×

1 +

(∫
IRN

|∇v|q + |v|q dx

) q∗
q

1− q
p

,

which implies that ifR = ‖v‖W 1,q(IRN )

(2.2) Rp ≤
(∫

IRN

|∇v|p + |v|p

(a(x) + |v|)αp
dx

) q
p (

1 + Rq∗
)1− q

p .

On the other hand, since
(

q∗

m

)′ ≤ r0 ≤
(

q
m

)′
, we have

(2.3)

∣∣∣∣∫
IRN

f.|v|m dx

∣∣∣∣ ≤ c

(∫
IRN

|f |r0 dx

) 1
r0

(∫
IRN

|∇v|q + |v|q dx

)m
q

.

≤ cR.

Hence, from (2.2) and (2.3) it follows that

I(v) ≥ c
Rp

(1 + Rq∗)
p
q
−1
− cRm,

then recalling(2.1), it is easy to check that:

p− q∗
(

p

q
− 1

)
> 1.
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6 L. AHAROUCH, J. BENNOUNAAND A. BOUAJAJA

Thus, we deduce that:
lim

R→+∞
I(v) = +∞,

and then the coerciveness ofI onW 1,q(IRN) is proven.

It is will known that (see [5]), sinceI is coercive and weakly semi-continuous, there exists
minimum ofI onW 1,q(IRN). From which theorem1.1 follows.

3. BOUNDED MINIMA

In this section, we will prove the boundedness of minimum ofI. to do this we need the
following lemma. We first recall that by theorem 1.2 there existsu in W 1,q(IRN) such that

I(u) = min
{
I(u), v ∈ W 1,q(IRN)

}
,

i.e

(3.1) I(u) ≤ I(v) for all v ∈ W 1,q(IRN).

Lemma 3.1. [4] Letw be a function inW 1,σ(Ω) such that, fork is greater than somek0∫
Ak

|∇w|σ dx ≤ ckθσ|Ak|
σ

σ∗+ε,

whereε > 0, 0 ≤ θ < 1.
Then the norm ofw in L∞(Ω) is bounded by a constant which depends onc, θ, σ,N, ε, k0

The proof of this lemma can be found in the appendix of [4], its proof based on the lemma
due of Stammpacchia [10].

Lemma 3.2. Let u be a minimum ofI on W 1,q(IRN), then there exists two positive constant
c1, c2 such that:

(3.2)
∫

Ak

|∇u|p

(a(x) + |u|)αp
dx ≤ c1k

m

∫
Ak

|f | dx + c2

∫
Ak

|f |.|Gk(u)|m dx ∀ k > 0,

whereAk is as in(1.8) andGk is the function defined in(1.7).

Proof. We have,I(u) ≤ I(0) = 0, then∫
IRN

|∇u|p + |u|p

(a(x) + |u|)αp
dx ≤

∫
IRN

|f |.|u|m dx < +∞.

On the other hand, we have for allk > 0,∫
IRN

|∇Tk(u)|p + |Tk(u)|p

(a(x) + |Tk(u)|)αp
dx =

∫
{|u|≤k}

|∇u|p + |u|p

(a(x) + |u|)αp
dx +

∫
{|u|≥k}

kp

(a(x) + k)αp
dx

≤
∫

IRN

|∇u|+ |u|p

(a(x) + |u|)αp
dx + kp(1−α). meas{|u| > k} < +∞,

we takev = Tk(u) as test function in(3.1) to obtain:∀ k > 0.∫
Ak

|∇u|p

(a(x) + |u|)αp
dx ≤

∫
Ak

|f |.(|u|m − km) dx =

∫
Ak

|f |. ((|u| − k + k)m − km) dx,

≤ c1k
m

∫
Ak

|f | dx + c2

∫
Ak

|f |.|Gk(u)|m dx.
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Proof of Theorem 1.2.Let us considerσ a positive number such that1 < σ < q < p. Suppose
that

