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2 A. A IBECHE AND K. L AIDOUNE

1. I NTRODUCTION

The regular boundary value problems for elliptic differential-operator equation with a spectral
parameter have been studied by many authors [2, 4, 19, 20]. Such parameter may appear in both
the equation and the boundary conditions.

However, non-local problems, not satisfying Sapiro-Lopatinski condition or complementing
condition, are less studied. In the papers and monographs [1, 5, 6, 7, 19, 20] sufficient conditions
for coerciveness estimate and the completeness of system of root vectors to hold are given in
Hilbert-valued function spaces. We quote in particular [20], where a number of such problems
is considered.

The Abel basis property of a system of root vectors of an unbounded operators, introduced
in B. Lidskii [13] (see also V. Matsaev and S. Agranovich), is used and developed in the book
by S. Yakubov and Ya. Yakubov [20] and some papers. But in this book, the results mostly
obtained for case when the spectral parameter may appear in both the equation and the boundary
conditions.

A. Aibeche in [7, 8] considered a non-local boundary value problems for elliptic differential-
operator equation of second order whith an operator in boundary conditions, and established the
coerciveness estimate, the completeness of root vectors, when the principal part of the corre-
sponding spectral problem is selfadjoint and the Fredholm property for nonselfadjoint operators.

The main objective of the present paper is to discuss similar problem as those in [7, 8],
we study the coerciveness, the completeness and the Abel basis property in the corresponding
Hilbert spaces. Moreover, we used the results obtained by V. Shakhmurov [1, 15, 16], to give
conditions which guarantee the coerciveness estimate and the completeness of root vectors in
Banach-valuedLp spaces.

These results are applied to non-local boundary value problems for elliptic partial differential
equation with parameter in cylindrical domains.

More precisely, in Section 2, we give some background preliminaries, more precisely, we re-
call Dore-Yakubov Theorem and the multiplier Theorem inLp (Rn, E). The principal boundary
value problem for abstract differential equations is studied in Section 3, where the isomorphism
and the coerciveness are proved. In Section 4, the completeness and the Abel basis property of
the root vectors of differential operator generated by our problem are shown. Finally, in Section
5, we apply the obtained abstracts results to some boundary value problems for elliptic partial
differential equation in a cylinder.

2. PRELIMINARIES

LetE be a Banach space,A a linear closed operator inE andD (A) its domain.
We denote byLp (Ω, E), the space of strongly measurableE-valued functions that are defined

on a domainΩ ⊂ Rn with the norm

‖u‖Lp(Ω,E) =

(∫
Ω

‖u (x)‖p
E dx

) 1
p

, 1 ≤ p ≤ ∞.

By Lp (Ω) , W l
p (Ω), we will denote ap-summable function space and Sobolev space.

The Banach spaceE is said to beξ−convex if there exists onE × E a symmetric valued
functionξ wich is convex with respect to each of the variables and satisfies the conditions

ξ (0, 0) > 0,

ξ (u, v) ≤ ‖u+ v‖ , for ‖u‖E = ‖v‖E = 1.

Theξ−convex Banach spaceE is often called aUMD space.Lp, lp spaces and Lorentz spaces
Lpq with p, q ∈ (1,∞) areUMD spaces.
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ELLIPTIC ABSTRACT DIFFERENTIAL EQUATION 3

Let C be the set of complex numbers and

Sϕ = {λ ∈ C, |arg λ| ≤ ϕ} ∪ {0} , 0 < ϕ ≤ π.

Definition 2.1. [1] A linear operatorA is said to beϕ−positive in Banach spaceE with bound
M > 0, if D (A) is dense inE and∥∥(A− λI)−1

∥∥
L(E)

≤ M

1 + |λ|

with λ ∈ Sϕ, ϕ ∈ (0, π], whereI is the identity operator inE andL (E) is the space of bounded
linear operators acting onE.

LetE (A) denote the spaceD (A) with graphical norm defined as

‖u‖E(A) = (‖u‖p + ‖Au‖p)
1
p , 1 ≤ p <∞.

LetE0 andE be two Banach spaces and letE0 be continuously and densely embedded intoE.
By (E0, E)θ,p , 0 < θ < 1, we will denote interpolation spaces for{E0, E} by theK-method
([17, section 1.3.1]). We denote byBs

p,q (Ω), whereΩ is a regular domain ofRn the space

Bs
p,q (Ω) =

(
W s0

p (Ω) ,W s1
p (Ω)

)
θ,q

;

where0 ≤ s0, s1 are integers,0 < θ < 1, 1 < p <∞, 1 ≤ q ≤ ∞ ands = (1− θ) s0 + θs1.
Consider the Banach space

W l
p (0, 1;E (A) , E) =

{
u, Au ∈ Lp (0, 1, E) , u(l) ∈ Lp (0, 1, E)

}
with the norm

‖u‖W l
p(0,1;E(A),E) = ‖Au‖Lp(0,1,E) +

∥∥u(l)
∥∥

Lp(0,1,E)
<∞.

LetE0 andE1 be two Banach spaces.

Definition 2.2. [2] A function ψ ∈ C (Rn;L (E1, E2)), is called a multiplier fromLp (Rn, E1)
toLq (Rn, E2), if there exists a constantC > 0 with∥∥F−1ψ (ξ)Fu

∥∥
Lq(Rn,E2)

≤M ‖u‖Lp(Rn,E1)

for all u ∈ Lp (Rn, E1) , whereF is the Fourier transform.

