

The Australian Journal of Mathematical Analysis and Applications

AJMAA

Volume 6, Issue 1, Article 10, pp. 1-10, 2009

DIFFERENTIABILITY OF DISTANCE FUNCTIONS IN *p*-NORMED SPACES

M.S. MOSLEHIAN, A. NIKNAM AND S. SHADKAM TORBATI

Special Issue in Honor of the 100th Anniversary of S.M. Ulam

Received 20 June, 2008; accepted 20 July, 2008; published 4 September, 2009.

DEPARTMENT OF PURE MATHEMATICS CENTRE OF EXCELLENCE IN ANALYSIS ON ALGEBRAIC STRUCTURES (CEAAS) FERDOWSI UNIVERSITY OF MASHHAD P. O. BOX 1159, MASHHAD, IRAN

> moslehian@ferdowsi.um.ac.ir niknam@math.um.ac.ir shadkam.s@wali.um.ac.ir

ABSTRACT. The farthest point mapping in a p-normed space X is studied in virtue of the Gateaux derivative and the Frechet derivative. Let M be a closed bounded subset of X having the uniformly p-Gateaux differentiable norm. Under certain conditions, it is shown that every maximizing sequence is convergent, moreover, if M is a uniquely remotal set then the farthest point mapping is continuous and so M is singleton. In addition, a Hahn–Banach type theorem in p-normed spaces is proved.

Key words and phrases: Frechet derivative, quasi-norm, p-normed space, farthest mapping, Hahn-Banach theorem, remotal set.

2000 Mathematics Subject Classification. Primary 41A52. secondary 41A65, 58C20.

ISSN (electronic): 1449-5910

^{© 2009} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

Let X be a real linear space. A quasi-norm is a real-valued function on X satisfying the following conditions:

- (i) $||x|| \ge 0$ for all $x \in X$, and ||x|| = 0 if and only if x = 0.
- (ii) $\|\lambda x\| = |\lambda| \cdot \|x\|$ for all $\lambda \in \mathbb{R}$ and all $x \in X$.
- (iii) There is a constant $K \ge 1$ such that $||x + y|| \le K(||x|| + ||y||)$ for all $x, y \in X$.

The pair $(X, \|\cdot\|)$ is called a quasi-normed space if $\|\cdot\|$ is a quasi-norm on X. The smallest possible K is called the module of concavity of $\|\cdot\|$. By a quasi-Banach space we mean a complete quasi-normed space, i.e., a quasi-normed space in which every Cauchy sequence converges in X.

This class includes Banach spaces. The most significant class of quasi-Banach spaces, which are not Banach spaces are L_p -spaces for $0 equipped with the <math>L_p$ -norms $\|\cdot\|_p$.

A quasi-norm $\|\cdot\|$ is called a *p*-norm $(0 if <math>\|x+y\|^p \le \|x\|^p + \|y\|^p$ for all $x, y \in X$. In this case a quasi-normed (quasi Banach) space is called a *p*-normed (*p*-Banach) space. By the Aoki–Rolewicz theorem [7] each quasi-norm is equivalent to some *p*-norm. Since it is much easier to work with *p*-norms than quasi-norms, henceforth we restrict our attention mainly to *p*-norms. See [1, 4, 8] and the references therein for more information.

Throughout the paper, S(X) and B(X) denote the unit sphere and the unit ball of X, respectively. If x^* is in X^* , the dual of X, and $x \in X$ we write $x^*(x)$ as $\langle x^*, x \rangle$. We also consider quasi-norms with K > 1. The case where K = 1 turns out to be the classical normed spaces, so we will not discuss it and refer the interested reader to [2].

Let k > 0. A real valued function f on X is said to be k-Gateaux differentiable at a point x of X if there is an element df(x) of X^* such that for each y in X,

(1.1)
$$\lim_{t \to 0} \operatorname{sgn}(t) |t|^{-k} (f(x+ty) - f(x)) = \langle df(x), y \rangle,$$

and we call df(x) the k-Gateaux derivative of f at x.

