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paper where exact values of parameters has been estimated.
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2 PETTERIHARJULEHTO AND RIKU KLEN

1. INTRODUCTION

Domains that satisfy the quasihyperbolic boundary condition with a constanto, 1] (see
Definition[2.1) were introduced Gehring and Martiolin [3] and after that they have been studied
intensively. The constartt plays a crucial role in these studies and many properties have been
proved in the terms of it. For example in [9] Koskela and Rohde showed that the Minkowski
dimension of the boundary of the domain is at mbst ¢3!, whered is the dimension of the
boundary of the domain and the constadepends only on the dimensidnAnother example
is the paper.[5] by Hurri-Syrjanen, Marola and Vahakangas, where the Poincaré inequality is
stated in terms off. However, there seems to be very few examples where the exact value for
(3 is known. In fact the authors do not know any nontrivial example with exact constants.

John domains form a proper subclass of domains that satisfy the quasihyperbolic boundary
condition [3, Lemma 3.11]. They were originally introduced [in [6] but the more intensive
studies started from the article |12] by Martio and Sarvas. John domains are recognized as a
wide class of irregular domains where the classical results are known to hold, see for example
the article [1] by Buckley and Koskela. Thus it is surprising that the value of the parameter is
known only for trivial examples; all proofs seems to give only existence of the parameters. The
aim of this paper is to give explicit examples of these domains.

Figure 1: Left: a Cantor dust-type domain with= 1/3.Right: von Koch snowflake domain with= 1/4.

We remove a Cantor dust-type fractal with a ratie (0, 1) from an open balB(0, 2) C R?,
see Figur¢[l. Then we calculate two constafjtsind 5, depending only omv and show that
our domain satisfies the quasihyperbolic boundary condition fér3, and it does not satisfies
the quasihyperbolic boundary condition for> 3, (Theorenj 3.]1). Althougl¥, < 3,, we see
that3, — 5, < 0.04. Similarly we analyze when this domain is a John domain and show that it
is 4.37/a-John (Theorerp 3]3).

We construct a von Koch snowflake in the plane by replacing the midtteportion,a €
(0, 1], of each line segment by the other two sides of an equilateral triangle, see Eigure 1. We
show that the von Koch snowflake domain satisfies the quasihyperbolic boundary condition for

B < B} but not for3 > 3, (Theoreny 4]1), herg; and 3, depend only or:. Finally we

4

show that the von Koch snowflake domain is a John domain with a conﬁtan{Q, m}

(Theoren] 4). So in particularly far € (0, 1] it is 2-John. In this range the result is sharp
and surprisingly the constant does not depend on the paramsiece the worst case is the
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equilateral triangle inside the von Koch snowflake domain and every equilateral triangle is a
John domain with a constaft

2. PRELIMINARY RESULTS

Let D C R? be a domain. The quasihyperbolic length of a rectifiable ctiree D is
|dz|

() = / . 7

., dist(z,0D)

wheredist(z,0D) is the Euclidean distance betweeanddD. The quasihyperbolic distance
kp is defined by
kD(J:?y) :13f€k(7)7 IL‘,yGD,

where the infimum is taken over all rectifiable curvedinoining x andy. By the definition it
is clear that the quasihyperbolic metric is monotone with respect to domains, which means that
if D C RYandD’ c D are domains, and,y € D', thenkp(z,y) < kp(z,y).

We recall next the definitions of the quasihyperbolic boundary condition and the class of John
domains.

Definition 2.1. [3] A domain D C R¢ satisfies aquasihyperbolic boundary conditionith
constants? € (0,1] andc > 0, or shortly D satisfies3-QHBC, if there exists a distinguished
pointz, € D such that

1 1
2.1 < —-log ——mM—
(2.1) Fip(wo, ) < 3 8 dist(z,0D) te

forallz € D.

Note that if D’ C D andx,y € D', thenkp(x,y) < kp/(x,y). We use this property when
we obtain lower estimates for the quasihyperbolic distance.