The set of all multipliers fromLp (Rn, E1) to Lq (Rn, E2) will be denoted byM q
p (E1, E2).

ForE1 = E2 = E, it will be denoted byM q
p (E) .

Definition 2.3. [18] A setK ⊂ B (E1, E2) is calledR−bounded if there exists a constant
C > 0 such that for allT1, T2, · · · , Tm ∈ K andu1, · · · , um ∈ E1, m ∈ N∫ 1

0

∥∥∥∥∥
m∑

j=1

rj (y)Tjuj

∥∥∥∥∥
E2

dy ≤ C

∫ 1

0

∥∥∥∥∥
m∑

j=1

rj (y)uj

∥∥∥∥∥
E1

dy

where{rj} is a sequence of independent symmetric[−1, 1]-valued random variables on[0, 1] .

Now, let

Un = {β = (β1, · · · , βn) ; βi ∈ (0, 1) , i = 1, · · · , n}
Vn = {ξ = (ξ1, · · · , ξn) ∈ Rn; ξi 6= 0, i = 1, · · · , n}
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4 A. A IBECHE AND K. L AIDOUNE

Definition 2.4. [1] A Banach spaceE is said to be a space satisfying a multiplier condition with
respect top ∈ (1,∞) if the following condition holds: ifψ ∈ C (Rn;L (E)) and the set{

ξβDβ
ξψ (ξ) ; ξ ∈ Vn, β ∈ Un

}
isR−bounded, thenψ ∈Mp

p (E) .

Definition 2.5. [1] The positive operatorA is said to beR−positive in the Banach spaceE if
there existsϕ ∈ (0, π] such that the set{

(1 + |ξ|) (A− ξI)−1 , ξ ∈ Sϕ

}
isR−bounded.

For two sequences{aj}∞1 , {bj}∞1 of positive numbers, the expressionaj ∼ bj means that
there exist positive numbersC1, C2 such thatC1aj ≤ bj ≤ C2aj. ∀j ∈ N.

Let σ∞ (E1, E2) denote the space of compact operators acting fromE1 to E2. Denote by
sj (I) anddj (I) the approximation numbers andd-numbers of the operatorI, respectively (see,
e.g, [17, 1.16.1] ).

σp (E1, E2) =

{
A ∈ σ∞ (E1, E2) ,

∞∑
j=1

sp
j (A) <∞, 1 ≤ p <∞

}
.

Theorem 2.1. [10] Let E be a Banach space.A be a linear closed operator inE of type

ϕ with boundL. Moreover, letm be a positive integer,p ∈ (1,∞) andα ∈
(

1
2p
,m+ 1

2p

)
.

for λ ∈ Sϕ the operator− (A+ λI)
1
2 generates a semigroupexp

(
−x (A+ λI)

1
2

)
which is

holomorphic forx > 0 and strongly continuous forx ≥ 0. Moreover there existsC ∈ R+

(depending only onL, ϕ,m, α, p) such that for everyu ∈ (E,E (Am)) α
m
− 1

2mp
,p andλ ∈ Sϕ,∫ ∞

0

∥∥∥(A+ λI)α exp
(
−x (A+ λI)

1
2

)
u
∥∥∥p

≤ C

(
‖u‖p

(E,E(Am)) α
m− 1

2mp ,p
+ |λ|pα− 1

2 ‖u‖p

)
.

3. SOLVABILITY OF THE PRINCIPAL PROBLEM

Consider inLp (0, 1, E) the boundary value problems for the second order abstract differen-
tial equation

(3.1) L0 (λ,D)u = −u′′ (x) + Au (x) = f (x) , x ∈ (0, 1) ;

(3.2)

{
L10u = δu (0) = f1;
L20u = Bu (0) + u′ (1) = f2.

whereA, B, are linear operators andδ ∈ C, f1 ∈ (E (A) , E) 1
2p

,p , f2 ∈ (E (A) , E) 1
2
+ 1

2p
,p .

3.1. Homogeneous problem.Consider the principal part of the problem (3.1, 3.2) with a pa-
rameter

(3.3) L0 (λ,D)u = −u′′ (x) + (A+ λI)u (x) = 0, x ∈ (0, 1) ;

(3.4)

{
L10u = δu (0) = f1;
L20u = Bu (0) + u′ (1) = f2.

Theorem 3.1.Assume that the following condition are satisfied

(1) A is a closed, positive and densely defined linear operator onE;
(2) δ 6= 0;
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ELLIPTIC ABSTRACT DIFFERENTIAL EQUATION 5

(3) B is a linear continuous fromE
(
A

1
2

)
intoE and fromE (A) intoE

(
A

1
2

)
.

Then, forλ such that|arg λ| ≤ ϕ < π, |λ| → ∞, the problem (3.3, 3.4), forf1 ∈ (E (A) , E) 1
2p

,p ,

f2 ∈ (E (A) , E) 1
2
+ 1

2p
,p, has a unique solutionu ∈ W 2

p (0, 1;E (A) , E), and for the solution of

the problem (3.3, 3.4), the following coercive estimate holds

‖u′′‖Lp(0,1,E) + ‖Au‖Lp(0,1,E) + |λ| ‖u‖Lp(0,1,E)

≤ C

(
‖f1‖(E(A),E) 1

2p ,p
+ |λ|1−

1
2p ‖f1‖E

+ ‖f2‖(E(A),E) 1
2+ 1

2p ,p
+ |λ|

1
2
− 1

2p ‖f2‖E

)
.