We say that f is k-Frechet differentiable at a point x of X if there is an element f'(x) of X^* such that

(1.2)
$$\lim_{\|y\|\to 0} \|y\|^{-k} (f(x+y) - f(x) - \langle f'(x), y \rangle) = 0,$$

and we call f'(x) the k -Frechet derivative of f at x. See [2].

The norm of X is called uniformly k-Gateaux differentiable if for $f(x) = ||x||^k$ equality (1.1) holds uniformly for $x, y \in X$, and the operator norm ||df(x)|| is less than or equal 1. Then df(x) is denoted by $D_k(x)$.

We say that a non-zero element x^* of X^* strongly exposes B(X) at $x \in S(X)$, provided $\langle x^*, x \rangle = ||x^*||$, and a sequence $\{y_n\}$ in B(X) converges to x whenever $\{\langle x^*, y_n \rangle\}$ converges to $\langle x^*, x \rangle$.

The reader is referred to [2, 5, 6] for analogue results concerning normed spaces and to the book of D.H. Hyers, G. Isac and Th.M. Rassias [3] for extensive theory and applications of nonlinear analysis methods.

In this paper we use some ideas of [2] to study the farthest point mapping in a p-normed space X by virtue of the Gateaux derivative and the Frechet derivative. Let M be a closed bounded subset of X which has a uniformly p-Gateaux differentiable norm. Under certain conditions, we show that every maximizing sequence is convergent, moreover, if M is a uniquely remotal set then the farthest point mapping is continuous and so M is a singleton. In addition, we prove a Hahn–Banach type theorem for p-normed spaces and give an application.

2. MAIN RESULTS

We start this section with following definition.

Definition 2.1. Let X be a p-normed space and M be a bounded closed subset of X. Setting

$$\Psi(x) := \sup\{ \|x - y\|^p : y \in M \} \qquad (x \in X),$$

 $F(x) := \{y \in M : ||x-y||^p = \Psi(x)\}$ is called the set of farthest points in M form x (CHECK). We say that M is a uniquely remotal set if F is a singleton for each $x \in X$ and then we denote the single element of F(x) by F(x). The map F is called the antiprojection or the farthest point mapping for M.

A center of a bounded set M in a p-normed space X is an element c in X such that

$$r(M) := \sup_{y \in M} \|c - y\|^p = \inf_{x \in X} \sup_{y \in M} \|x - y\|.$$

In fact r(M), the so called Chebyshev radius of M, is the smallest ball in X containing M. We call a sequence $\{y_n\}$ in M a maximizing sequence for x provided $||x - y_n||^p \to \Psi(x)$ as $n \to \infty$.

Lemma 2.1. If M is a nonempty bounded subset of X and $x, y \in X$ then

(2.1) $|\Psi(x) - \Psi(y)| \le ||x - y||^p.$

Proof.

$$\Psi(x) - \Psi(y) = \sup\{\|x - m\|^p : m \in M\} - \sup\{\|y - m\|^p : m \in M\}$$

$$\leq \sup\{\|x - m - y + m\|^p : m \in M\}$$

$$= \|x - y\|^p.$$

Lemma 2.2. If $x \in X$ is a point of k-Gateaux differentiability of Ψ and $y \in F(x)$ then

$$\langle d\Psi(x), \|x-y\|^{-1}(x-y) \rangle \le \begin{cases} 0, & k < 1; \\ p\|x-y\|^{p-k}, & k = 1. \end{cases}$$

Proof. Since $y \in F(x)$ we have $||x - y||^p = \Psi(x)$. Hence for 0 < t < 1, we get

(2.2)
$$\Psi(x + t(x - y)) - \Psi(x) \ge ||x + t(x - y) - y||^p - ||x - y||^p$$
$$= (1 + t)^p ||x - y||^p - ||x - y||^p$$
$$= ((1 + t)^p - 1) ||x - y||^p.$$