1 < σ < q < p, with
1

r
+

m

σ∗
< 1,

( see the remark below for the possibility of this choice).
By Lemma3.2, Hölder and Sobolev inequalities, we have:
(3.3)∫

Ak

|∇u|p

(a(x) + |u|)αp
dx dx ≤ c‖f‖Lrkm|Ak|1−

1
r + c‖f‖Lr

[∫
Ak

|Gk(u)|σ∗ dx

] m
σ∗

.|Ak|1−
m
σ∗−

1
r

≤ ckm|Ak|1−
1
r + c

[∫
Ak

|∇u|σ dx

]m
σ

.|Ak|1−
m
σ∗−

1
r .

On the other hand, by Hölder inequality, we obtain:

∫
Ak

|∇u|σ dx =

∫
Ak

|∇u|σ

(a(x) + |u|)ασ
(a(x) + |u|)ασ dx

≤
[∫

Ak

|∇u|p

(a(x) + |u|)αp
dx

]σ
p
[∫

Ak

(a(x) + |u|)
ασp
p−σ dx

]1−σ
p

.

Moreover, from(3.3), we deduce, sincea ∈ L∞(IRN),

(3.4)

∫
Ak

|∇u|σ dx ≤ ck
mσ
p |Ak|(1−

1
r
)σ

p

[∫
Ak

(1 + |u|)
ασp
p−σ dx

] p−σ
p

+c|Ak|(1− m
σ∗−

1
r )

σ
p

[∫
Ak

|∇u|σ dx

]m
p

[∫
Ak

(1 + |u|)
ασp
p−σ dx

] p−σ
p

.

Applying Young’s inequality with exponentsp
m

and p
p−m

, on the second terms of the right side,
we get:

(3.5)

∫
Ak

|∇u|σ dx ≤ ck
mσ
p |Ak|(1−

1
r
)σ

p

[∫
Ak

(1 + |u|)
ασp
p−σ dx

] p−σ
p

+c|Ak|(1− m
σ∗−

1
r )

σ
p−m

[∫
Ak

(1 + |u|)
ασp
p−σ dx

] p−σ
p−m

.

Because it can be easily verified that ifk ≥ 1, one has that1 + |u| ≤ 2(k + |Gk(u)|) onAk, we
can write:∫

Ak

|∇u|σ dx ≤ c
{

k(m
p

+α)σ|Ak|(1− 1
r )

σ
p
+1−σ

p + k
ασp
p−m |Ak|(1− m

σ∗−
1
r )

σ
p−m

+ p−σ
p−m

+k
mσ
p |Ak|(1− 1

r )
σ
p

[∫
Ak

|Gk(u)|
ασp
p−σ dx

] p−σ
p

+ |Ak|(1− m
σ∗−

1
r )

σ
p−m

[∫
Ak

|Gk(u)|
ασp
p−σ dx

] p−σ
p−m

}
.

Now, observe that we can chooseσ such that
ασp

p− σ
< σ∗ (see also remark below for the

possibility of this choice). By this property we deduce, by using the Höder’s and Sobolev’s
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8 L. AHAROUCH, J. BENNOUNAAND A. BOUAJAJA

inequalities,∫
Ak

|∇u|σ dx ≤ c
{

k(m
p

+α)σ|Ak|(1− σ
rp) + k

ασp
p−m |Ak|(1− m

σ∗−
1
r )

σ
p−m

+ p−σ
p−m

+k
mσ
p |Ak|(p−σ

r
−αp σ

σ∗ )
1
p

[∫
Ak

|∇u|σ dx

]α

+ |Ak|(p−m−σ
r
+mσ

N
−αp σ

σ∗ )
1

p−m

[∫
Ak

|∇u|σ dx

] αp
p−m

}
.

