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ABSTRACT. The farthest point mapping in a p-normed space X is studied in virtue of the
Gateaux derivative and the Frechet derivative. Let M be a closed bounded subset of X having
the uniformly p-Gateaux differentiable norm. Under certain conditions, it is shown that every
maximizing sequence is convergent, moreover, if M is a uniquely remotal set then the farthest
point mapping is continuous and so M is singleton. In addition, a Hahn—Banach type theorem
in p-normed spaces is proved.
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1. INTRODUCTION

Let X be a real linear space. A quasi-norm is a real-valued function on X satisfying the
following conditions:

() ||z|| > Oforall z € X, and ||z|| = 0 if and only if x = 0.
@) [[Az| = |A| - ||=| forall A € Rand all x € X.
(iii) There is a constant K > 1 such that ||z + y|| < K(||z|| + ||y||) forall z,y € X.

The pair (X, ||-||) is called a quasi-normed space if ||-|| is a quasi-norm on X. The small-
est possible K is called the module of concavity of ||-||. By a quasi-Banach space we mean
a complete quasi-normed space, i.e., a quasi-normed space in which every Cauchy sequence
converges in X.

This class includes Banach spaces. The most significant class of quasi-Banach spaces, which
are not Banach spaces are L,-spaces for 0 < p < 1 equipped with the L,-norms ||| .

A quasi-norm ||-|| is called a p-norm (0 < p < 1) if |z +y|” < ||z||”+||y||? forall z,y € X.
In this case a quasi-normed (quasi Banach) space is called a p-normed (p-Banach) space. By
the Aoki—Rolewicz theorem [7]] each quasi-norm is equivalent to some p-norm. Since it is much
easier to work with p-norms than quasi-norms, henceforth we restrict our attention mainly to
p-norms. See [1, 4, 8]] and the references therein for more information.

Throughout the paper, S(X) and B(X) denote the unit sphere and the unit ball of X, respec-
tivelty. If z* is in X*, the dual of X, and x € X we write 2*(x) as (z*, ). We also consider
quasi-norms with &' > 1. The case where K = 1 turns out to be the classical normed spaces,
so we will not discuss it and refer the interested reader to [2].

Let £ > 0. A real valued function f on X is said to be k-Gateaux differentiable at a point =
of X if there is an element df (x) of X* such that for each y in X,

(1.1) lim sgn(t)[¢] " (f (2 + ty) — f(2)) = {df (), ),

and we call df (x) the k-Gateaux derivative of f at x.
We say that f is k-Frechet differentiable at a point = of X if there is an element f'(x) of X*
such that

(1.2) Jim lyl™(f (@ +y) = f@) = (@), ) = 0,
and we call f’(z) the k -Frechet derivative of f at x. See [2]].

The norm of X is called uniformly k-Gateaux differentiable if for f(z) = ||x||* equality
holds uniformly for z,y € X, and the operator norm ||df (x)]| is less than or equal 1. Then
df (x) is denoted by Dy, (z).

We say that a non-zero element x* of X* strongly exposes B(X) at z € S(X), provided
(z*,x) = ||z*||, and a sequence {y,} in B(X) converges to = whenever {(z*,y,)} converges
to (z*, z).

The reader is referred to [2, 5, 6] for analogue results concerning normed spaces and to the
book of D.H. Hyers, G. Isac and Th.M. Rassias [3] for extensive theory and applications of
nonlinear analysis methods.

In this paper we use some ideas of [2]] to study the farthest point mapping in a p-normed space
X by virtue of the Gateaux derivative and the Frechet derivative. Let M be a closed bounded
subset of X which has a uniformly p-Gateaux differentiable norm. Under certain conditions,
we show that every maximizing sequence is convergent, moreover, if M is a uniquely remotal
set then the farthest point mapping is continuous and so M is a singleton. In addition, we prove
a Hahn—Banach type theorem for p-normed spaces and give an application.
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2. MAIN RESULTS

We start this section with following definition.
Definition 2.1. Let X be a p-normed space and M be a bounded closed subset of X. Setting
V(z) :=sup{flz —yllP:ye M} (xeX),

F(z) :={y € M : ||x—y||P = ¥(x)} is called the set of farthest points in M form = (CHECK).
We say that M is a uniquely remotal set if /' is a singleton for each € X and then we denote
the single element of F'(z) by F'(z). The map F' is called the antiprojection or the farthest point
mapping for M.