Let $s \in [0, \infty)$. Then

(2.3)
$$\langle d\Psi(x), sz \rangle = \lim_{t \to 0^+} t^{-k} (\Psi(x + tsz) - \Psi(x))$$
$$= s^k s^{-k} \lim_{t \to 0^+} t^{-k} (\Psi(x + tsz) - \Psi(x))$$
$$= s^k \lim_{t \to 0^+} (s^{-k}t^{-k}) (\Psi(x + tsz) - \Psi(x))$$
$$= s^k \langle d\Psi(x), z \rangle,$$

whence

$$\begin{aligned} \langle d\Psi(x), \|x-y\|^{-1}(x-y)\rangle &= \lim_{t \to 0} \operatorname{sgn}(t) |t|^{-k} (\|x-y\|^{-k}) (\Psi(x+t(x-y)) - \Psi(x)) \\ &= \begin{cases} \geq \lim_{t \to 0^+} \frac{(|1+t|^p-1)}{t^k} \|x-y\|^{p-k}, & t > 0; \\ \leq \lim_{t \to 0^-} \frac{(|1+t|^p-1)}{-(-t)^k} \|x-y\|^{p-k}, & t < 0. \end{cases} \end{aligned}$$

Then

$$\langle d\Psi(x), \|x-y\|^{-1}(x-y)\rangle = \begin{cases} 0, & k < 1; \\ p\|x-y\|^{p-k}, & k = 1. \end{cases}$$

Theorem 2.3. Suppose that M is a closed bounded subset of X with a uniformly p-Gateaux differentiable norm, Ψ is p-Gateaux differentiable at a point of $x \in X \setminus M$ with $y \in F(x)$ and $d\Psi(x)$ strongly exposes B(X) at $||x - y||^{-1}(x - y)$. Then every maximizing sequence for x converges to y. Moreover, if M is a uniquely remotal set then F is continuous at x.

Proof. Suppose that $\{y_n\}$ is a maximizing sequence for x. For each t, we have

(2.4)
$$\Psi(x+tz) - \Psi(x) \ge \sup_{y_n \in M} \|x+tz-y_n\|^p - \lim_{n \to \infty} \|x-y_n\|^p \\\ge \limsup_{n \to \infty} \left(\|x+tz-y_n\|^p - \|x-y_n\|^p \right).$$

Fix $z \in X$. We have

(2.5)
$$\langle d\Psi(x), z \rangle = \lim_{t \to 0^{-}} \operatorname{sgn}(t) |t|^{-p} (\Psi(x+tz) - \Psi(x))$$

$$\leq \lim_{t \to 0^{-}} \left(-(-t)^{-p} \limsup_{n \to \infty} \left(||x+tz-y_{n}||^{p} - ||x-y_{n}||^{p} \right) \right)$$

$$= \lim_{t \to 0^{-}} \left(\liminf_{n \to \infty} \left(-(-t)^{-p} (||x+tz-y_{n}||^{p} - ||x-y_{n}||^{p}) \right) \right)$$

$$\leq \liminf_{n \to \infty} \langle D_{p}(x-y_{n}), z \rangle$$

and

(2.6)
$$\langle d\Psi(x), z \rangle = \lim_{t \to 0^+} \operatorname{sgn}(t) |t|^{-p} (\Psi(x+tz) - \Psi(x))$$

$$\geq \lim_{t \to 0^+} \left(t^{-p} \limsup_{n \to \infty} \left(||x+tz-y_n||^p - ||x-y_n||^p \right) \right)$$

$$= \lim_{t \to 0^+} \left(\limsup_{n \to \infty} \left(t^{-p} (||x+tz-y_n||^p - ||x-y_n||^p) \right) \right)$$

$$\geq \limsup_{n \to \infty} \langle D_p(x-y_n), z \rangle.$$

Using (2.5) and (2.6) we get

(2.7)
$$\lim_{n \to \infty} \langle D_p(x - y_n), z \rangle = \langle d\Psi(x), z \rangle.$$

We also have

(2.8)
$$\langle D_p(x-y_n), x-y_n \rangle = \lim_{t \to 0^+} \left(t^{-p} (\|x-y_n+t(x-y_n)\|^p - \|x-y_n\|^p) \right)$$