Proof. From the condition (1), by virtue of Theorem 2.1, for|arg λ| ≤ ϕ, there exists the
semigroupexp (−x (A+ λI)) which is holomorphic forx > 0 and strongly continuous for
x ≥ 0. By virtue of [20][Lemma 5.4.2/1], an arbitrary solution of (3.3) belonging to the space
W 2

p (0, 1;E (A) , E) has the form

(3.5) u (x) = exp
(
−xA

1
2
λ

)
g1 + exp

(
− (1− x)A

1
2
λ

)
g2

whereg1, g2 ∈ (E (A) , E) 1
2p

,p .

The functionu given by the formula (3.5) satisfies the boundary conditions (3.4) if δg1 + δ exp
(
−A

1
2
λ

)
g2 = f1

−A
1
2
λ exp

(
−A

1
2
λ

)
g1 + A

1
2
λg2 +Bg1 +B exp

(
−A

1
2
λ

)
g2 = f2.

which we can write in matrix form as

(3.6)

( δI 0

B A
1
2
λ

)
+

 0 δ exp
(
−A

1
2
λ

)
−A

1
2
λ exp

(
−A

1
2
λ

)
B exp

(
−A

1
2
λ

) (g1

g2

)
=

(
f1

f2

)
.

The first matrix of operators is invertible, its inverse is

(3.7)

(
1
δ
I 0

−1
δ
A
− 1

2
λ B A

− 1
2

λ

)
Multiplying the two hand-sides of (3.6) by the inverse matrix (3.7), we get the following system g1 + exp

(
−A

1
2
λ

)
g2 = 1

δ
f1

− exp
(
−A

1
2
λ

)
g1 + g2 = −1

δ
A
− 1

2
λ Bf1 + A

− 1
2

λ f2

Hence the solution is written as{
g1 = 1

δ
f1 +R11 (λ) f1 +R12 (λ) f2;

g2 = −1
δ
(I + T (λ))A

− 1
2

λ Bf1 + (I + T (λ))A
− 1

2
λ f2 +R21 (λ) f1

whereRij (λ) are given by
R11 (λ) = −1

δ
(I + T (λ)) exp

(
−A

1
2
λ

)
+ 1

δ
(I + T (λ)) exp

(
−A

1
2
λ

)
A
− 1

2
λ B

R12 (λ) = − (I + T (λ))A
− 1

2
λ exp

(
−A

1
2
λ

)
R21 (λ) = 1

δ
(I + T (λ)) exp

(
−A

1
2
λ

)
.
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6 A. A IBECHE AND K. L AIDOUNE

and satisfy‖Rij (λ)‖ → 0 when|λ| → ∞. (I + T (λ)) is the inverse ofI + exp
(
−2A

1
2
λ

)
.

Finally, the solutionu is given by

u (x) = exp
(
−xA

1
2
λ

)(1

δ
f1 +R11 (λ) f1 +R12 (λ) f2

)
+

exp
(
− (1− x)A

1
2
λ

)(
−1

δ
(I + T (λ))A

− 1
2

λ Bf1 +R21 (λ) f1 + (I + T (λ))A
− 1

2
λ f2

)
.

From the assumptions of Theorem 3.1 and the properties of interpolation spaces, the following
applications are continuous,

(I + T (λ))A
− 1

2
λ B : (E (A) , E) 1

2p
,p → (E (A) , E) 1

2p
,p

(I + T (λ))A
− 1

2
λ : (E (A) , E) 1

2
+ 1

2p
,p → (E (A) , E) 1

2p
,p

Let u (x) = v1 + v2 + v3, where

v1 = exp
(
−xA

1
2
λ

) 1

δ
f1;

v2 = exp
(
− (1− x)A

1
2
λ

) 1

δ
(I + T (λ))A

− 1
2

λ Bf1;

v3 = exp
(
− (1− x)A

1
2
λ

)
(I + T (λ))A

− 1
2

λ f2;

Then,

‖u′′‖Lp(0,1,E) + ‖Au‖Lp(0,1,E) + |λ| ‖u‖Lp(0,1,E) ≤
‖Aλv1‖Lp(0,1,E) + ‖Aλv2‖Lp(0,1,E) + ‖Aλv3‖Lp(0,1,E) + ‖Av1‖Lp(0,1,E) + ‖Av2‖Lp(0,1,E)

+ ‖Av3‖Lp(0,1,E) + |λ| ‖v1‖Lp(0,1,E) + |λ| ‖v2‖Lp(0,1,E) + |λ| ‖v3‖Lp(0,1,E) .

However, from Theorem 2.1, we have

‖Aλv1‖Lp(0,1,E) =

∥∥∥∥Aλ exp
(
−xA

1
2
λ

) 1

δ
f1

∥∥∥∥
Lp(0,1,E)

≤ C

(
‖f1‖(E(A),E) 1

2p ,p
+ |λ|1− 1

2p ‖f1‖E

)
.

Similarly we estimate the other terms.