Applying Young’s inequality with exponents1
α

and 1
1−α

(respectivelyp−m
αp

and p−m
p−m−αp

), on the
second (respectively third ) terms of the right side, we get:

k
mσ
p |Ak|(p−σ

r
−αp σ

σ∗ )
1
p

[∫
Ak

|∇u|σ dx

]α

≤ 1

4

∫
Ak

|∇u|σ dx + ck
mσ

p(1−α) |Ak|(p−σ
r
−αp σ

σ∗ )
1

p(1−α)

|Ak|(p−m−σ
r
+mσ

N
−αp σ

σ∗ )
1

p−m

[∫
Ak

|∇u|σ dx

] αp
p−m

≤ 1

4

∫
Ak

|∇u|σ dx + c|Ak|(p−m−σ
r
+mσ

N
−αp σ

σ∗ )
1

p−m−αp ,

so that we have:
(3.6)∫

Ak

|∇u|σ dx ≤ c
{

k(m
p

+α)σ|Ak|(1− σ
rp) + k

ασp
p−m |Ak|(1− m

σ∗−
1
r )

σ
p−m

+ p−σ
p−m

+k
mσ

p(1−α) |Ak|(p−σ
r
−αp σ

σ∗ )
1

p(1−α) + |Ak|(p−m−σ
r
+mσ

N
−αp σ

σ∗ )
1

p−m−αp

}
.

As can seen by means of straightforward calculations, the assumptions onr andα, imply that:

(p−m− σ

r
+

σm

N
)

1

p−m
<

(
p−m− σ

r
+

σm

N
− αp

σ

σ∗

) 1

p−m− αp
.

We note that, from the fact thatu belongs toW 1,q(IRN), it follows that the sequence(|Ak|)k

tends to zero ask tends to infinity, thus there existsk0 such that ifk ≥ k0, we have

|Ak|(p−m−σ
r
+σm

N
−αp σ

σ∗ )
1

p−m−αp < |Ak|(p−m−σ
r
+σm

N
) 1

p−m ,

and so(3.6) implies that:∫
Ak

|∇u|σ dx ≤ c
{

k(m
p

+α)σ|Ak|(1− σ
rp) + k

ασp
p−m |Ak|(p−m−σ

r
+σm

N ) 1
p−m

+k
mσ

p(1−α) |Ak|(p−σ
r
−αp σ

σ∗ )
1

p(1−α)

}
∀ k > k0,

which implies that: ∫
Ak

|∇u|σ dx ≤ ckεσ|Ak|µ,

where

ε = max

(
m

p
+ α,

αp

p−m
,

m

p(1− α)

)
,

and

µ = min

(
1− σ

rp
,

(
p− σ

r
− αp

σ

σ∗

) 1

p(1− α)
,

(
p−m− σ

r
+

σm

N

) 1

p−m

)
.
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We also observe thatµ− σ

σ∗
> 0 sincer >

N

p
andε belongs to(0, 1) since0 < α <

p−m

p
.

Thus from Lemma 3.1 it follows thatu belongs toL∞(IRN).
On the other hand, since∫

IRN

|∇u|p + |u|p

(a(x) + |u|)αp
dx ≤

∫
IRN

|f |.|u|m dx < +∞,

theL∞(IRN) estimate implies that

1

(‖a‖L∞(IRN ) + ‖u‖L∞(IRN ))αp

∫
IRN

|∇u|p + |u|p dx ≤
∫

IRN

|∇u|p + |u|p

(a(x) + |u|)αp
dx ≤ c,

and sou belongs toW 1,p(IRN).
Finally, Theorem 1.2 is completely proved.

Remark 3.1. Remark that

(1)
ασp

p− σ
< σ∗ is equivalent toσ < q.

(2)
1

r
+

m

σ∗
< 1 is equivalent toσ >

mNr

Nr −N + mr
,

(3)
mNr

Nr −N + mr
< q, for everyα ∈

(
1,

p−m

p

)
, p ∈ (1, N) andr >

N

p
, which

implies that we can chooseσ satisfies1) and2).