Definition 2.2. [12] A domain D is ac-John domainc > 1, if there is a distinguished point
xo € D suchthatany € D can be connected tq by a rectifiable curve : [0,{] — D, which
is parametrized by arclength and witf0) = =, (1) = =, and

1
dist(~(t),0D) > Et

for every0 < ¢ < [. The distinguished point, is called the John center.

Punctured spad&? \ {0} is one of the very few domains where the explicit formula for the
quasihyperbolic distance is known. Martin and Osgood proved the following result in[1986 [11,
p. 38].

Proposition 2.1. LetG = R¢\ {0} andz,y € G. Then

kg(l',y) = 02+10g2|£‘7
[yl
wheref = £(z,0,y).

Finally, we give a formula for the quasihyperbolic length of a Euclidean line segment in
twice-punctured space.

Lemma 2.2. [8, Remark 4.26).etG = R?\ {a,b} for a # b, c = (a + b)/2, the linel be the
perpendicular bisector df:, b] andx € [. Then

(ol d]) = log (2 <|x — e+ y/la—b2/4 + |z - c|2>> —log |a—b|.
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3. CANTOR DUST-TYPE FRACTAL

Leta € (0,1). LetQ, C R? be the closed square in the plane which side length is 1 and
which is centered at the origin. We make a Cantor constructiap,inWe remove fromp),
strips{—5 <z < §}and{—-§ <y < §}. We get four closed squar€g, j =1,...,2%. We
continue the process by removing from e&ghvertical and horizontal strips of Widtba(Q{ ).

We set

ThusC,, consists of the corner points of all squa@l& The setC, is self-similar and thus its
Hausdorff dimension is equal to its Minkowski dimension/[10, Lemma 3.1, p. 488].. By [2,
Theorem 9.3, p. 118] we can calculate

log 4
dim(C,) = dimy (C,) = —=

log 2=
Thusa — dimy(C,) = dimy(C,) is a strictly decreasing bijective mapping fraith 1) to
(0,2). Note that in the range € (0, 5] we havedimy(C,) = dimu(C,) < 1.

We set

Q. = B(0,2)\ C, C R%

Then(, is a bounded domain witlimy(9€2,) = dimu(9Qa) = max {1, dimx(C,)} and
for every\ € [1,2) there exists a unique € [0, 1] such that\ = dimy(9Q,) = dima (082 ).
For the domainf),, see Figuré]l dr|3.

Theorem 3.1. The domairf2, C R? (defined above) satisfies teQHBC for

(3.1) B< B =

and it does not satisfg-QHBC for

(3.2) B8y =
0

0.03r

0.02r

NI
T

___________ 0.01f

0 : 1 0 1 1
Figure 2: Left: bounds, (solid line) ands, (dashed line) of Theorem 3.1 plotted as functions.dRight;3, — 5,

plotted as a function af.

Note that althougl®, < 3, we haves, — 3, < 0.04, see Figurg|2.
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Proof. Letz, be a center of), and letr,, be a center of)? in an upper right corner, see Fig@e 3.
We want to give upper and lower estimates for the quasihyperbolic distancey, z,,). Then

by the geometry of the domain we can connect by a line segment an, N (2, to a suitable
center point. Thus if the center points satisfy th6HBC then, by increasing the constant

in (2.7), allx € Qy N Q, satisfy 3-QHBC for the same?. We start with the upper estimate.

We connectr, andz,, as in the Figuré|3, where we use line segments and circle arcs near the
pointszy,...r,_1. Letusdenoté € {1,2,... n}. We first estimate the dotted part of the path
denoted byy,. Lety, andw; be as in Figurg|3. By Lemnija 2.2 we obtain

k(po) = Ky, w) < K([yi, w])
—1og (a(152) ! (14 1+ 41— a)2) ) ~log (a(}5))

2 4+ (1—a)?
~ log + 4+ ( oz)'

a 11—«

00 OO 00 00
OO0 OO oo oo
OO0 OO OO0 (D0 U
OO0 OO OO0 | oo .
5 T Dl
. °
q St Yl
00 OO 00 OO
OO0 OO OO0 OO 7“1
OO0 OO OO0 OO
OO0 OO OO0 OO U1

Figure 3: The path used in the proof of Theorfen 3.1.