3.2. Non homogeneous problem.Consider, now the Non homogeneous problem equation
with a parameter

(3.8) L0 (λ,D)u = −u′′ (x) + (A+ λI)u (x) = f (x) , x ∈ (0, 1) ;

(3.9)

{
L10u = δu (0) = f1;
L20u = Bu (0) + u′ (1) = f2.

Then, we have the result

Theorem 3.2.Suppose the following conditions satisfied

(1) A is a closed,R−positive and densely defined linear operator onE which isUMD;
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(2) δ 6= 0;

(3) B is a linear continuous fromE
(
A

1
2

)
intoE and fromE (A) intoE

(
A

1
2

)
.

Then, the operator

L0 (λ) : u 7→ L0 (λ)u = (L0 (λ,D)u, L10u, L20u)

for f1 ∈ (E (A) , E) 1
2p

,p , f2 ∈ (E (A) , E) 1
2
+ 1

2p
,p andλ such that|arg λ| ≤ ϕ < π, |λ| → ∞, is

an isomorphism fromW 2
p (0, 1;E (A) , E) intoLp (0, 1, E)×(E (A) , E) 1

2p
,p×(E (A) , E) 1

2
+ 1

2p
,p , p ∈

(1,∞), and the following coercive estimate holds

‖u′′‖Lp(0,1,E) + ‖Au‖Lp(0,1,E) + |λ| ‖u‖Lp(0,1,E)

≤ C

(
‖f‖Lp(0,1,E) + ‖f1‖(E(A),E) 1

2p ,p
+ |λ|1−

1
2p ‖f1‖E

+ ‖f2‖(E(A),E) 1
2+ 1

2p ,p
+ |λ|

1
2
− 1

2p ‖f2‖E

)
;

whereC does not depend onλ.

Proof. In Theorem 3.1, we proved the uniqueness. The solution of the problem (3.8, 3.9) be-
longing toW 2

p (0, 1;E (A) , E) can be written in the formu (x) = u1 (x)+u2 (x) , whereu1 (x)
is the restriction to[0, 1] of ũ1 (x) solution of the equation

(3.10) L0 (λ,D) ũ1 (x) = f̃ (x) , x ∈ R

with f̃ (x) = f (x) if x ∈ [0, 1] andf̃ (x) = 0 otherwise.u2 (x) is the solution of the problem

(3.11) L0 (λ,D)u2 = 0, L10u2 = f1 − L10u1; L20u2 = f2 − L20u1.

The solution of the equation (3.10) is given by the formula

(3.12) ũ1 (x) =
1√
2π

∫ +∞

−∞
exp (iµx)L0 (λ, iµ)−1 F f̃ (µ) dµ;

whereF f̃ is the Fourier transform of the functioñf (x), L0 (λ, σ) is the characteristic pencil of
the equation (3.10) i.eL0 (λ, σ) = A+ λI − σ2I.

From (3.12), it follows that

‖ũ′′1‖Lp(R,E) + ‖Aũ1‖Lp(R,E) + |λ| ‖ũ1‖Lp(R,E)

=
∥∥∥F−1 (iµ)2 L0 (λ, iµ)−1 F f̃ (µ)

∥∥∥
Lp(R,E)

+
∥∥∥F−1AL0 (λ, iµ)−1 F f̃ (µ)

∥∥∥
Lp(R,E)

+
∥∥∥F−1λL0 (λ, iµ)−1 F f̃ (µ)

∥∥∥
Lp(R,E)

.

whereF is the Fourier transform.
We show that the operator-valued functions

T (λ, µ) = λL0 (λ, iµ)−1 , Tk+1 (λ, µ) = (iµ)2k A1−kL0 (λ, iµ)−1 , k = 0, 1

are Fourier multiplier inLp (R, E) . For |arg λ| ≤ ϕ andµ ∈ R, we have(−λ− µ2) ∈ Sϕ.
Then by virtue of the resolvent properties of the positive operatorA, we obtain

(3.13)


‖T (λ, µ)‖ =

∥∥λL0 (λ, iµ)−1
∥∥ ≤ C;

‖T1 (λ, µ)‖ =
∥∥AL0 (λ, iµ)−1

∥∥ ≤ C;

‖T2 (λ, µ)‖ =
∥∥µ2L0 (λ, iµ)−1

∥∥ ≤ C;
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8 A. A IBECHE AND K. L AIDOUNE

using (3.13), for allµ ∈ R\ {0}, we obtain

(3.14)

∥∥∥∥ ∂∂µT (λ, µ)

∥∥∥∥ ≤ C |µ|−1 ,

∥∥∥∥ ∂∂µTk+1 (λ, µ)

∥∥∥∥ ≤ C |µ|−1 .

From theR−positivity of the operatorA, the operator-valued functionsT (λ, µ) , Tk+1 (λ, µ)
areR−bounded withR−bound independent ofλ. Moreover, it is easy to see from (3.13)

that the operator-valued functionsµ
(

∂
∂µ

)
T (λ, µ) and µ

(
∂
∂µ

)
Tk+1 (λ, µ) areR−bounded

with R−bound independent ofλ. Then, by the Definition 2.2, it follows that the functions
T (λ, µ) , Tk+1 (λ, µ) are Fourier multiplier inLp (R, E) . Then, we have

‖ũ′′1‖Lp(R,E) + ‖Aũ1‖Lp(R,E) + |λ| ‖ũ1‖Lp(R,E) ≤ C
∥∥∥f̃∥∥∥

Lp(R,E)

and so,
‖u′′1‖Lp(0,1,E) + ‖Au1‖Lp(0,1,E) + |λ| ‖u1‖Lp(0,1,E) ≤ C ‖f‖Lp(0,1,E) .

