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1. INTRODUCTION

Let X be a real linear space. A quasi-norm is a real-valued function on X satisfying the
following conditions:

(i) ‖x‖ ≥ 0 for all x ∈ X , and ‖x‖ = 0 if and only if x = 0.
(ii) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R and all x ∈ X .

(iii) There is a constant K ≥ 1 such that ‖x+ y‖ ≤ K(‖x‖+ ‖y‖) for all x, y ∈ X .

The pair (X, ‖·‖) is called a quasi-normed space if ‖·‖ is a quasi-norm on X . The small-
est possible K is called the module of concavity of ‖·‖ . By a quasi-Banach space we mean
a complete quasi-normed space, i.e., a quasi-normed space in which every Cauchy sequence
converges in X .

This class includes Banach spaces. The most significant class of quasi-Banach spaces, which
are not Banach spaces are Lp-spaces for 0 < p < 1 equipped with the Lp-norms ‖·‖p .

A quasi-norm ‖·‖ is called a p-norm (0 < p < 1) if ‖x+y‖p ≤ ‖x‖p +‖y‖p for all x, y ∈ X .
In this case a quasi-normed (quasi Banach) space is called a p-normed (p-Banach) space. By
the Aoki–Rolewicz theorem [7] each quasi-norm is equivalent to some p-norm. Since it is much
easier to work with p-norms than quasi-norms, henceforth we restrict our attention mainly to
p-norms. See [1, 4, 8] and the references therein for more information.

Throughout the paper, S(X) and B(X) denote the unit sphere and the unit ball of X, respec-
tivelty. If x∗ is in X∗, the dual of X, and x ∈ X we write x∗(x) as 〈x∗, x〉. We also consider
quasi-norms with K > 1. The case where K = 1 turns out to be the classical normed spaces,
so we will not discuss it and refer the interested reader to [2].

Let k > 0. A real valued function f on X is said to be k-Gateaux differentiable at a point x
of X if there is an element df(x) of X∗ such that for each y in X ,

(1.1) lim
t→0

sgn(t)|t|−k(f(x+ ty)− f(x)) = 〈df(x), y〉,

and we call df(x) the k-Gateaux derivative of f at x.
We say that f is k-Frechet differentiable at a point x of X if there is an element f ′(x) of X∗

such that

(1.2) lim
‖y‖→0

‖y‖−k(f(x+ y)− f(x)− 〈f ′(x), y〉) = 0,

and we call f ′(x) the k -Frechet derivative of f at x. See [2].
The norm of X is called uniformly k-Gateaux differentiable if for f(x) = ‖x‖k equality

(1.1) holds uniformly for x, y ∈ X , and the operator norm ‖df(x)‖ is less than or equal 1. Then
df(x) is denoted by Dk(x).

We say that a non-zero element x∗ of X∗ strongly exposes B(X) at x ∈ S(X), provided
〈x∗, x〉 = ‖x∗‖, and a sequence {yn} in B(X) converges to x whenever {〈x∗, yn〉} converges
to 〈x∗, x〉.

The reader is referred to [2, 5, 6] for analogue results concerning normed spaces and to the
book of D.H. Hyers, G. Isac and Th.M. Rassias [3] for extensive theory and applications of
nonlinear analysis methods.

In this paper we use some ideas of [2] to study the farthest point mapping in a p-normed space
X by virtue of the Gateaux derivative and the Frechet derivative. Let M be a closed bounded
subset of X which has a uniformly p-Gateaux differentiable norm. Under certain conditions,
we show that every maximizing sequence is convergent, moreover, if M is a uniquely remotal
set then the farthest point mapping is continuous and so M is a singleton. In addition, we prove
a Hahn–Banach type theorem for p-normed spaces and give an application.
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2. MAIN RESULTS

We start this section with following definition.