4. SUMMABILITY OF UNBOUNDED MINIMA

In this section, we will prove Theorems1.3 and1.4. We first begin with the technical results,
which will be used later

Lemma 4.1. Letu be a minimum ofI in W 1,q(IRN), then for allk ∈ IN , we have

(4.1)
∫

Bk

|∇u|p

(a(x) + |u|)αp
dx ≤ c

1 + k

∫
Ak

|f |.|u|m dx ∀ k ∈ IN,

whereAk andBk are as in(1.8) .
Moreover, ifa ∈ L∞(IRN), we have

(4.2)
∫

Bk

|∇u|p dx ≤ c(1 + k)αp−1

∫
Ak

|f |.|u|m dx ∀ k ∈ IN,

wherec is a constant independent ofk.

Proof. - Let us observe that, ifk = 0, sinceu is a minimum ofI, we get∫
IRN

|∇u|p + |u|p

a(x) + |u|)αp
dx ≤

∫
IRN

|f |.|u|m dx,

this implies that:∫
{0≤|u|<1}

|∇u|p

(a(x) + |u|)αp
dx ≤

∫
IRN

|f |.|u|m dx =

∫
A0

|f |.|u|m dx.

Thus(4.1) (and then(4.2)) is proven.
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- Assume now thatk > 0 and letv = u − T1(u − Tk(u)), observe thatv ∈ W 1,q(IRN)
and by a simple calculation, we get∫

IRN

|∇v|p + |v|p

(a(x) + |v|)αp
dx < +∞.

We takev as test function in(3.1), we obtain:∫
IRN

|∇u|p + |u|p

(a(x) + |u|)αp
dx−

∫
IRN

f.|u|m dx ≤
∫

IRN

|∇v|p + |v|p

(a(x) + |v|)αp
dx−

∫
IRN

f.|v|m dx,

then∫
IRN

|∇u|p + |u|p

(a(x) + |u|)αp
dx−

∫
IRN

|∇v|p + |v|p

(a(x) + |v|)αp
dx

≤
∫

Ak

|f |. (|u|m − |v|m) dx ≤ m

∫
Ak

|f |.|u|m−1 dx,

which implies that:∫
IRN

|∇u|p + |u|p

(a(x) + |u|)αp
dx−

∫
IRN

|∇v|p + |v|p

(a(x) + |v|)αp
dx

≤ m

k

∫
Ak

|f |.|u|m dx ≤ 2m

k + 1

∫
Ak

|f |.|u|m dx.

By definition ofv, the previous inequality implies that:∫
Bk

{
|∇u|p + |u|p

(a(x) + |u|)αp
− kp

(a(x) + k)αp

}
dx

+

∫
Ak+1

{
|∇u|p + |u|p

(a(x) + |u|)αp
− |∇v|p + |v|p

(a(x) + |v|)αp

}
dx ≤ 2m

k + 1

∫
Ak

|f |.|u|m dx,

since the function

fx : s −→ sp

(a(x) + s)αp
,

is increasing for allx ∈ IRN , we have:

(4.3)

∫
Bk

|∇u|p

(a(x) + |u|)αp
dx ≤

∫
Ak+1

|∇u|p
{

1

(a(x) + |v|)αp
− 1

(a(x) + |u|)αp

}
dx

+
2m

k + 1

∫
Ak

|f |.|u|m dx

≤
∫

Ak+1

|∇u|p (a(x) + |u|)αp − (a(x) + |v|)αp

(a(x) + |v|)αp(a(x) + |u|)αp
dx

+
2

k + 1

∫
Ak

|f |.|u|m dx.

Since|v| = |u| − 1 on Ak+1, we easily obtain that there exists a positive constant c
(independent ofx) such that

(a(x) + |u|)αp − (a(x) + |v|)αp ≤ c(a(x) + |v|)αp−1.