Thus, by Theorem 3.1, the problem (3.11) has a unique solutionu2 (x) that belong to the space
W 2

p (0, 1;E (A) , E) for |arg λ| ≤ ϕ and for sufficiently large|λ| . Moreover, for a solution of
the problem (3.11), we have

‖u′′2‖Lp(0,1,E) + ‖Au2‖Lp(0,1,E) + |λ| ‖u2‖Lp(0,1,E)

≤ C

(
‖f1−L10u1‖(E(A),E)

1
2p ,p

+ |λ|1− 1
2p ‖f1−L10u1‖E

+ ‖f2−L20u1‖(E(A),E)
1
2+ 1

2p ,p

+ |λ| 12− 1
2p ‖f2−L20u1‖E

)

≤ C

(
‖f1‖(E(A),E)

1
2p ,p

+ ‖L10u1‖(E(A),E)
1
2p ,p

+ |λ|1− 1
2p ‖f1‖E

+ |λ|1− 1
2p ‖L10u1‖E + ‖f2‖(E(A),E)

1
2+ 1

2p ,p

+ ‖L20u1‖(E(A),E)
1
2+ 1

2p ,p

+ |λ| 12− 1
2p ‖f2‖E + |λ| 12− 1

2p ‖L20u1‖E

)
.

We have

‖L10u1‖(E(A),E) 1
2p ,p

= ‖δu1 (0)‖(E(A),E) 1
2p ,p

≤ C ‖u1 (0)‖(E(A),E) 1
2p ,p

,

Therefore, by virtue of [17, section 1.8], we obtain

‖L10u1‖(E(A),E) 1
2p ,p

≤ C ‖u1‖W 2
p (0,1;E(A),E) ≤ C ‖f‖Lp(0,1,E) .

We have

|λ|1− 1
2p ‖L10u1‖E = |λ|1− 1

2p ‖δu1 (0)‖E

≤ C |λ|1− 1
2p ‖u1 (0)‖

By Theorem [20, 1.7.7/2], forµ ∈ C, u1 ∈ W 2
p (0, 1;E) and (E0 = E, E1 = E, γ0 = γ1 =

γ = 0, p0 = p1 = p, s = 0, l = 2),

(3.15) |µ|2 ‖u1 (0)‖ ≤ C
(
|µ|

1
p ‖u1‖W 2

p (0,1;E) + |µ|2+
1
p ‖u1‖Lp(0,1,E)

)
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Dividing by |µ|
1
p and substitutingλ = µ2 for λ ∈ C andu1 ∈ W 2

p (0, 1;E), from (3.15) we get

|λ|1−
1
2p ‖u1 (0)‖ ≤ C

(
‖u1‖W 2

p (0,1;E) + |λ| ‖u1‖Lp(0,1,E)

)
≤ C ‖f‖Lp(0,1,E)

Similarly, we get the other bounds and by the same way the coerciveness estimate.

3.3. Perturbed problem. Consider, now the general problem with a parameter

(3.16) L (λ,D)u = −u′′ (x) + (A+ λI)u (x) + A (x)u (x) = f (x) , x ∈ (0, 1)

L1u = δu (0) +

N1∑
s=1

T1su (x1s) = f1;

L2u = Bu (0) + u′ (1) +

N2∑
s=1

T2su (x2s) = f2.(3.17)

whereA, B, A (x) are linear operators andδ ∈ C, f1 ∈ (E (A) , E) 1
2p

,p , f2 ∈ (E (A) , E) 1
2
+ 1

2p
,p , and

Tks are, generally speaking, unbounded operators inE.

Theorem 3.3.Suppose the following conditions satisfied

(1) A is a closed,R−positive and densely defined linear operator onE which isUMD;
(2) δ 6= 0;

(3) B is a linear continuous fromE
(
A

1
2

)
intoE and fromE (A) intoE

(
A

1
2

)
;

(4) the imbeddingE (A) ⊂ E is compact;
(5) for anyε > 0 and for almost allx ∈ [0, 1] ,

‖A (x)u‖ ≤ ε ‖Au‖+ C (ε) ‖u‖ , u ∈ D (A) ;

for u ∈ D (A) the functionA (x)u is measurable on[0, 1] in E.
(6) for ε > 0 andu ∈ (E (A) , E) 1

2p
,p , wherep ∈ (1,∞) , θk = mk

2
+ 1

2p
, mk = {0, 1} we

have

‖Tksu‖(E(A),E)θk,p
≤ ε ‖u‖(E(A),E) 1

2p ,p
+ C (ε) ‖u‖E , k = 1, 2;

‖T1su‖E ≤ C (ε) ‖u‖E ;

‖T2su‖E ≤ ε ‖u‖(E(A),E) 1
2 ,p

+ C (ε) ‖u‖E ;