Definition 2.1. Let X be a p-normed space and M be a bounded closed subset of X . Setting

Ψ(x) := sup{‖x− y‖p : y ∈M} (x ∈ X),

F (x) := {y ∈M : ‖x−y‖p = Ψ(x)} is called the set of farthest points inM form x (CHECK).
We say that M is a uniquely remotal set if F is a singleton for each x ∈ X and then we denote
the single element of F (x) by F (x). The map F is called the antiprojection or the farthest point
mapping for M .
A center of a bounded set M in a p-normed space X is an element c in X such that

r(M) := sup
y∈M
‖c− y‖p = inf

x∈X
sup
y∈M
‖x− y‖.

In fact r(M), the so called Chebyshev radius of M , is the smallest ball in X containing M .
We call a sequence {yn} in M a maximizing sequence for x provided ‖x − yn‖p → Ψ(x) as
n→∞.

Lemma 2.1. If M is a nonempty bounded subset of X and x, y ∈ X then

(2.1) |Ψ(x)−Ψ(y)| ≤ ‖x− y‖p.

Proof.

Ψ(x)−Ψ(y) = sup{‖x−m‖p : m ∈M} − sup{‖y −m‖p : m ∈M}
≤ sup{‖x−m− y +m‖p : m ∈M}
= ‖x− y‖p.

Lemma 2.2. If x ∈ X is a point of k-Gateaux differentiability of Ψ and y ∈ F (x) then

〈dΨ(x), ‖x− y‖−1(x− y)〉 ≤

{
0, k < 1;

p‖x− y‖p−k, k = 1.

Proof. Since y ∈ F (x) we have ‖x− y‖p = Ψ(x). Hence for 0 < t < 1, we get

Ψ(x+ t(x− y))−Ψ(x) ≥ ‖x+ t(x− y)− y‖p − ‖x− y‖p(2.2)

= (1 + t)p‖x− y‖p − ‖x− y‖p

= ((1 + t)p − 1)‖x− y‖p.

Let s ∈ [0,∞). Then

〈dΨ(x), sz〉 = lim
t→0+

t−k(Ψ(x+ tsz)−Ψ(x))(2.3)

= sks−k lim
t→0+

t−k(Ψ(x+ tsz)−Ψ(x))

= sk lim
t→0+

(s−kt−k)(Ψ(x+ tsz)−Ψ(x))

= sk〈dΨ(x), z〉,
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whence

〈dΨ(x), ‖x− y‖−1(x− y)〉 = lim
t→0

sgn(t)|t|−k(‖x− y‖−k)(Ψ(x+ t(x− y))−Ψ(x))

=

 ≥ limt→0+
(|1+t|p−1)

tk
‖x− y‖p−k, t > 0;

≤ limt→0−
(|1+t|p−1)
−(−t)k ‖x− y‖p−k, t < 0.

Then

〈dΨ(x), ‖x− y‖−1(x− y)〉 =

{
0, k < 1;

p‖x− y‖p−k, k = 1.

Theorem 2.3. Suppose that M is a closed bounded subset of X with a uniformly p-Gateaux
differentiable norm, Ψ is p-Gateaux differentiable at a point of x ∈ X\M with y ∈ F (x) and
dΨ(x) strongly exposes B(X) at ‖x − y‖−1(x − y). Then every maximizing sequence for x
converges to y. Moreover, if M is a uniquely remotal set then F is continuous at x.

Proof. Suppose that {yn} is a maximizing sequence for x. For each t, we have

Ψ(x+ tz)−Ψ(x) ≥ sup
yn∈M

‖x+ tz − yn‖p − lim
n→∞

‖x− yn‖P(2.4)

≥ lim sup
n→∞

(
‖x+ tz − yn‖p − ‖x− yn‖p

)
.

Fix z ∈ X . We have

〈dΨ(x), z〉 = lim
t→0−

sgn(t)|t|−p(Ψ(x+ tz)−Ψ(x))(2.5)

≤ lim
t→0−

(
− (−t)−p lim sup

n→∞

(
‖x+ tz − yn‖p − ‖x− yn‖p

))
= lim

t→0−

(
lim inf
n→∞

(
− (−t)−p(‖x+ tz − yn‖p − ‖x− yn‖p)

))
≤ lim inf

n→∞
〈Dp(x− yn), z〉

and

〈dΨ(x), z〉 = lim
t→0+

sgn(t)|t|−p(Ψ(x+ tz)−Ψ(x))(2.6)

≥ lim
t→0+

(
t−p lim sup

n→∞

(
‖x+ tz − yn‖p − ‖x− yn‖p

))
= lim

t→0+

(
lim sup

n→∞

(
t−p(‖x+ tz − yn‖p − ‖x− yn‖p)

))
≥ lim sup

n→∞
〈Dp(x− yn), z〉.