 $= \lim_{t \to 0^+} \left(t^{-p} \|(x-y_n)\|^p ((1+t)^p - 1) \right).$

Using equalities (2.7) for $z = x - y_n$, (2.3) and (2.8) we obtain

$$\langle d\Psi(x), \|x - y_n\|^{-1}(x - y_n) \rangle = \lim_{n \to \infty} \langle D_p(x - y_n), \|x - y_n\|^{-1}(x - y_n) \rangle$$

=
$$\lim_{n \to \infty} \lim_{t \to 0^+} \left(t^{-p}((1 + t)^p - 1) \right) = 0$$

=
$$\langle d\Psi(x), \|x - y\|^{-1}(x - y) \rangle.$$

Since $d\Psi(x)$ strongly exposes B(X) at $||x - y||^{-1}(x - y)$, we get

$$\lim_{n \to \infty} \|x - y_n\|^{-1} (x - y_n) = \|x - y\|^{-1} (x - y).$$

Since $\{y_n\}$ is a maximizing sequence for x, we therefore easily get

$$\lim_{n \to \infty} y_n = y_n$$

Next, assume that $\{x_n\}$ converges to x. We shall show that $\{F(x_n)\}$ converges to F(x).

Since M is a uniquely remotal set we have $||x_n - F(x_n)||^p = \sup\{||x_n - y||^p; y \in M\}$. Hence

(2.10)
$$\|x_n - F(x)\|^p \le \|x_n - F(x_n)\|^p.$$

By (2.10),

$$(2.11) ||x - F(x)||^p - ||x - F(x_n)||^p \le ||x - F(x)||^p + ||x - x_n||^p - ||x_n - F(x_n)||^p \le ||x - F(x)||^p + ||x - x_n||^p - ||x_n - F(x)||^p \le ||x - x_n||^p + ||x - F(x) - x_n + F(x)||^p \le 2||x - x_n||^p.$$

It follows from (2.11) and the convergence of $\{x_n\}$ to x that

$$\lim_{n \to \infty} \|x - F(x_n)\|^p = \|x - F(x)\|^p.$$

Hence $\{F(x_n)\}$ is a maximizing sequence for x and so, by the first part of the theorem

$$\lim_{n \to \infty} F(x_n) = F(x)$$

Theorem 2.4. Suppose M is a closed bounded subset of a p-normed space X and $x \in X \setminus M$ is a point of p-Frechet differentiability of Ψ and if $y \in F(x)$ and $\Psi'(x)$ strongly exposes B(X) at $||x - y||^{-1}(x - y)$, then every maximizing sequence for x converges to y.

Proof. Let $\{y_n\}$ be a maximizing sequence for x and let $k = \inf_n ||x - y_n||^{2p}$. Since M is closed, k > 0. Hence there is N such that for $n \ge N$ then $\Psi(x) - ||x - y_n||^p < k \le ||x - y_n||^{2p}$, and so we can choose a sequence $\{\alpha_n\}$ of positive numbers such that $\alpha_n \to 0$ and

$$||x - y_n||^{2p} > \alpha_n^2 > \Psi(x) - ||x - y_n||^p \qquad (n \in \mathbb{N}).$$

Hence

(2.12)
$$(1+t)^p ||x-y_n||^p > (1+t)^p (\Psi(x) - \alpha_n^2) \qquad (n \in \mathbb{N}, -1 < t < 1).$$

Let 0 < t < 1. Since $y_n \in M$ we have

(2.13)
$$\Psi(x - t(y_n - x)) \ge ||x - t(y_n - x) - y_n||^p = (1 + t)^p ||x - y_n||^p.$$

It follows from (2.12) and (2.13) that

(2.14)
$$\Psi(x - t(y_n - x) - \Psi(x)) \ge (1 + t)^p ||x - y_n||^p - \Psi(x)$$
$$> \Psi(x)((1 + t)^p - 1) - (1 + t)^p \alpha_n^2.$$

Fix $\varepsilon > 0$. By the definition of $\Psi'(x)$, there is $\delta > 0$ such that if $||y||^p < \delta$ then

(2.15)
$$|\Psi(x+y) - \Psi(x) - \langle \Psi'(x), y \rangle| \le \varepsilon ||y||^p.$$