Then, the operator
L (λ) : u→ L (λ)u = (L (λ,D)u, L1u, L2u)

for f1 ∈ (E (A) , E) 1
2p

,p , f2 ∈ (E (A) , E) 1
2
+ 1

2p
,p andλ such that|arg λ| ≤ ϕ < π, |λ| → ∞, is

an isomorphism fromW 2
p (0, 1;E (A) , E) intoLp (0, 1, E)×(E (A) , E) 1

2p
,p×(E (A) , E) 1

2
+ 1

2p
,p , p ∈

(1,∞), and the following coercive estimate holds

‖u′′‖Lp(0,1,E) + ‖Au‖Lp(0,1,E) + |λ| ‖u‖Lp(0,1,E)

≤ C

(
‖f‖Lp(0,1,E) + ‖f1‖(E(A),E) 1

2p ,p
+ |λ|1−

1
2p ‖f1‖E

+ ‖f2‖(E(A),E) 1
2+ 1

2p ,p
+ |λ|

1
2
− 1

2p ‖f2‖E

)
;

whereC does not depend onλ.
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Proof. Letu be a solution of (3.16, 3.17) belonging toW 2
p (0, 1;E (A) , E). Thenu is a solution

of the problem 
L0 (λ,D)u = f (x)− A (x)u (x) , x ∈ (0, 1) ;

L10u = f1 −
∑N1

s=1 T1su (x1s) ;

L20u = f2 −
∑N2

s=1 T2su (x2s) .

From Theorem 3.2, we get the estimate

‖u′′‖Lp(0,1,E) + ‖Au‖Lp(0,1,E) + |λ| ‖u‖Lp(0,1,E)

≤ C

(
‖f − A (x)u‖Lp(0,1,E) +

∥∥∥f1 −
∑N1

s=1 T1su (x1s)
∥∥∥

(E(A),E) 1
2p ,p

+ |λ|1−
1
2p

∥∥∥f1 −
∑N1

s=1 T1su (x1s)
∥∥∥

E
+ |λ|

1
2
− 1

2p

∥∥∥f2 −
∑N2

s=1 T2su (x2s)
∥∥∥

E

+
∥∥∥f2 −

∑N2

s=1 T2su (x2s)
∥∥∥

(E(A),E) 1
2+ 1

2p ,p

)

≤ C

(
‖f‖Lp(0,1,E) + ‖A (x)u‖Lp(0,1,E) + ‖f1‖(E(A),E) 1

2p ,p

+
∥∥∥∑N1

s=1 T1su (x1s)
∥∥∥

(E(A),E) 1
2p ,p

+ |λ|1−
1
2p ‖f1‖E

+ |λ|1−
1
2p

∥∥∥∑N1

s=1 T1su (x1s)
∥∥∥

E
+ ‖f2‖(E(A),E) 1

2+ 1
2p ,p

+
∥∥∥∑N2

s=1 T2su (x2s)
∥∥∥

(E(A),E) 1
2+ 1

2p ,p

+ |λ|
1
2
− 1

2p ‖f2‖E

+ |λ|
1
2
− 1

2p

∥∥∥∑N2

s=1 T2su (x2s)
∥∥∥

E

)
.

From the Condition (5) and Lemma [20, 5.2.1/2], foru ∈ W 2
p (0, 1;E (A) , E),

‖A (x)u‖Lp(0,1,E) ≤ ε ‖u‖W 2
p (0,1;E(A),E) + C (ε) ‖u‖Lp(0,1,E) ,

In view of Theorem [20, 1.7.7/1] and the Condition (6), it follows that forε > 0 andu ∈
W 2

p (0, 1;E (A) , E)

‖T1su (x1s)‖(E(A),E) 1
2p ,p

≤ ε ‖u‖W 2
p (0,1;E(A),E) + C (ε) ‖u‖Lp(0,1,E)

Similarly we estimate the other terms.
Then, we have

(1− Cε) ‖u′′‖Lp(0,1,E) + (1− Cε) ‖Au‖Lp(0,1,E) + (1− Cε) |λ| ‖u‖Lp(0,1,E)

≤ C

(
‖f‖Lp(0,1,E) + ‖f1‖(E(A),E) 1

2p ,p
+ |λ|1−

1
2p ‖f1‖E

+ ‖f2‖(E(A),E) 1
2+ 1

2p ,p
+ |λ|

1
2
− 1

2p ‖f2‖E

)
.

Choosingε such thatCε < 1, the coerciveness estimate follows easily. Consequently, for
|arg λ| ≤ ϕ and|λ| sufficiently large, a solution of problem (3.16, 3.17) inW 2

p (0, 1;E (A) , E)

is unique. By virtue of Theorem 3.2, the operatorL0 (λ) fromW 2
p (0, 1;E (A) , E) intoLp (0, 1, E)×

(E (A) , E) 1
2p

,p× (E (A) , E) 1
2
+ 1

2p
,p is an isomorphism, then Fredholm and by virtue of Lemma
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[20, 1.2.7/2]), it follows that the operatorL1 (λ)

L1 (λ) : u 7→
(
A (x)u (x) ,

∑N1

s=1 T1su (x1s) ,
∑N2

s=1 T2su (x2s)
)

W 2
p (0, 1;E (A) , E) 7→ Lp (0, 1, E)× (E (A) , E) 1

2p
,p × (E (A) , E) 1

2
+ 1

2p
,p

from W 2
p (0, 1;E (A) , E) into Lp (0, 1, E) × (E (A) , E) 1

2p
,p × (E (A) , E) 1

2
+ 1

2p
,p is compact.