Using (2.5) and (2.6) we get

(2.7) lim
n→∞
〈Dp(x− yn), z〉 = 〈dΨ(x), z〉.

We also have

〈Dp(x− yn), x− yn〉 = lim
t→0+

(
t−p(‖x− yn + t(x− yn)‖p − ‖x− yn‖p)

)
(2.8)

= lim
t→0+

(
t−p‖(x− yn)‖p((1 + t)p − 1)

)
.
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Using equalities (2.7) for z = x− yn, (2.3) and (2.8) we obtain

〈dΨ(x), ‖x− yn‖−1(x− yn)〉 = lim
n→∞
〈Dp(x− yn), ‖x− yn‖−1(x− yn)〉

= lim
n→∞

lim
t→0+

(
t−p((1 + t)p − 1)

)
= 0

= 〈dΨ(x), ‖x− y‖−1(x− y)〉.

Since dΨ(x) strongly exposes B(X) at ‖x− y‖−1(x− y), we get

lim
n→∞

‖x− yn‖−1(x− yn) = ‖x− y‖−1(x− y).

Since {yn} is a maximizing sequence for x, we therefore easily get

(2.9) lim
n→∞

yn = y.

Next, assume that {xn} converges to x. We shall show that {F (xn)} converges to F (x).
SinceM is a uniquely remotal set we have ‖xn−F (xn)‖p = sup{‖xn−y‖p; y ∈M}. Hence

(2.10) ‖xn − F (x)‖p ≤ ‖xn − F (xn)‖p.
By (2.10),

‖x− F (x)‖p − ‖x− F (xn)‖p ≤ ‖x− F (x)‖p + ‖x− xn‖p − ‖xn − F (xn)‖p(2.11)

≤ ‖x− F (x)‖p + ‖x− xn‖p − ‖xn − F (x)‖p

≤ ‖x− xn‖p + ‖x− F (x)− xn + F (x)‖p

≤ 2‖x− xn‖p.

It follows from (2.11) and the convergence of {xn} to x that

lim
n→∞

‖x− F (xn)‖p = ‖x− F (x)‖p.

Hence {F (xn)} is a maximizing sequence for x and so, by the first part of the theorem

lim
n→∞

F (xn) = F (x).

Theorem 2.4. Suppose M is a closed bounded subset of a p-normed space X and x ∈ X\M
is a point of p-Frechet differentiability of Ψ and if y ∈ F (x) and Ψ′(x) strongly exposes B(X)
at ‖x− y‖−1(x− y), then every maximizing sequence for x converges to y.

Proof. Let {yn} be a maximizing sequence for x and let k = infn ‖x−yn‖2p. SinceM is closed,
k > 0. Hence there is N such that for n ≥ N then Ψ(x) − ‖x − yn‖p < k ≤ ‖x − yn‖2p, and
so we can choose a sequence {αn} of positive numbers such that αn → 0 and

‖x− yn‖2p > α2
n > Ψ(x)− ‖x− yn‖p (n ∈ N).

Hence

(2.12) (1 + t)p‖x− yn‖p > (1 + t)p(Ψ(x)− α2
n) (n ∈ N,−1 < t < 1).

Let 0 < t < 1. Since yn ∈M we have

(2.13) Ψ(x− t(yn − x)) ≥ ‖x− t(yn − x)− yn‖p = (1 + t)p‖x− yn‖p.
It follows from (2.12) and (2.13) that

Ψ(x− t(yn − x)−Ψ(x) ≥ (1 + t)p‖x− yn‖p −Ψ(x)(2.14)

> Ψ(x)((1 + t)p − 1)− (1 + t)pα2
n.
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Fix ε > 0. By the definition of Ψ′(x), there is δ > 0 such that if ‖y‖p < δ then

(2.15) |Ψ(x+ y)−Ψ(x)− 〈Ψ′(x), y〉| ≤ ε‖y‖p.