Let $t_n^p = \alpha_n (||x - y_n||)^{-p} < 1$ and $\alpha_n < \delta$ for large *n*. Replacing *y* by $t_n(x - y_n)$ in (2.15) and noting (2.14), we get

$$\varepsilon \|t_n(x-y_n)\|^p + \langle \Psi'(x), t_n(x-y_n) \rangle \ge \Psi(x+t_n(x-y_n)) - \Psi(x)$$

$$\ge \Psi(x)((1+t_n)^p - 1) - (1+t_n)^p \alpha_n^2,$$

whence

(2.16)
$$\frac{1}{\alpha_n} \langle \Psi'(x), t_n(x-y_n) \rangle$$

$$\geq \frac{1}{\alpha_n} \left(\Psi(x)((1+t_n)^p - 1) - (1+t_n)^p \alpha_n^2 - \varepsilon ||t_n(y_n - x)||^p \right)$$

$$\geq \frac{1}{\alpha_n} \Psi(x)((1+t_n)^p - 1) - (1+t_n)^p \alpha_n - \varepsilon$$

$$\geq \frac{1}{t_n^p} ||(y_n - x)||^p \Psi(x)((1+t_n)^p - 1) - (1+t_n)^p \alpha_n - \varepsilon.$$

Using (2.16), we get

(2.17)

$$\langle \Psi'(x), \|x - y_n\|^{-1} (x - y_n) \rangle = \left\langle \Psi'(x), \frac{\|x - y_n\|^{-1}}{t_n} t_n (x - y_n) \right\rangle$$

$$= \frac{\|x - y_n\|^{-p}}{t_n^p} \langle \Psi'(x), t_n (x - y_n) \rangle$$

$$= \frac{1}{\alpha_n} \langle \Psi'(x), t_n (x - y_n) \rangle$$

$$\ge \Psi(x) \frac{1}{t_n^p \|(y_n - x)\|^p} ((1 + t_n)^p - 1) - (1 + t_n)^p \alpha_n - \varepsilon.$$

Let $n \to \infty$ in (2.17). Then $\alpha_n \to 0$, $||y_n - x|| \to \Psi(x)$ and $t_n \to 0^+$ such that

(2.18)
$$\lim_{n \to \infty} \langle \Psi'(x), \|x - y_n\|^{-1} (x - y_n) \rangle \ge 0$$

Changing t to -t in (2.13) and (2.14) and utilizing a similar strategy as above we get

$$\lim_{n \to \infty} \langle \Psi'(x), \|y_n - x\|^{-1}(y_n - x) \rangle \ge 0,$$

whence

(2.19)
$$\lim_{n \to \infty} \langle \Psi'(x), \|x - y_n\|^{-1} (x - y_n) \rangle \le 0.$$

By (2.18), (2.19) we have,

$$\lim_{n \to \infty} \langle \Psi'(x), \|x - y_n\|^{-1} (x - y_n) \rangle = 0.$$

By Lemma 2.2,

$$\langle d\Psi(x), ||x-y||^{-1}(x-y) \rangle = 0$$

and then

$$\begin{split} 0 &= \lim_{\|t(x-y)\| \to 0} \|t(x-y)\|^{-p} \big(\Psi(x+t(x-y))) - \Psi(x) - \langle \Psi'(x), t(x-y) \rangle \big) \\ &= \lim_{t \to 0^+} \left(\|t(x-y)\|^{-p} (\Psi(x+(t(x-y))) - \Psi(x)) - \|t(x-y)\|^{-p} (\langle \Psi'(x), t(x-y) \rangle) \right) \\ &= \lim_{t \to 0^+} \left(\frac{t^{-p} (\Psi(x+(t(x-y)) - \Psi(x)))}{\|(x-y)\|^p} - \langle \Psi'(x), \|x-y\|^{-1}(x-y) \rangle \right) \\ &= \frac{\lim_{t \to 0^+} t^{-p} (\Psi(x+(t(x-y)) - \Psi(x)))}{\|(x-y)\|^p} - \langle \Psi'(x), \|x-y\|^{-1}(x-y) \rangle \\ &= \|x-y\|^{-p} \langle d\Psi(x), (x-y) \rangle - \langle \Psi'(x), \|x-y\|^{-1}(x-y) \rangle \\ &= \langle d\Psi(x), \|x-y\|^{-1}(x-y) \rangle, \end{split}$$

therefore

$$\lim_{n \to \infty} \langle \Psi'(x), \|x - y_n\|^{-1} (x - y_n) \rangle = 0 = \langle \Psi'(x), \|x - y\|^{-1} (x - y) \rangle.$$