For the circle arc the radius l;sé(l‘T“)l and hence the quasihyperbolic length of the circle
arcis

There are two line segments inside the sql@f_el. The longer has Iength(Q{) = (*T“)l

and the shortec}é(Q{). In both parts the distance to the boundary is equal to or greater than

%a(%)l_l. For the line segments we obtain an upper bound for the quasihyperbolic length

e 10 - AT - 315

e

Putting these three estimates together and adding the first and last parts of the path, we have
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ko, (2o, x,) <

s 2+ 4+(1—-w)? 3 7w 3

(3.3) = 2——+n(log T +ﬂ 5 2).

Next we calculate a lower bound for the quasihyperbolic distance. We do not need to know
where exactly quasihyperbolic geodesic is located. But if a geodesic conpexidzx,, in the
upper right corner, then the geodesic should go from the bounda@f td the boundary of

{+1- Thus we can give a lower estimate to the quasihyperbolic distange;, ;). First we
estimate the path from the boundary@f to the 'middle square’ of);. Here the shortest route
is in the middle of the strip and in the same time the distandg@,tas the greatest. Thus we

obtain L
170&) 2

(— l—-«
k(r) > ~22— == .
oy a2 )
Then we estimate the path across the 'middle square’ to the bound@fy 0fWe use a circular
arc to estimate the path through the 'middle square’, see F@;ure 3, and baix 7. Finally

we estimate the path from the 'middle square’ to the boundal@{gf. In the boundary of

/., the distance t@’,, is at most;a¢(Q7, ,). Thus we get a lower estimate for the later half by

approaching to the middle of the strip perpendicular to the bounda@ﬁqfas we did in the
24+4/4+(1—«a

dotted part of the upper bound. We get the téspr——— Vl_(a)z Collecting the terms together
we obtain

ko, (30,2a) 2 n2(52) +(n— 13 + nlog ZrV/HHI=?

2 l1-a
@) =5 (log AT e ),

In the definition of the quasihyperbolic boundary condition we chagse 0 and letx = z,,
be a center of)’,. Now

dist(an, OC,) = \/53 <1 . O‘)

and thus
2

2
(3.5) = log i— + nlog 1
o)

log—4m8M8 ——
°8 dist(z,, 0C,)
Combining [3.B) and (3]5) and letting— oo we deduce tha®,, satisfies[(2]1) in the QHBC
for

log %

11—«

Similarly combining [(3.4) and (3]5) and letting— oo we see thaf), does not satisfie§ (3.1)
in the definition of the QHBC for

p<

logl%
B> 2+ma o
log ———— + 5% +3
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Proposition 3.2. Let0 be the John center. Then the dom&igis c-John forc > 4.37/«, and
it is notc-John fore < 4/a.

Proof. We consider first the case thate Q, N Q,. Letx, be a center o)’ in an upper right
corner. We choose the curvg, , joining x,, andz, consisting of horizontal and vertical line

segments as in Figufé 4. We denefe= v, , N 9Q], andys, zi € 7,,, as in Figuré 4. Now