Let tpn = αn(‖x− yn‖)−p < 1 and αn < δ for large n. Replacing y by tn(x− yn) in (2.15) and
noting (2.14), we get

ε‖tn(x− yn)‖p + 〈Ψ′(x), tn(x− yn)〉 ≥ Ψ(x+ tn(x− yn))−Ψ(x)

≥ Ψ(x)((1 + tn)p − 1)− (1 + tn)pα2
n,

whence

1

αn

〈Ψ′(x), tn(x− yn)〉(2.16)

≥ 1

αn

(
Ψ(x)((1 + tn)p − 1)− (1 + tn)pα2

n − ε‖tn(yn − x)‖p
)

≥ 1

αn

Ψ(x)((1 + tn)p − 1)− (1 + tn)pαn − ε

≥ 1

tpn‖(yn − x)‖p
Ψ(x)((1 + tn)p − 1)− (1 + tn)pαn − ε.

Using (2.16), we get

〈Ψ′(x), ‖x− yn‖−1(x− yn)〉 =

〈
Ψ′(x),

‖x− yn‖−1

tn
tn(x− yn)

〉(2.17)

=
‖x− yn‖−p

tpn
〈Ψ′(x), tn(x− yn)〉

=
1

αn

〈Ψ′(x), tn(x− yn)〉

≥ Ψ(x)
1

tpn‖(yn − x)‖p
((1 + tn)p − 1)− (1 + tn)pαn − ε.

Let n→∞ in (2.17). Then αn → 0, ‖yn − x‖ → Ψ(x) and tn → 0+ such that

(2.18) lim
n→∞
〈Ψ′(x), ‖x− yn‖−1(x− yn)〉 ≥ 0

Changing t to −t in (2.13) and (2.14) and utilizing a similar strategy as above we get

lim
n→∞
〈Ψ′(x), ‖yn − x‖−1(yn − x)〉 ≥ 0,

whence

(2.19) lim
n→∞
〈Ψ′(x), ‖x− yn‖−1(x− yn)〉 ≤ 0.

By (2.18), (2.19) we have,

lim
n→∞
〈Ψ′(x), ‖x− yn‖−1(x− yn)〉 = 0.

By Lemma 2.2,

〈dΨ(x), ‖x− y‖−1(x− y)〉 = 0
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and then

0 = lim
‖t(x−y)‖→0

‖t(x− y)‖−p
(
Ψ(x+ t(x− y)))−Ψ(x)− 〈Ψ′(x), t(x− y)〉

)
= lim

t→0+

(
‖t(x− y)‖−p(Ψ(x+ (t(x− y)))−Ψ(x))− ‖t(x− y)‖−p(〈Ψ′(x), t(x− y)〉)

)
= lim

t→0+

(
t−p(Ψ(x+ (t(x− y))−Ψ(x))

‖(x− y)‖p
− 〈Ψ′(x), ‖x− y‖−1(x− y)〉

)
=

limt→0+ t−p(Ψ(x+ (t(x− y))−Ψ(x))

‖(x− y)‖p
− 〈Ψ′(x), ‖x− y‖−1(x− y)〉

= ‖x− y‖−p〈dΨ(x), (x− y)〉 − 〈Ψ′(x), ‖x− y‖−1(x− y)〉
= 〈dΨ(x), ‖x− y‖−1(x− y)〉 − 〈Ψ′(x), ‖x− y‖−1(x− y)〉
= 〈Ψ′(x), ‖x− y‖−1(x− y)〉,

therefore

lim
n→∞
〈Ψ′(x), ‖x− yn‖−1(x− yn)〉 = 0 = 〈Ψ′(x), ‖x− y‖−1(x− y)〉.