Since $\Psi'(x)$ strongly exposes B(X) at $||x-y||^{-1}(x-y)$, we deduce that $||x-y_n||^{-1}(x-y_n) \rightarrow ||x-y||^{-1}(x-y)$ which yields $y_n \rightarrow y$.

3. HAHN-BANACH THEOREM AND ITS APPLICATION

This section is devoted to one version of the celebrated Hahn–Banach theorem. We follow the strategy and terminology of [9]. We begin with a lemma.

Lemma 3.1. Let $0 , let M be a linear subspace of a real vector space X and let <math>\rho: X \to \mathbb{R}$ be a mapping such that

(i) $\rho(x+y) \leq \rho(x) + \rho(y)$ $(x, y \in X);$ (ii) $\rho(tx) = t^p \rho(x)$ $(x \in X, 0 \leq t \in \mathbb{R}).$

If $\varphi_0 : M \to \mathbb{R}$ is a linear mapping such that $\varphi_0(x) \leq \rho^{\frac{1}{p}}(x)$ for all $x \in M$, then there is a linear mapping $\varphi : X \to \mathbb{R}$ such that $\varphi|_M = \phi_0$ and $\varphi(x) \leq \rho^{\frac{1}{p}}(x)$ $(x \in X)$.

Proof. We use Zorn's lemma. Consider the partially ordered set \mathcal{P} , whose typical member is a pair (Y, ψ) , where (i) Y is a linear subspace of X which contains X_0 ; and (ii) $\psi : Y \to \mathbb{R}$ is a linear mapping which is an extension of φ_0 and satisfies $\psi(x) \leq \rho^{\frac{1}{p}}(x) \quad \forall x \in Y$; the partial order on \mathcal{P} is defined by setting $(Y_1, \psi_1) \leq (Y_2, \psi_2)$ precisely when (a) $Y_1 \subset Y_2$, and (b) $\psi_2|_{Y_1} = \psi_1$.

Furthermore, if $\Gamma = \{(Y_i, \psi_i) : i \in I\}$ is any totally ordered set in \mathcal{P} , an easy verification shows that an upper bound for the family Γ is given by (Y, ψ) , where $Y = \bigcup_{i \in I} Y_i$ and $\psi : Y \to \mathbb{R}$ is the unique necessarily linear mapping satisfying $\psi|_{Y_i} = \psi_i$ for all *i*.

Hence, by Zorn's lemma, the partially ordered set \mathcal{P} has a maximal element, call it (Y, ψ) . The proof of the lemma will be completed once we have shown that Y = X.

Suppose that $Y \neq X$; fix $x_0 \in X - Y$, and let $Y_1 = Y + \mathbb{R}x_0 = \{y + tx_0 : y \in Y, t \in \mathbb{R}\}$. The definitions ensure that Y_1 is a subspace of X which properly contains Y. Also, notice that any linear mapping $\psi_1 : Y_1 \to \mathbb{R}$ which extends ψ is prescribed uniquely by the number $t_0 = \psi(x_0)$ (and the equation $\psi_1(y + tx_0) = \psi(x) + tt_0$).