Ung) =1~ (1;a>n

() = (1;a>k B (1;(1)”7

where~, . is the subcurve of,,, , connectingz,, to z; with & < n. Letz € Q7 \ UQZHrl and
Y, = [z, 2,] Uy, fory € v,,, wherey, , is the subcurve of;, , connectingr,, to y. Now

|z —z,| < (1 —«)/2)"V1+ a?/2implying

and

dist (7, (0(1.,),09)) s (5"
jl —a\" o —_a\k —a\7 a —_a\k
(72, (559)" 5+ (550) = (559" +5 (%°)
_ a > 2
()" " (VitaZ-2)+2-a 3
and
dist (7, (£(7,),0)) s (59"
- —a\" Vita —a\ k1 —a)\" —a\k+l
(V) (559)" 5+ (5)7 - ()" +3 (%)
(8% (6%
- 1—q\n—k—1 2 - g
(2) (Vi+a?2—-2)+3
Hence the definition holds if < & i.e. if ¢ > 3/cv.
0o 0O Tn+1
Qn ®
OO0 OO -
Ty :” Yn
OO0 OO OO0 OO
OO0 OO OO0 OO
OO0 0o OO0 OO
OO0 OO OO0 OO .

Up—1

Figure 4: The curvey,, , and pointsy,,, z, andu,, used in the proof of Propositi.2.
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Let us then consider,, € Q, \ Qo = B*(2) \ Qo. Letz, = i(2 — 1/n) and~, is the line
segment joininge,, to xo. Now
dist(,,(t), 0Q24) 5 a a
< = < —
0(7,,(t)) —2—-1/n 4-2/n 4
and hence the definition does not hold it < i.e. if ¢ < 4/cv.
Letz, = v2(1+4)(2—1/n) andy, = [x0,i/2] USU [a/2+i(1 + a)/2, z,], wheres is the
circular arc joining;/2 anda /2 + (1 + «) /2 with center atv/2 + /2. Now

dist(y,,(t), 02) > lim dist(~,,(t))
(7 (1)) — n=ee U(,(1))
T Yo SN R R
B 1—a+”—;‘+\/17—4\/§+2a(1—4\/§+a2)

«

(0%
> .
1+ V17— 42 437

Hence the definition holds i < ;- i.e. if ¢ > 4.37/.
By the geometry it is clear that the assertion follows.

>

When the parameter is small then the origin is no longer a good choice for the John center.
In the next theorem we use /4 instead and get a slightly better result. Most probably the
optimal John center should depend®and thus have the foria{«):.

Theorem 3.3. The domair?,, is 4.37/«a-John fora € [1/3,1) and3/«-John fora € (0, 1/3).

Proof. By Propositior] 3.2 the domaif},, is 4.37/a-John and thus we need to show that for
a < 1/3itis 3/a-John.
Leta < 1/3 and choose;, = 5i/4 to be the John center. By the proof of Proposition} 3.2 it
is clear that for ally € Q, N Q, we have
dist(y(t), 024) L
((y(1)) 3
wherey =~/ U [0, z¢] is the curve joining, to =, and~ is as in Figuré §4.
Let us now assume thagt € B(0,2) \ Q. We consider the curve from y to x,, which
consists of the line segmeny, 5y/(4|y|)] and the shortest circular arc froby/(4]y|) to zo
with center at 0. By the selection gfwe obtain

dist(y(1),00) _ §—F _5-2V2
(v(1)) T2 +3 5743

where the last inequality follows from the fact that< 1/3. Now the assertion follows &3,
is 2-John.g

>1>a
9" 3’

4. VON KOCH SNOWFLAKE DOMAIN

We construct a von Koch snowflake. Lete (0,1/2]. We start with an equilateral triangle
with side length 1. We replace the middigh portion of each line segment by the other two
sides of an equilateral triangle. We continue inductively and obtain a von Koch snowflake. We
denote bysS, the bounded domain bordered by the von Koch snowflake. Titgnis self-
similar and thus its Hausdorff dimension is equal to its Minkowski dimensioh [10, Lemma
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3.1, p. 488]. Note that fon € (0,1/2), 95, is not self-intersecting [7, Theorem 3.1]. The
Minkowski dimension 0©S, is the solution oRa® + 2(1(1 — a))” = 1 fora € (0,1/2), [2,
Example 9.5, p. 120].