The proof of the theorem is completed by applying Theorem [20, 1.2.8,] to operatorL (λ) =
L0 (λ) + L1 (λ) .

4. COMPLETENESS AND THE ABEL BASIS PROPERTY

4.1. Completeness of root vectors.Consider a particular case of problem (3.16, 3.17), namely

(4.1) L (λ,D)u = −u′′ (x) + (A+ λI)u (x) + A (x)u (x) = 0, x ∈ (0, 1) ;

L1u = δu (0) +

N1∑
s=1

T1su (x1s) = 0;

L2u = Bu (0) + u′ (1) +

N2∑
s=1

T2su (x2s) = 0.(4.2)

Let us define, in the spaceE = Lp (0, 1, E) the operatorA by

D (A) = W 2
p (0, 1; E (A) , E; Lku = 0, k = 1, 2)

Au = −u′′ (x) + Au (x) + A (x)u (x)

A system of roots vectors of problem (3.16, 3.17) is complete in the spaceLp (0, 1, E) if a
system of roots vectors of the operatorA is complete in the spaceLp (0, 1, E) .

Lemma 4.1. (see, B. Shakhmurov,[1, Theorem 2.8]). Suppose thatsj (I, E (A) , E, ) ∼ j−q,
then

sj

(
J,W 2

p (0, 1;E (A) , E) , Lp (0, 1, E)
)
∼ j−

2q
2+q .

I (resp. J) is the imbedding ofE (A) in E (resp. ofW 2
p (0, 1;E (A) , E) in Lp (0, 1, E)) and

sj (I, E (A) , E, ) are the approximation numbers of the operatorI fromE (A) toE.

Then, we have the result

Theorem 4.2.Let all conditions of Theorem 3.3 be satisfied withsj (I, E (A) , E) ≤Cj−q, q >
0. Then the system of root vectors of the of problem (3.16, 3.17) is complete in the space
Lp (0, 1, E) .

Proof. From Theorem 3.3, we have

‖R (−λ,A)‖ ≤ C |λ|−1 , |arg λ| ≤ ϕ < π, |λ| → ∞.

Using Lemma 4.1, we get

sj (J, E (A) , E) ≤ Csj

(
J,W 2

p (0, 1; E (A) , E) , Lp (0, 1, E)
)
≤ Cj−

2q
2+q ,

i.e sj (J, E (A) , E) ≤ Cj−q′ , q′ > 2q
2+q

.
So, for the operatorA, all the condition of [9, Theorem.126, 2.3, p.50], are fulfilled. This

achieves the proof of the Theorem.
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4.2. The Abel basis property of root vectors. Let us define, in the Hilbert spaceH = L2 (0, 1, H)
the operatorA′ by

D (A′) = W 2
2 (0, 1; E (A) , E; Lku = 0, k = 1, 2)

A′u = −u′′ (x) + Au (x) + A (x)u (x)

A system of root vectors of problem (3.16, 3.17) is called an Abel basis of orderα in the space
L2 (0, 1, H) if a system of root vectors of the operatorA′ forms an Abel basis of orderα in the
spaceL2 (0, 1, H).

Theorem 4.3.Suppose the following

(1) The conditions (1)-(5) of Theorem 3.3 be satisfied;
(2) for someq > 0 it holds thatsj (I, E (A) , E) ≤ Cj−q, 2π

q+2
< ϕ < π, j = 1, . . . ,∞;

(3) the operatorsT1s from (H (A) , H) 1
4
,2 into (H (A) , H) 1

4
,2, fromH intoH andT2s from

(H (A) , H) 1
4
,2 into (H (A) , H) 3

4
,2, from(H (A) , H) 1

2
,2 intoH are compact.

Then, a system of root vectors of the problem (3.16, 3.17) forms an Abel basis of orderα ∈(
q+2
2q
, π

2(π−ϕ)

)
in the spaceL2 (0, 1, H).

Proof. Let us apply Theorem [20, 2.2.3] to the operatorA′. Using Lemma 3.10, we get

sj (J,H (A) ,H) ≤ Csj

(
J,W 2

2 (0, 1; E (A) , E) , L2 (0, 1, E)
)
≤ Cj−

2q
2+q ,

i.e sj (J,H (A) ,H) ≤ Cj−p, p > 2q
2+q

.
By Condition (3) and Lemma [20, 1.2.7/3,], for operatorsTks, the Condition (6) of Theorem

3.3 is fulfilled. Consequently, by virtue of Theorem 3.3, we have

‖R (−λ,A)‖ ≤ C |λ|−1 , |arg (−λ)| ≥ π − ϕ, |λ| → ∞.

Sinceϕ > 2π
q+2

, thenπ − ϕ < qπ
2+q

. Consequently, all the conditions of Theorem [20, 2.2.3] are
fulfilled. This achieves the proof of the Theorem.