We assert that it is possible to find a number $t_0 \in \mathbb{R}$ such that the associated mapping ψ_1 would - in addition to extending ψ - also satisfy $\psi_1 \leq \rho^{\frac{1}{p}}$. This would then establish the inequality $(Y, \psi) \leq (Y_1, \psi_1)$, contradicting the maximality of (Y, ψ) ; which would in turn imply that we must have had Y = X in the first place, and the proof would be complete. First, observe that if $y_1, y_2 \in Y$ are arbitrary, then

$$\psi(y_1) + \psi(y_2) = \psi(y_1 + y_2)$$

= $\psi(y_1 - x_0 + y_2 + x_0)$
= $\psi(y_1 - x_0) + \psi(y_2 + x_0)$
 $\leq \rho^{\frac{1}{p}}(y_1 - x_0) + \rho^{\frac{1}{p}}(y_2 + x_0)$

and consequently,

(3.1)
$$\sup_{y_1 \in Y} \left[\psi(y_1) - \rho^{\frac{1}{p}}(y_1 - x_0) \right] \le \inf_{y_2 \in Y} \left[\rho^{\frac{1}{p}}(y_2 + x_0) - \psi(y_2) \right].$$

Let t_0 be any real number which lies between the supremum and the infimum appearing in equation (3.1). We now verify that this t_0 does the job.

Indeed, if t > 0, and if $y \in Y$, then, since the definition of t_0 ensures that

$$\psi(y_2) + t_0 \le \rho^{\frac{1}{p}}(y_2 + x_0) \quad \forall y_2 \in Y,$$

we find that

$$\psi_1(y + tx_0) = \psi(y) + tt_0$$
$$= t \left[\psi\left(\frac{y}{t}\right) + t_0 \right]$$
$$\leq t\rho^{\frac{1}{p}} \left(\frac{y}{t} + x_0\right)$$
$$= \rho^{\frac{1}{p}}(y + tx_0).$$

Similarly, if t < 0, then, since the definition of t_0 also ensures that

$$\psi(y_1) - t_0 \le \rho^{\frac{1}{p}}(y_1 - x_0) \quad \forall y_1 \in Y,$$

we find that

$$\psi_1(y + tx_0) = \psi(y) + tt_0$$
$$= -t \left[\psi\left(\frac{y}{-t}\right) - t_0 \right]$$
$$\leq -t\rho^{\frac{1}{p}} \left(\frac{y}{-t} - x_0\right)$$
$$= \rho^{\frac{1}{p}}(y + tx_0).$$

Thus, $\psi(y + tx_0) \le \rho^{\frac{1}{p}}(y + tx_0) \quad \forall y \in Y, t \in \mathbb{R}$, and the proof of the lemma is complete.

Theorem 3.2. (Hahn–Banach theorem) Let V be a p-normed space and let V_0 be a subspace of V. Suppose $\varphi_0 \in V_0^*$; then there exist a $\varphi \in V^*$ such that $(i)\varphi|_{V_0} = \varphi_0$ $(ii)||\varphi|| = ||\varphi_0||.$

Proof. Let V_0 be a (real) linear subspace of V. Now, apply the preceding lemma with $X = V, M = V_0$ and $\rho^{\frac{1}{p}}(x) = \|\varphi_0\| \|x\|$, to find that the desired conclusion follows immediately.

Remark 3.1. One can follow the method of [9] to prove that the Hahn–Banach theorem holds for complex quasi-normed spaces.

Corollary 3.3. Let X be a p-normed space and $0 \neq x_0 \in X$. Then there exists $\varphi \in X^*$ such that $\|\varphi\| = 1$ and $\varphi(x_0) = \|x_0\|$.

Proof. Set $X_0 = \mathbb{C}x_0 = \{\alpha x_0 : \alpha \in \mathbb{C}\}$, consider the linear functional $\varphi_0 \in X^*$ defined by $\varphi_0(\lambda x) = \lambda \|x_0\|$, and appeal to the Hahn–Banach theorem.

Theorem 3.4. Let X be a p-normed space and let M be a uniquely remotal subset of X admitting a center. Suppose that for every x in $M + r(M)^{\frac{1}{p}}B(X)$ the farthest point mapping $F: X \to M$ restricted to the line segment [x, F(x)] is continued at x. Then M is a singleton.