Since Ψ′(x) strongly exposesB(X) at ‖x−y‖−1(x−y), we deduce that ‖x−yn‖−1(x−yn)→
‖x− y‖−1(x− y) which yields yn → y.

3. HAHN–BANACH THEOREM AND ITS APPLICATION

This section is devoted to one version of the celebrated Hahn–Banach theorem. We follow
the strategy and terminology of [9]. We begin with a lemma.

Lemma 3.1. Let 0 < p < 1, let M be a linear subspace of a real vector space X and let
ρ : X → R be a mapping such that

(i) ρ(x+ y) ≤ ρ(x) + ρ(y) (x, y ∈ X);
(ii) ρ(tx) = tpρ(x) (x ∈ X, 0 ≤ t ∈ R).

If ϕ0 : M → R is a linear mapping such that ϕ0(x) ≤ ρ
1
p (x) for all x ∈ M , then there is a

linear mapping ϕ : X → R such that ϕ|M = φ0 and ϕ(x) ≤ ρ
1
p (x) (x ∈ X).

Proof. We use Zorn’s lemma. Consider the partially ordered set P , whose typical member is
a pair (Y, ψ), where (i) Y is a linear subspace of X which contains X0; and (ii) ψ : Y → R
is a linear mapping which is an extension of ϕ0 and satisfies ψ(x) ≤ ρ

1
p (x) ∀x ∈ Y ; the

partial order on P is defined by setting (Y1, ψ1) ≤ (Y2, ψ2) precisely when (a) Y1 ⊂ Y2, and (b)
ψ2|Y1 = ψ1.

Furthermore, if Γ = {(Yi, ψi) : i ∈ I} is any totally ordered set in P , an easy verification
shows that an upper bound for the family Γ is given by (Y, ψ), where Y = ∪i∈IYi and ψ : Y →
R is the unique necessarily linear mapping satisfying ψ|Yi

= ψi for all i.
Hence, by Zorn’s lemma, the partially ordered set P has a maximal element, call it (Y, ψ).

The proof of the lemma will be completed once we have shown that Y = X .
Suppose that Y 6= X; fix x0 ∈ X−Y , and let Y1 = Y +Rx0 = {y+tx0 : y ∈ Y, t ∈ R}. The

definitions ensure that Y1 is a subspace of X which properly contains Y . Also, notice that any
linear mapping ψ1 : Y1 → R which extends ψ is prescribed uniquely by the number t0 = ψ(x0)
(and the equation ψ1(y + tx0) = ψ(x) + tt0).

We assert that it is possible to find a number t0 ∈ R such that the associated mapping ψ1

would - in addition to extending ψ - also satisfy ψ1 ≤ ρ
1
p . This would then establish the

inequality (Y, ψ) ≤ (Y1, ψ1), contradicting the maximality of (Y, ψ); which would in turn imply
that we must have had Y = X in the first place, and the proof would be complete.
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First, observe that if y1, y2 ∈ Y are arbitrary, then

ψ(y1) + ψ(y2) = ψ(y1 + y2)

= ψ(y1 − x0 + y2 + x0)

= ψ(y1 − x0) + ψ(y2 + x0)

≤ ρ
1
p (y1 − x0) + ρ

1
p (y2 + x0)

and consequently,

(3.1) sup
y1∈Y

[
ψ(y1)− ρ

1
p (y1 − x0)

]
≤ inf

y2∈Y

[
ρ

1
p (y2 + x0)− ψ(y2)

]
.

Let t0 be any real number which lies between the supremum and the infimum appearing in
equation (3.1). We now verify that this t0 does the job.

Indeed, if t > 0, and if y ∈ Y , then, since the definition of t0 ensures that

ψ(y2) + t0 ≤ ρ
1
p (y2 + x0) ∀y2 ∈ Y,

we find that

ψ1(y + tx0) = ψ(y) + tt0

= t
[
ψ
(y
t

)
+ t0

]
≤ tρ

1
p

(y
t

+ x0

)
= ρ

1
p (y + tx0).