Thus(4.3) becomes

∫
Bk

|∇u|p

(a(x) + |u|)αp
dx ≤ c

∫
Ak+1

|∇u|p

(a(x) + |v|)(a(x) + |u|)αp
dx +

2m

k + 1

∫
Ak

|f |.|u|m dx.
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Since|v| ≥ k onAk+1, we have:∫
Bk

|∇u|p

(a(x) + |u|)αp
dx ≤ c

k

∫
Ak+1

|∇u|p

(a(x) + |u|)αp
dx +

2m

k + 1

∫
Ak

|f |.|u|m dx.

Finally, we have:

(4.4)
∫

Bk

|∇u|p

(a(x) + |u|)αp
dx ≤ c

k + 1

∫
Ak

|f |.|u|m dx.

Moreover, ifa ∈ L∞(IRN), we get:

a(x) + |u(x)| ≤ ‖a‖∞ + k + 1 ≤ c(k + 1), for all x ∈ Bk,

thus and(4.4), we deduce that:∫
Bk

|∇u|p

(1 + k)αp
dx ≤ c

k + 1

∫
Ak

|f |.|u|m dx,

which implies that:

(4.5)
∫

Bk

|∇u|p dx ≤ c(k + 1)αp−1

∫
Ak

|f |.|u|m dx.

Proof of Theorem 1.3.Let us now prove the following

Theorem 4.2. Letu a minimum ofI onW 1,q(IRN). Under the hypotheses of Theorem1.3, the
following assertions hold true :

(1) Assertion I: For all γ ≥ 1, we have

(4.6)
∫

IRN

|∇u|p|u|p(γ−1) dx ≤ c1 + c2

∫
IRN

|f ||u|αp+pγ−p+m dx

wherec1 andc2 are two positive constants.
(2) Assertion II: There exists a positive constantc3 such that∫

IRN

|u|s dx ≤ c3.

(3) Assertion III: There exists a positive constantc4 such that∫
IRN

|∇u|p dx ≤ c4.

We cite the following (simple but fundamental) lemma.

Lemma 4.3. Letγ =
r(N − p) [p(1− α)−m]

p(N − rp)
, we have

i) s = γp∗ = r′(αp + γp− p + 1),

ii) γ ≥ 1 if and only ifr ≥
(

p∗

m + αp

)′

,

iii)
p

p∗
>

1

r′
if and only ifr <

N

p
.
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Proof of Theorem 4.2. (1) Proof of Assertion I: Let γ ≥ 1, we have by using(4.5)

(4.7)

∫
IRN

|∇u|p|u|p(γ−1) dx =
+∞∑
k=0

∫
Bk

|∇u|p|u|p(γ−1) dx

≤
+∞∑
k=0

∫
Bk

|∇u|p(1 + k)p(γ−1) dx

≤ c
+∞∑
k=0

∫
Ak

|f |.|u|m(1 + k)αp+γp−p−1 dx.

Recalling that, fork ∈ IN , we have:

(4.8)
∫

Ak

|f |.|u|m dx =
+∞∑
h=k

∫
Bh

|f |.|u|m dx,

hence

(4.9)

+∞∑
k=0

(1 + k)αp+γp−p−1

∫
Ak

|f |.|u|m dx

=
+∞∑
k=0

(1 + k)αp+γp−p−1

+∞∑
h=k

∫
Bh

|f |.|u|m dx.