Proof. We may assume that 0 is a center of M. Since $r(M) = \sup\{\|y - 0\|^p : y \in M\}$, we have $M \subseteq B\left(0, r(M)^{\frac{1}{p}}\right)$. For each $x \in M, 0 \in B\left(x, r(M)^{\frac{1}{p}}\right) \subseteq M + r(M)^{\frac{1}{p}}B(X)$. Set $x_0 = F(0)$ and $g_n = F(\frac{x_0}{n})$. By the Hahn–Banach theorem for each $g_n - \frac{x_0}{n}$ there exists a functional Φ_n such that $\|\Phi_n\| = 1$, and $\langle \Phi_n, g_n - \frac{x_0}{n} \rangle = \|g_n - \frac{x_0}{n}\|$. Then

$$\left\langle \Phi_n, \frac{x_0}{n} \right\rangle = \left\langle \Phi_n, g_n \right\rangle - \left\langle \Phi_n, g_n - \frac{x_0}{n} \right\rangle$$
$$\leq \left\| \Phi_n \right\| \left\| g_n \right\| - \left\| g_n - \frac{x_0}{n} \right\|$$
$$= \left\| g_n \right\| - \left\| g_n - \frac{x_0}{n} \right\|,$$

whence

$$\frac{1}{n}\Phi_n(x_0) \le ||g_n|| - \left||g_n - \frac{x_0}{n}\right||.$$

Since

$$\begin{aligned} \|g_n\|^p &\leq \sup_n \|0 - g_n\|^p \\ &\leq \sup_{y \in M} \|0 - y\|^p \\ &\leq \sup_{z \in M} \left\|\frac{x_o}{n} - z\right\|^p \\ &= \left\|\frac{x_0}{n} - F\left(\frac{x_o}{n}\right)\right\|^p = \left\|\frac{x_0}{n} - g_n\right\|^p, \end{aligned}$$

we get $\Phi_n(x_0) \leq 0$ for all n.

The function F is continuous at $\frac{x_0}{n}$, so $F(\frac{x_0}{n}) \to F(0)$ hence $g_n - \frac{x_0}{n} \to x_0 - 0 = x_0$. Therefore $\Phi_n\left(g_n - \frac{x_0}{n}\right) \to \Phi_n(x_0)$,

$$\lim_{n \to \infty} \Phi_n(x_0) = \lim_{n \to \infty} \Phi_n\left(g_n - \frac{x_0}{n}\right) = \lim_{n \to \infty} \left\|g_n - \frac{x_0}{n}\right\| = \|x_0\|.$$

If $||x_0|| > 0$, then $\Phi_n(x_0) > 0$ for some *n* which is a contradiction. Hence $x_0 = 0$ and so for $y \in M$ we have

$$||y - 0||^p \le ||F(0) - 0||^p = ||x_0||^P = 0,$$

whence $M = \{0\}$.

REFERENCES

- Y. BENYAMINI and J. LINDENSTRAUSS, *Geometric Nonlinear Functional Analysis*, Vol. 1, Colloq. Publ. 48, Amer. Math. Soc., Providence, 2000.
- [2] S. FITZPATRICK, Metric projection and the differentiability of distance functions, *Bull. Austral. Math. Soc.*, **22** (1980), 291–312.
- [3] D. H. HYERS, G. ISAC and Th. M. RASSIAS, *Topics in Nonlinear Analysis and Applications*, World Scientific Publishging Company, Singapore, New Jersey, London, 1997.
- [4] M. S. MOSLEHIAN and Gh. SADEGHI, Stability of linear mappings in quasi-Banach modules, *Math. Inequal. Appl.*, **11** (2008), no. 3, 549–557.

- [5] A. NIKNAM, Continuity of the farthest point map, *Indian J. Pure Appl. Math.*, **18** (1987), No. 7, 630–632.
- [6] B. B. PANDA and O. P. KAPOOR, On farthest points of set, J. Math. Anal., 62 (1978), 345–353.
- [7] S. ROLEWICZ, Metric Linear Spaces, PWN-Polish Sci. Publ., Reidel and Dordrecht, 1984.
- [8] L. SCHWARTZ, *Geometry and Probability in Banach Space*, Lecture Notes in Mathematics 852, Springer–Verlag, New York, 1981.
- [9] V. S. SUNDER, Functional Analysis Spectral Theory, Birkhäuser Advanced Texts, Basel, 1997.