A center of a bounded set M in a p-normed space X is an element c in X such that

r(M) = sup |lc — y[|” = inf sup |lz —y]|.
yeEM zeX ye M

In fact (M), the so called Chebyshev radius of M, is the smallest ball in X containing M.
We call a sequence {y,} in M a maximizing sequence for = provided ||z — y,||P — V¥(x) as
n — 0o.

Lemma 2.1. If M is a nonempty bounded subset of X and x,y € X then
2.1) (W (z) = ¥(y)| < [lz—yl”

Proof.

=
g
|
=
&
I

sup{[|z — m||” : m € M} — sup{||ly — m|]” : m € M}
<sup{l|lz—m—y+m||P:me M}
[l —yl”.

Lemma 2.2. If x € X is a point of k-Gateaux differentiability of V and y € F(x) then
. 0, k<1,
(d¥(z), |lz =yl (z—y)) < n
plz —ylIP™ k=1
Proof. Since y € F(x) we have ||z — y||P = ¥(z). Hence for 0 < ¢t < 1, we get
2.2) Uz +i(r—y) —V(z) = o+t —y) —yll" — [z -yl
=1+ t)|lz =yl = llz —yl”
= ((1+8)" = Dllz —y]".

Let s € [0,00). Then

(2.3) (dV(x),sz) = tli%fi R (2 + tsz) — U(z))
= shs7F tlirgi R (W (x +tsz) — U(x))
= tgr(%(s_kt_k)(m(x +tsz) — ¥ (z))

= s"(d¥(x), 2),
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whence
(d¥(z), |z -yl (z—y) = lim sgn()[t] " (= — y| ™) (¥(z + t(x — y)) — ¥(x))
> limy o L[z — y|P%, £ > 0;

< limyg- Dz — gk, ¢ <0,

Then
0, k<1
(AP (@), |z =yl (z —y)) = {
plle =yl k=1.
|
Theorem 2.3. Suppose that M is a closed bounded subset of X with a uniformly p-Gateaux
differentiable norm, V is p-Gateaux differentiable at a point of x € X\M withy € F(x) and

dV(zx) strongly exposes B(X) at ||z — y||~'(x — y). Then every maximizing sequence for x
converges to y. Moreover, if M is a uniquely remotal set then F' is continuous at .

Proof. Suppose that {y,} is a maximizing sequence for z. For each ¢, we have

2.4 Uz +t2) — V() > sup ||z +tz — yu|” — lim ||z — ya|”
M n—oo

Yn €

> limsup (||z + tz — yal|” — |z — yal?).

n—oo

Fix z € X. We have
(2.5) (dV(x),z) = lim sgn(t)[t| P (V(x +tz) — ¥(z))

t—0-
< Jim (= (=) limsup (|l +tz = yull” ~ llz — yal"))
= lim (liminf (= (=)"(lz + t2 = gull” = llz = 9a[")))
< liminf(Dy(z — yn), 2)
and
(2.6) (d¥(z),z) = tl_i)r& sgn(t)|t] P (VU (x +tz) — ¥(z))
> lim (¢ msup (e + 12 — ol = e~ )
= lim (liflnﬂsolip (Pl 4tz = yall” = 2 — ynl?)))
> lim sup(Dy(z — yn), 2)-
Using (2.5) and (2.6) we get
2.7 lim (D, (x — yy,), 2) = (d¥(x), 2).