Therefore, by changing the order of summation, and recalling that:

(4.10)
h∑

k=0

kl ≤ c(1 + h)l+1,

with c = c(l), we have:

(4.11)

+∞∑
k=0

(1 + k)αp+γp−p−1

∫
Ak

|f |.|u|m dx

=
+∞∑
h=0

h∑
k=0

(1 + k)αp+γp−p−1

∫
Bh

|f |.|u|m dx

=
+∞∑
h=0

(1 + h)αp+γp−p

∫
Bh

|f |.|u|m dx,

using(4.7) we obtain:

∫
IRN

|∇u|p|u|p(γ−1) dx ≤ c
+∞∑
k=0

(1 + k)αp+γp−p

∫
Bk

|f |.|u|m dx

≤ c
+∞∑
k=0

∫
Bk

|f |.|u|m(1 + |u|)αp+γp−p dx

≤ c

∫
Ω

|f |.|u|m dx + c

∫
Ω

|f |.|u|αp+γp−p+m dx.
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Finally, by the fact that
∫

Ω

|f |.|u|m dx < +∞, we deduce(4.6).

Proof of Assertion II: Let γ as in Lemma4.2. We obtain, by Sobolev embedding and
Lemma4.2,

(4.12)

(∫
IRN

|u|s dx

) p
p∗

=

(∫
IRN

|u|γp∗ dx

)
p
p∗
≤

∫
IRN

|∇u|p|u|p(γ−1) dx

≤ c + c

∫
IRN

|f ||u|αp+γp−p+m dx.

The above inequality and Hölder inequality implies

(∫
IRN

|u|s dx

) p
p∗

≤
(∫

IRN

|f |r dx

) 1
r
(∫

IRN

|u|r′(αp+γp−p+m) dx

) 1
r′

.

Recallingi), iii) of Lemma4.2, we deduce by Young’s inequality that:

(4.13)
∫

IRN

|u|s dx ≤ c3.

(2) Proof of Assertion III: From(4.12), we get

(4.14)
∫

IRN

|∇u|p|u|p(γ−1) dx ≤ c4,

on the other hand, we have:∫
IRN

|∇u|p dx =

∫
{|u|≤1}

|∇u|p dx +

∫
{|u|≥1}

|∇u|p dx

≤ c

∫
{|u|≤1}

|∇u|p dx +

∫
IRN

|∇u|p|u|p(γ−1) dx

≤ c

∫
IRN

|f ||u|m dx +

∫
IRN

|∇u|p|u|p(γ−1) dx,

thus, by(4.14) implies that:

(4.15)
∫

IRN

|∇u|p dx ≤ c5.

Sinceu ∈ Ls(IRN), with s = p∗γ ≥ p∗ and u ∈ Lq(IRN), this implies (since
q < p ≤ p∗),

(4.16) u ∈ Lp(IRN).

From(4.13), (4.15) and(4.16), we deduce that:

u ∈ W 1,p(IRN) ∩ Ls(IRN).

Proof of Theorem 1.4.

Theorem 4.4. Let u a minimum ofI in W 1,q(IRN). Under the hypotheses of Theorem1.4, the
following assertions hold true :
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(1) Assertion I: For all λ > 0, we have:

(4.17)
∫

IRN

|∇u|p

(1 + |u|)λ
dx ≤ c5 + c6

∫
IRN

|f |(a(x) + |u|)αp−λ+m dx,

wherec5 andc6 are two positive constants.
(2) Assertion II: There exists a positive constantc7 such that∫

IRN

|u|s dx ≤ c7.

(3) Assertion III: There exists a positive constantc8 such that∫
IRN

|∇u|ρ dx ≤ c8.

The following lemma is simple but fundamental for the proof of the previous theorem.

Lemma 4.5. Let λ =
p [N − r(m + αp)]− rN [p(1− α)−m]

N − rp
, we have the following prop-

erties :

i) s =
λρ

p− ρ
= r′(αp− λ + m),

ii) λ > 0 if and only ifr <

(
p∗

m + αp

)′

,

iii)
ρ

pr′
+ 1− ρ

p
<

ρ

s
.