Theorem 4.1. The domainS, C R? satisfies the3-QHBC for
5<p log%
>~ M1 =
log 1+ 1t3a” ;\12%?”2 + log (3 + 2\/5)
and it does not satisfy-QHBC for

log %

ﬁZﬁzZ

9 V3 2 v/ (14a)(3+2a) '
arcsin N eI + log 7

0.3
0.2
0.1}
1 1 1 1
0 Z P 0 Z 2

Figure 5: Left: bounds, (solid line) ands, (dashed line) of Theorem 4.1 plotted as functions.dRight:3, — 3,
plotted as a function af.

We have that, — 3, < 0.4, see Figurg]5.

Proof. We calculate first the upper bouny. We concentrate on the worst situation, see Fig-
ure[6, where we first go up and then always to the left to the center of a triangle. Note that
other points in the same triangle can be easily connect to the center point and thus they do not
effect to the value ofi. Let us denote by, the center of5, and byz,, the center of the triangle
constructed on the-th iteration as in Figurg|6. We estimate, (o, z,,) by using the curve

Y = U, [z;—1, ;] and denote pointg,, z, as in Figure[b. We estimates, (z,,y,) by the
quasihyperbolic length of line segmeiits, y,,] in the domairR? \ {y,,1}. By Lemmd 2.2 we

obtain

n n 2 n 2 n
kSa(xmyn) S log 2 \/ga + (a_) _'_<\/§a’> _log (a_)

4 4 4 2

o (5 ) (5
= log (2+V3) +log V3 = log (3 +2V/3).

Similarly kg, (x,,y,+1) IS estimated by the quasihyperbolic length of line segmpntsy,, 1]
in R? \ {2, }and thus by Lemmja 2.2 we obtain
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xna n+ — a

1++v3a%2+1
NE

= log

Therefore we have

(41) ks, (w0, 7)< ks, (w0, m) + (n— 1) (log (3 +2/3) + log LB,

We easily obtain

dist (2, 9S,) = \/<an2+l)2 + (2‘%)2 - a—;\/m

and thus

1
(4.2) + nlog p

2
log————— =log ——
8 dist(z,, 0S,) & va+1/3

Combining [4.1) with[(42) we obtain tha}, satisfies thes-QHBC for 5 < j3,.
We prove next the lower bound,. We estimate:(y,,, v.+1) by the quasihyperbolic distance
betweeny,, andy,,,; in the domairR? \ {z,}. We deduce thdt,, ;1 — 2,| = a"™ /2,

| | a™ 2 N am™ — an+1 2 am™ q™ — anJrl T
n — %n = —_ —_— — — ——— COS —
Y 2 2 2 2 3

a"\/(1+a)(3+ 2a)
2v/2

and by sine rule
V3
V21 +a)(3 + 2a)

sin K(yna Zn; yn+1) =

Therefore, by Propositidn 2.1

) V3 » V(L +0a)(3+2a)
E(Yn, Yns1) = \/arcsm N ETCEST) + log s .

and

V3 o /(1 +a)(3+ 2a)
+ log :
V2(1+a)(3 + 2a) av/2
Combining [4.8) with[(42) we obtain that, does not satisfy3-QHBC for 5 > 3,. i

4.3) k(zo, x,) > (n — 1)\/arcsin2

Theorem 4.2.Leta € (0,3]. The setS, is c-John withe = max{2, ﬁ} and it is not
¢-John for anyd’ < 2.

Note that the result is sharp in the range (0, 1].
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Z2

Figure 6: Pointsz,,, y,, andz, as in the proof of Theorem 4.1.

Proof. Let us denote by, the open equilateral triangle, which has sidelength 1 and is contained
in S,. We choose the John centeyto be the center dfy and letx be any point inS,.

If x € Ty, then we choose to be the line segment joiningto xz. It is clear that
(4.4) dist(7(t), 0S,) > 1’

((~(1)) 2
(and hence every open equilateral triangle-i&ohn).