5. APPLICATION

Let us consider, in the cylindrical domainΩ = [0, 1]×G, whereG ⊂ Rr, r ≥ 2 is a bounded
domain with an(r − 1)-dimensional boundary∂G which locally admits rectification, the non
local boundary value problem for an elliptic differential equation of the second order

(5.1)


L (λ, x, y,Dx, Dy)u = λu (x, y)−D2

xu (x, y)−
∑r

i,j=1Di (aij (y)Dju (x, y))
+A (x)u (x, .) |y= f (x, y) , (x, y) ∈ [0, 1]×G;

L1u = δu (0, y) +
∑N1

s=1 T1su (x1s) = f1 (y) , y ∈ G;

L2u = Bu (0, y) +Dxu (1, y) +
∑N2

s=1 T2su (x2s) = f2 (y) , y ∈ G;
Pu =

∑
|η|≤m bηD

η
yu (x, y′) = 0; (x, y′) ∈ [0, 1]× Γ;

wherem ≤ 1, δ ∈ C∗, Dx = ∂
∂x
, Dη

y = D
η1
1 . . . D

ηr
r , D

η
j = ∂

∂yj
, η = (η1, . . . , ηr) , |η| =

η1+. . .+ηr, Tks are generally speaking, unbounded operators inLq (G) , xks ∈ [0, 1] , k = 1, 2.

Theorem 5.1.Suppose the following conditions satisfied

(1) aij ∈ C1
(
G
)
, bη ∈ C2−m

(
G
)
, Γ ∈ C2;

(2) aij (y) = aji (y); ∃γ > 0 such that
r∑

k,j=1

akj (y)σkσj ≥ γ
r∑

k=1

σ2
k, y ∈ G, σ ∈ Rr;
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(3) for anyε > 0 and for almost allx ∈ [0, 1] ,

‖A (x)u‖Lq(G) ≤ ε ‖u‖W 2
q (G) + C (ε) ‖u‖Lq(G)

the functionA (x)u is measurable on[0, 1] in Lq (G);

(4) for ε > 0 andu ∈ B
2− 1

p
q,p

(
0, 1; Psu = 0, m < 2− 1

p
− 1

q

)
‖T1su‖

B
2− 1

p
q,p (G)

≤ ε ‖u‖
B

2− 1
p

q,p (G)
+ C (ε) ‖u‖Lq(G) ,

‖T2su‖
B

1− 1
p

q,p (G)
≤ ε ‖u‖

B
2− 1

p
q,p (G)

+ C (ε) ‖u‖Lq(G)

‖T1su‖Lq(G) ≤ C (ε) ‖u‖Lq(G) ,

‖T2su‖Lq(G) ≤ ε ‖u‖B1
q,p(G) + C (ε) ‖u‖Lq(G) .

Then,

(1) The operator
L′ : u 7→ (L (λ, x, y,Dx, Dy)u, L1u, L2u)

for |arg λ| ≤ ϕ < π, |λ| → ∞, is an isomorphism fromW 2
p

(
0, 1;W 2

q (G;Pu = 0) , Lq (G)
)

into

Lp (0, 1;Lq (G))
2
⊕

k=1
B

2−mk− 1
p

q,p

(
G; Pu = 0, ms < 2−mk −

1

p
− 1

q

)
and for this solution we have the coercive estimate

|λ| ‖u‖Lp(0,1; Lq(G)) + ‖u‖W 2
p (0,1; W 2

q (G;Psu=0),Lq(G))

≤ C

(
‖f‖Lp(0,1; Lq(G)) +

2∑
k=1

‖fk‖
B

2−mk−
1
p

q,p (G)
+ |λ|1−

mk
2
− 1

2p ‖fk‖Lq(G)

)
;

(2) the system of root vectors of the of problem (5.1) is complete in the spaceLp (0, 1, E) ;

(3) the system of root vectors of the problem (5.1) form an Abel basis of orderα ∈
(

r+1
2
, π

2(π−ϕ)

)
in the spaceL2 (Ω) .

Proof. Consider inE = Lq (G) the operatorsA andA (x) defined by

D (A) = W 2
q (G; Pu = 0) , Au = −

r∑
i,j=1

Di (aij (y)Dju (y))

D (A (x)) = Lq (G) , A (x)u = A (x)u |y .

Then the problem (5.1) can be rewritten in the form

(5.2)


−u′′ (x) + (A+ λI)u (x) + A (x)u (x) = f (x) ;

δu (0) +
∑N1

s=1 T1su (x1s) = f1;

Bu (0) + u′ (1) +
∑N2

s=1 T2su (x2s) = f2;

whereu (x) = u (x, .) , f (x) = f (x, .) andfk = fk (x) are functions with values in the Banach
space.

We apply Theorem 3.3 to problem (5.2). It is clear that the spaceE = Lq (G) is an
UMD−space which satisfies the multiplier condition and the operatorA is positive. It is known
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(see, e.g, [18]) that forE = Lq (G), the definition ofR−boundedness is reduced to the formula∥∥∥∥∥∥
(

n∑
j=1

|Tjuj|2
) 1

2

∥∥∥∥∥∥
Lq

≤ C

∥∥∥∥∥∥
(

n∑
j=1

|uj|2
) 1

2

∥∥∥∥∥∥
Lq

;

Using positivity ofA and by virtue of the above estimate, we obtain that the operatorA is
R−positive inLq (G) .Moreover, it is known that the embeddingW 2

q (G) ⊂ Lq (G) is compact
(see, e.g, [17]). Then using interpolation properties of Sobolev spaces ([17]) we obtain

sj

(
I,W 2

q (G) , Lq (G)
)
≤ Cj−

2
r .

Hence all conditions of Theorem 3.3 are fulfilled. This completes the proof.
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