n—oo

We also have

(2.8) (Dy(x = yn),;® — y) = lim (t77(lz — yn + t(z — y) [P — |z — yal "))

t—0t

= lim (¢77[[(z — ya)[IP((1 +1)7 — 1)).

t—0t
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Using equalities (2.7)) for z = = — y,,, (2.3)) and (2.8) we obtain
(d¥(x), 2 = yull ™ (z = yn)) = lim (Dy(z = yn), & = |7 (= = ya))
= lim lim (¢ P((1+¢)P—1)) =0

n—00 {—0+
= (d¥(z), |z =yl (z —y)).
Since d¥(x) strongly exposes B(X) at |z — y|| ' (z — y), we get
tim 2 — gl (e = 9) = Il — 9l (& — )
Since {y, } is a maximizing sequence for x, we therefore easily get
(2.9) Jim y, =y.
Next, assume that {x,,} converges to . We shall show that { F'(z,,)} converges to F'(z).
Since M is a uniquely remotal set we have ||z, — F(x,,)||” = sup{||z,—yl||?; y € M}. Hence
(2.10) [z — F(@)||” < |z — F(z,)[|"-
By 2.10),
@1 o= F@)P - llz = F)l” <z — F@IP + o — wall” = o — )|
< lw = F@)|” + [l = @nl” = [len — F(2)[]”
<l = anll” + llz = F(z) — 20 + F(2)]]?
< 2|z — z,||P.
It follows from (2.11)) and the convergence of {x,,} to x that
tim [l — F(w)|” = [z~ F@)|P.

Hence { F'(x,,)} is a maximizing sequence for x and so, by the first part of the theorem
lim F(x,) = F(x).

n—oo

|
Theorem 2.4. Suppose M is a closed bounded subset of a p-normed space X and x € X\ M
is a point of p-Frechet differentiability of V and if y € F(x) and V'(x) strongly exposes B(X)
at |z — y|| "' (x — y), then every maximizing sequence for x converges to y.
Proof. Let {y, } be a maximizing sequence for z and let k = inf,, ||z —y,||*". Since M is closed,

k > 0. Hence there is N such that for n > N then ¥ (z) — ||z — y,||? < k < ||z — y,||*, and
so we can choose a sequence {«,, } of positive numbers such that «v,, — 0 and

Iz =yl > ap > ¥(@) = llz —yal”  (n EN).

Hence

(2.12) 1+ )P|z —yullP > A+ )P (¥(2) —a2) (neN,-1<t<1).
Let0 <t < 1. Since y,, € M we have

(2.13) U(x —t(yn — ) 2 [|o = t(yn — @) = yull” = (L 4+ O)"[|2 — yaul/”-
It follows from (2.12]) and (2.13) that

(2.14) Uz = t(yn — ) = V(z) = (L + ) |lz — gl — V()

> U(z)((1+8)P —1) — (14 t)Pa2.
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Fix € > 0. By the definition of ¥'(x), there is § > 0 such that if ||y||? < ¢ then
(2.15) W(z+y) = ¥(z) — (V'(2), 9)] <ellyll”

Let t? = a,(||z — ya||) P < 1 and v, < ¢ for large n. Replacing y by ¢, (x — y,,) in (2.15]) and

noting (2.14)), we get

elltn(@ = yu)|I” + (¥'(2), tn(x — yn)) = V(2 + to(r — yn)) — V(z)
> U(2)((1+t,)P — 1) = (1 +t,)Pas,
whence
2.16) LW (@), tale — )
> ain(‘l’(ﬂi)((l +t)P — 1) = (1 +t,)Pai — elltn(yn — x)|7)
> (@) (1 )~ 1)~ (14 1o, — ¢
1 P_1)— Po. —
> mxy(@((l +t,)P —1) — (1 +t,) P, — €.
Using (2.16)), we get
2.17)
(W), 2 — gall = )} = <qﬂ<x>, leml o - yn>>
= 2=l )t - )
= S (V(0).talo — 1)

Letn — oo in 2.17). Then v, — 0, ||y, — 2| — ¥(z) and ¢, — 07 such that

(2.18) Tim (V'(2), ||z = yol ™ (2 = ya)) 2 0

Changing ¢ to —t in (2.13)) and (2.14) and utilizing a similar strategy as above we get
Tim (W), [lgo — 2]~ (g — 2)) > 0,

whence

(2.19) lim (¥'(z), [l2 = yal| ™ (z — yn)) <0.