Similarly, if t < 0, then, since the definition of t0 also ensures that

ψ(y1)− t0 ≤ ρ
1
p (y1 − x0) ∀y1 ∈ Y,

we find that

ψ1(y + tx0) = ψ(y) + tt0

= −t
[
ψ

(
y

−t

)
− t0

]
≤ −tρ

1
p

(
y

−t
− x0

)
= ρ

1
p (y + tx0).

Thus, ψ(y + tx0) ≤ ρ
1
p (y + tx0) ∀y ∈ Y, t ∈ R, and the proof of the lemma is complete.

Theorem 3.2. (Hahn–Banach theorem) Let V be a p-normed space and let V0 be a subspace of
V . Suppose ϕ0 ∈ V ∗0 ; then there exist a ϕ ∈ V ∗ such that
(i)ϕ|V0 = ϕ0

(ii)‖ϕ‖ = ‖ϕ0‖.

Proof. Let V0 be a (real) linear subspace of V . Now, apply the preceding lemma with X =

V,M = V0 and ρ
1
p (x) = ‖ϕ0‖‖x‖, to find that the desired conclusion follows immediately.

Remark 3.1. One can follow the method of [9] to prove that the Hahn–Banach theorem holds
for complex quasi-normed spaces.

Corollary 3.3. Let X be a p-normed space and 0 6= x0 ∈ X . Then there exists ϕ ∈ X∗ such
that ‖ϕ‖ = 1 and ϕ(x0) = ‖x0‖.
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Proof. Set X0 = Cx0 = {αx0 : α ∈ C}, consider the linear functional ϕ0 ∈ X∗ defined by
ϕ0(λx) = λ‖x0‖, and appeal to the Hahn–Banach theorem.

Theorem 3.4. Let X be a p-normed space and let M be a uniquely remotal subset of X ad-
mitting a center. Suppose that for every x in M + r(M)

1
pB(X) the farthest point mapping

F : X →M restricted to the line segment [x, F (x)] is continued at x. Then M is a singleton.

Proof. We may assume that 0 is a center of M . Since r(M) = sup{‖y − 0‖p : y ∈ M}, we
have M ⊆ B

(
0, r(M)

1
p

)
. For each x ∈ M, 0 ∈ B

(
x, r(M)

1
p

)
⊆ M + r(M)

1
pB(X). Set

x0 = F (0) and gn = F (x0

n
). By the Hahn–Banach theorem for each gn − x0

n
there exists a

functional Φn such that ‖Φn‖ = 1, and
〈
Φn, gn − x0

n

〉
=
∥∥gn − x0

n

∥∥ . Then〈
Φn,

x0

n

〉
= 〈Φn, gn〉 −

〈
Φn, gn −

x0

n

〉
≤ ‖Φn‖‖gn‖ −

∥∥∥gn −
x0

n

∥∥∥
= ‖gn‖ −

∥∥∥gn −
x0

n

∥∥∥ ,
whence

1

n
Φn(x0) ≤ ‖gn‖ −

∥∥∥gn −
x0

n

∥∥∥ .
Since

‖gn‖p ≤ sup
n
‖0− gn‖p

≤ sup
y∈M
‖0− y‖p

≤ sup
z∈M

∥∥∥xo

n
− z
∥∥∥p

=
∥∥∥x0

n
− F

(xo

n

)∥∥∥p

=
∥∥∥x0

n
− gn

∥∥∥p

,

we get Φn(x0) ≤ 0 for all n.
The function F is continuous at x0

n
, so F (x0

n
)→ F (0) hence gn− x0

n
→ x0−0 = x0. Therefore

Φn

(
gn − x0

n

)
→ Φn(x0),

lim
n→∞

Φn(x0) = lim
n→∞

Φn

(
gn −

x0

n

)
= lim

n→∞

∥∥∥gn −
x0

n

∥∥∥ = ‖x0‖.

If ‖x0‖ > 0, then Φn(x0) > 0 for some n which is a contradiction. Hence x0 = 0 and so for
y ∈M we have

‖y − 0‖p ≤ ‖F (0)− 0‖p = ‖x0‖P = 0,

whence M = {0}.
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