If x ¢ T, thenz € T,,, whereT,, is a maximal equilateral triangle if}, \ 7 with sidelength
a™. Lets be the side of, with s N S, = 0 andy,, the midpoint ofs (see Figur¢|6). We denote
v = [, yn) U [Yn, Tn] U 20, yn—1] U~ - -U 11, 20|, Wherez,, is the center of, as in Figur¢ p. We
easily obtain thalty, ., —z,| = |z, —yn| = a”/(2V/3) and thudy, 1 — 2, |+ |2, —ya| = a”/V/3.
This yields for every: = 0, ... n that

ak 1— anfk+1

V3 B 1-a

wherey,, is the subpath of that joinsz to y.. Sincedist(yx, 05,) = \/Tga’f we obtain for every
a, n andk that

0(y,,) = (a"+...+d") =

: V3 _k
dist(y(t a 3 1l—-a 3
(4.5) ( ( ) ) = 4k 1fan—k+1 =7 k1l = (1 - CL)
((y(1)) 3 1-a 41 —anrt 4

Wherey( ) = yg. Note that the last inequality is sharp whers fixed andn — oo. When
a €0, 3], we hav&(l —a) > 3; the inequality is sharp when= 3. By (4.4) and[(4.b) the set

S, IS max {2, -0 -John.

Next we show thaS is notc-John for any: < 2. Let us denote by one of the corners df;
and considety = [z, 2| for z € [z, y]. We obtain thafS, is notc-John fore < ¢, = 3|z¢ — z|.
As z — y we havelzy — y| — 2/3 and thus:, — 2 implying the assertiora

REFERENCES

[1] S. BUCKLEY and P. KOSKELA, Sobolev-Poincaré implies JoMath. Res. Lett.2 (1995), no.
5, pp. 577-593.

AJMAA Vol. 12, No. 1, Art. 9, pp. 1-12, 2015 AJMAA


http://ajmaa.org

12 PETTERIHARJULEHTO AND RIKU KLEN

[2] K. FALCONER, Fractal Geometry. Mathematical Foundations and Applicatipdehn Wiley &
Sons Ltd., Chichester, 1990.

[3] F. W. GEHRING and O. MARTIO, Lipschitz classes and quasiconformal mapp#igs, Acad.
Sci. Fenn. Ser. A | Math1,0(1985), pp. 203-219.

[4] F.W. GEHRING and B. P. PALKA, Quasiconformally homogeneous domdimsnalyse Math30
(1976), pp. 172-199.

[5] R. HURRI-SYRJANEN, N. MAROLA and A. V. VAHAKANGAS, Poincaré inequalities in quasi-
hyperbolic boundary condition domains, preprint.

[6] F. JOHN, Rotation and strailGomm. Pure Appl. Math14 (1961), pp. 391-413.

[7] T. KELETI and E. PAQUETTE, The trouble with von Koch curves built frengons,Amer. Math.
Monthly, 117(2010), no. 2, pp. 124-137.

[8] R. KLEN, On hyperbolic type metric#Ann. Acad. Sci. Fenn. Math. Disdlp. 152 (2009).

[9] P. KOSKELA and S. ROHDE, Hausdorff dimension and mean porostgth. Ann.,309 (1997),
no. 4, pp. 593-609.

[10] M. L. LAPIDUS, Fractal drum, inverse spectral problems for elliptic operators and a partial reso-
lution of the Weyl-Berry conjectur@rans. Amer. Math. Soc325(1991), no. 2, pp. 465-529.

[11] G. J. MARTIN and B. G. OSGOOD, The quasihyperbolic metric and the associated estimates on
the hyperbolic metric]). Anal. Math. 47 (1986), pp. 37-53.

[12] O. MARTIO and J. SARVAS, Injective theorems in plane and spAo@, Acad. Sci. Fenn. Ser. A |
Math.,4 (1978/1979), pp. 383—401.

AJMAA Vol. 12, No. 1, Art. 9, pp. 1-12, 2015 AIJMAA


http://ajmaa.org

	1. Introduction
	2. Preliminary results
	3. Cantor dust-type fractal
	4. von Koch snowflake domain
	References