By 2.18), 2.19) we have,
lim (P'(2), || — yu] = (2 = ya)) = 0.

n—oo

By Lemma[2.2]
(AP (@), [l =y~ (z —y)) =0
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and then
0= Jim i~ )|+t = )~ Vo)~ (o).t~ )
= Jim (It = )W + 1l =) = ¥(@) — [z = ) |GV @)t — )
o (@ @) =) e
~ i ( T (V' (@), e =yl (&~ )
Climy o 7P (W (2 + (K —y)) — () () e — g
= st (V' (@), e = 7 (@~ )

= [lz =y {d¥(2), (x — y)) — (¥'(2), [z = y[ 7 (= — v))
= (d¥(2), |z =yl 7 (z —y)) — (¥'(2), |z =yl 7 (= — v))
= (V'(2), [l =y~ (z — ),

therefore

lim (V' (2), |2 — yall (& = ya)) = 0 = (¥'(2), [lz — ylI 7" (= — v)).

n—oo

It

Since ¥’(x) strongly exposes B(X) at ||z —y|| ' (z — y), we deduce that ||z —y, || (z —y,) —

|z — y||~*(z — y) which yields y,, — y. 1
3. HAHN-BANACH THEOREM AND ITS APPLICATION

This section is devoted to one version of the celebrated Hahn—Banach theorem. We follow
the strategy and terminology of [9]. We begin with a lemma.

Lemma 3.1. Let 0 < p < 1, let M be a linear subspace of a real vector space X and let
p: X — R be a mapping such that

() p(z +y) < p(z) +ply) (2,9 € X);
() p(tz) =tPp(x) (ze X,0<teR).

If oo : M — R is a linear mapping such that py(z) < p%(x) for all x € M, then there is a
1
linear mapping ¢ : X — R such that p|y = ¢ and p(x) < pr(z) (x € X).

Proof. We use Zorn’s lemma. Consider the partially ordered set P, whose typical member is
a pair (Y, ), where (i) Y is a linear subspace of X which contains Xy; and (ii)) ¢ : ¥ — R

is a linear mapping which is an extension of ¢, and satisfies (z) < p% (x) Vz € Y;the
partial order on P is defined by setting (Y1, 1) < (Y2,,) precisely when (a) Y1 C Y3, and (b)
Valyy = ¥y

Furthermore, if I' = {(Y;,4;) : ¢ € I} is any totally ordered set in P, an easy verification
shows that an upper bound for the family I is given by (Y, 1)), where Y = U,;¢;Y; and ¢ : Y —
R is the unique necessarily linear mapping satisfying ¢|y, = v, for all .

Hence, by Zorn’s lemma, the partially ordered set P has a maximal element, call it (Y, 1)).
The proof of the lemma will be completed once we have shown that Y = X.

Suppose that Y # X; fixzp € X —Y,andletY; = Y +Rxg = {y+txg: y € Y,t € R}. The
definitions ensure that Y is a subspace of X which properly contains Y. Also, notice that any
linear mapping ¢, : Y7 — R which extends 1 is prescribed uniquely by the number ¢ty = ()
(and the equation ¢, (y + txg) = (x) + tty).