Proof of Theorem 4.4. (1) Proof of assertion I : Let λ > 0 and letu ∈ W 1,q(IRN) a
minimum ofI, we have:

(4.18)

∫
IRN

|∇u|p

(a(x) + |u|)λ
dx =

∫
IRN

|∇u|p

(a(x) + |u|)αp
(a(x) + |u|)αp−λ dx

≤ c
+∞∑
k=0

(1 + k)αp−λ

∫
Bk

|∇u|p

(a(x) + |u|)αp
dx.

By (4.1), inequality(4.19) can be written as

(4.19)
∫

IRN

|∇u|p

(a(x) + |u|)λ
dx ≤ c

+∞∑
k=0

(1 + k)αp−λ−1

∫
Ak

|f |.|u|m dx.

on the other hand, by(4.8) one has

+∞∑
k=0

(1 + k)αp−λ−1

∫
Ak

|f |.|u|m dx

=
+∞∑
k=0

(1 + k)αp−λ−1

+∞∑
h=k

∫
Bh

|f |.|u|m dx.

Reasoning as in the proof of Theorem4.2, we have:
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(4.20)

+∞∑
k=0

(1 + k)αp−λ−1

∫
Ak

|f |.|u|m dx

≤
+∞∑
k=0

(1 + k)αp−λ

∫
Bk

|f |.|u|m dx.

From(4.19) and(4.20), we deduce that:

∫
IRN

|∇u|p

(a(x) + |u|)λ
dx ≤ c

+∞∑
k=0

(1 + k)αp−λ

∫
Bk

|f |.|u| dx

≤ c

+∞∑
k=0

∫
Bk

|f |.|u|m(1 + |u|)αp−λ dx

≤ c

∫
IRN

|f |.|u|m dx +

∫
IRN

|f |.|u|αp−λ+m dx.

Since
∫

IRN

|f |.|u|m dx < +∞, the assertion I is proved.

(2) Proof of assertion II : Let λ > 0 be as in Lemma4.5. Sinceρ∗ = s, we have by the
Sobolev embedding

(4.21)

(∫
IRN

|u|s dx

) ρ
s

=

(∫
IRN

|u|ρ∗ dx

) ρ
ρ∗

≤ c

∫
IRN

|∇u|ρ dx

= c

∫
IRN

|∇u|ρ

(a(x) + |u|)
λρ
p

(a(x) + |u|)
λρ
p dx.

Applying Hölder inequality, we have:

(4.22)

(∫
IRN

|u|s dx

) ρ
s

≤ c

[∫
IRN

|∇u|p

(a(x) + |u|)λ
dx

] ρ
p
[∫

IRN

(a(x) + |u|)
λρ

p−ρ dx

]1− ρ
p

.

On the other hand, by assertion I and Hölder inequality , we deduce that:

(4.23)
∫

IRN

|∇u|p

(a(x) + |u|)λ
dx ≤ c8 + c9

[∫
IRN

|u|r′(αp−λ+m) dx

] 1
r′

.

From(4.21), (4.22) and(4.23), we obtain:

(4.24)

(∫
IRN

|u|s dx

) ρ
s

≤ c

∫
IRN

|∇u|ρ dx

≤ c

[
1 +

∫
IRN

|u|r′(αp−λ+m) dx

] ρ
pr′

×
[∫

IRN

(a(x))
λρ

p−ρ dx +

∫
IRN

|u|
λρ

p−ρ dx

]1− ρ
p

.

From4.5, (4.24) becomes(∫
IRN

|u|s dx

) ρ
s

≤ c9 + c10

[∫
Ω

|u|s dx

] ρ
pr′+1− ρ

p

.
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Finally, from iii) of Lemma4.5 we deduce by Young’s inequality that∫
IRN

|u|s dx ≤ c11.

(3) Proof of assertion III : By assertion II and(4.24), we have:∫
IRN

|∇u|ρ dx ≤ c12.

hence, sinceρ∗ = s andρ ≥ q, we have:

u ∈ Lρ(IRN).

Finally, we deduce that:
u ∈ W 1,ρ(IRN).
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