We assert that it is possible to find a number ¢, € R such that the associated mapping i,
would - in addition to extending 1) - also satisfy 1, < p%. This would then establish the
inequality (Y, %) < (Y1,%,), contradicting the maximality of (Y, ¢); which would in turn imply
that we must have had Y = X in the first place, and the proof would be complete.
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First, observe that if y;,y> € Y are arbitrary, then

Y(y1) + () = Ly + y2)
= Y(y1 — 20 + Y2 + 0)
Y(y1 — o) + (Y2 + o)

1 1
< pr(y1 — o) + p7 (Y2 + 20)

and consequently,

3.1 sup [Y(y1) — p%(zﬂ - ﬂfo)} < inf [P%(?h + o) — P(12)] -
y1€Y y2€Y

Let ¢y be any real number which lies between the supremum and the infimum appearing in
equation (3.1)). We now verify that this ¢y does the job.
Indeed, if ¢ > 0, and if y € Y, then, since the definition of ¢; ensures that

1
V(y2) +to < pr(y2 +20) VY2 €Y,
we find that
Uy (y + twg) = Y(y) + tto

=t (5)+1)
1

= p? (y + txo).
Similarly, if ¢ < 0, then, since the definition of ¢, also ensures that

1

V() —to < pr(yr — @) Yiu €,
we find that
Ui (y + two) = ¥ (y) + to

(%)

1
= pr (y + tx).
Thus, ¥(y + txy) < p% (y +tzg) Yy e€Y,t€R,and the proof of the lemma is complete. 1

Theorem 3.2. (Hahn—Banach theorem) Let V' be a p-normed space and let V{y be a subspace of
V. Suppose ¢, € V'; then there exist a ¢ € V* such that

(l:).QO|V0 = %o

(ii)llell = [loll-

Proof. Let Vj be a (real) linear subspace of V. Now, apply the preceding lemma with X =
V., M = Vj and p» (x) = ||@,ll||z||, to find that the desired conclusion follows immediately. 1

Remark 3.1. One can follow the method of [9] to prove that the Hahn—Banach theorem holds
for complex quasi-normed spaces.

Corollary 3.3. Let X be a p-normed space and 0 # xy € X. Then there exists ¢ € X* such
that ||¢|| = 1 and ¢(z) = ||zol-

AJMAA, Vol. 6, No. 1, Art. 10, pp. 1-10, 2009 AJMAA


http://ajmaa.org

DIFFERENTIABILITY OF DISTANCE FUNCTIONS 9

Proof. Set Xy = Cxy = {azg : a € C}, consider the linear functional ¢, € X* defined by
©o(Ax) = Al|zo]|, and appeal to the Hahn—Banach theorem. &

Theorem 3.4. Let X be a p-normed space and let M be a uniquely remotal subset of X ad-

mitting a center. Suppose that for every x in M + r(M )%B (X) the farthest point mapping
F : X — M restricted to the line segment |x, F'(x)] is continued at x. Then M is a singleton.

Proof. We may assume that 0 is a center of M. Since (M) = sup{|ly — 0||” : y € M}, we
have M C B (o,r(M)%). Foreach z € M, 0 € B (x,r(M)%> C M +(M)7B(X). Set
1o = F(0) and g, = F(%2). By the Hahn-Banach theorem for each g, — ® there exists a
functional ®,, such that |®,|| = 1, and <<I>n,gn — %0> = Hgn — %’H . Then

n n

Lo
< @ lllgn -3
n
Lo
= Hgn - — |l
n
whence .
Zo
@0 (w0) < llgnll = [|9n = 22|
n n
Since
[gnll? < sup [0 — g, |”
< sup [|0 —yl?
yeM
To p
< sup H— -2
zeEM
p p
[ ) - el
n

we get @, () < 0 for all n.
The function F' is continuous at 22, so F'(%2) — F(0) hence g, — 2 — xy—0 = x¢. Therefore

lim ®,(zg) = lim @, (gn — @) = lim ‘
n—00 n—00 n

n—oo

Zo
g = 22| =l
n

If ||zo]| > 0, then @, (xy) > 0 for some n which is a contradiction. Hence x(, = 0 and so for
y € M we have

ly = Ol < [|F'(0) — 0| = [|lzo]|” = 0,
whence M = {0}. 1
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