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2 A. AIBECHE AND K. LAIDOUNE

1. INTRODUCTION

The regular boundary value problems for elliptic differential-operator equation with a spectral
parameter have been studied by many authors [2, 4, 19, 20]. Such parameter may appear in both
the equation and the boundary conditions.

However, non-local problems, not satisfying Sapiro-Lopatinski condition or complementing
condition, are less studied. In the papers and monographs [1]/5, 6, 7 19, 20] sufficient conditions
for coerciveness estimate and the completeness of system of root vectors to hold are given in
Hilbert-valued function spaces. We quote in particular [20], where a number of such problems
is considered.

The Abel basis property of a system of root vectors of an unbounded operators, introduced
in B. Lidskii [13] (see also V. Matsaev and S. Agranovich), is used and developed in the book
by S. Yakubov and Ya. Yakubov [20] and some papers. But in this book, the results mostly
obtained for case when the spectral parameter may appear in both the equation and the boundary
conditions.

A. Aibeche in [7] 8] considered a non-local boundary value problems for elliptic differential-
operator equation of second order whith an operator in boundary conditions, and established the
coerciveness estimate, the completeness of root vectors, when the principal part of the corre-
sponding spectral problem is selfadjoint and the Fredholm property for nonselfadjoint operators.

The main objective of the present paper is to discuss similar problem as thase In [7, 8],
we study the coerciveness, the completeness and the Abel basis property in the corresponding
Hilbert spaces. Moreover, we used the results obtained by V. Shakhmurov [1, 15, 16], to give
conditions which guarantee the coerciveness estimate and the completeness of root vectors in
Banach-valued., spaces.

These results are applied to non-local boundary value problems for elliptic partial differential
equation with parameter in cylindrical domains.

More precisely, in Sectidn 2, we give some background preliminaries, more precisely, we re-
call Dore-Yakubov Theorem and the multiplier Theorenij R", £'). The principal boundary
value problem for abstract differential equations is studied in Selction 3, where the isomorphism
and the coerciveness are proved. In Segtjon 4, the completeness and the Abel basis property of
the root vectors of differential operator generated by our problem are shown. Finally, in Section
5, we apply the obtained abstracts results to some boundary value problems for elliptic partial
differential equation in a cylinder.

2. PRELIMINARIES

Let £ be a Banach space, a linear closed operator ii and D (A) its domain.
We denote by, (2, E'), the space of strongly measurallevalued functions that are defined
on a domairf2 C R™ with the norm

1
P
lull o) = ( / ||u<w>r|§;dar) 1<p<oo

By L, (), W!(©), we will denote g-summable function space and Sobolev space.
The Banach spacg is said to bef—convex if there exists oy x £ a symmetric valued
function¢ wich is convex with respect to each of the variables and satisfies the conditions

£(0,0) > 0,
§(w,v) < lustwof, for flufl g = flvllz = 1.

The{—convex Banach spadeis often called &/ M D space.L,, [, spaces and Lorentz spaces
L,, with p, ¢ € (1, 00) areUM D spaces.
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Let C be the set of complex numbers and
S, ={NeC, |argA| < ¢} U{0}, 0 < <m.

Definition 2.1. [1] A linear operatorA is said to bep—positive in Banach spadg with bound
M > 0,if D (A) is dense in® and

o < 1
LE) = 14+ | Al

with A € S, ¢ € (0, 7], wherel! is the identity operator i¥ andL (E) is the space of bounded
linear operators acting of.

(A=)~

Let £ (A) denote the spack (A) with graphical norm defined as
[ull pay = (lull” + [ Aul")7, 1 < p < oo

Let £y, andE' be two Banach spaces and Ief be continuously and densely embedded iito
By (Eo, E),, . 0 < 0 < 1, we will denote interpolation spaces f0F,, E'} by the K-method
(17, sectlon 1 3.1]). We denote Iy (©2), where(2 is a regular domain dR™ the space

B, (Q) = (Wpso Q),wi (Q))

0,9’

where0 < sg, s; areintegers) < <1, 1 <p<oo, 1 <g<ooands=(1-106)sy+ s;.
Consider the Banach space

W (0,1, E(A),E) = {u, Au€ L,(0,1,E), u" € L,(0,1,E)}
with the norm
HUHW})(OJ;E(A),E) = [|Aullz, 015 + Hu(l)HLp(O,l,E) < 00.
Let £y, and £y be two Banach spaces.

Definition 2.2. [2] A function ¢ € C' (R™; L (£, E»)), is called a multiplier fron,, (R", E;)
to L, (R™, E,), if there exists a constant > 0 with

1E=1 () Full, g gy < Ml zo,
forallu € L, (R", Ey), whereF is the Fourier transform.

The set of all multipliers fron?.,, (R", F) to L, (R", E;) will be denoted by M (Ey, E»).
For By, = E» = E, it will be denoted byM! (E) .

Definition 2.3. [18] A set K C B (FE4, E,) is calledR—bounded if there exists a constant
C > O suchthat for allly, 75, --- ,T,, € K anduy,--- ,u,, € E1, me N

y) Tju; dy < C

E2

where{r;} is a sequence of independent symmetrit, 1]-valued random variables @@, 1] .

Ey
Now, let

Up = {ﬁ:(ﬁla"'vﬁn);ﬁie(al)ai:l’”'vn}
Vn = {§:<§17"'7§n)€Rn; 5@7&072:17/”}
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4 A. AIBECHE AND K. LAIDOUNE

Definition 2.4. [1] A Banach spacé is said to be a space satisfying a multiplier condition with
respect tgp € (1, o) if the following condition holds: iy € C' (R™; L (F)) and the set

{¢Dlv(©): cevi, pen,}
is R—bounded, thew € M? (E).

Definition 2.5. [1] The positive operatoA is said to beR—positive in the Banach spade if
there existsy € (0, 7] such that the set

{1+1EhA-en™, €€ 8,)
is R—bounded.

For two sequencega; }~, {b;};° of positive numbers, the expression ~ b; means that
there exist positive numbecs;, C, such thaCia; < b; < Csa;. Vj € N.

Let 0, (E1, E2) denote the space of compact operators acting fignto £,. Denote by
s; (1) andd; (I) the approximation numbers adehumbers of the operatdt respectively (see,
e.g, [17, 1.16.1]).

Jp(El,EQ) = {AEO’OO(El,EQ), ZS?(A) < 00, 1 §p<OO}

j=1
Theorem 2.1.[10] Let £ be a Banach spaceA be a linear closed operator iy of type

¢ with bound L. Moreover, letm be a positive integerp € (1,00) anda € (Zip,m + 2ip :

for A\ € S, the operator— (A + )\I)% generates a semigrougxp (—:c (A+ )\I)%> which is

holomorphic forz > 0 and strongly continuous far > 0. Moreover there exist§’ € R™
(depending only o, o, m, o, p) such that for every, € (E, E (A™)) yand\ € .5,

a 1
m  2mp’

| s anes (e asant) o < (uun’zE,E(Am» e ||u||p) |

1

% 2mp’
3. SOLVABILITY OF THE PRINCIPAL PROBLEM

Consider inL, (0, 1, E) the boundary value problems for the second order abstract differen-
tial equation

(3.1) Lo\, D)u=—u"(x)+ Au(z) = f (z), v € (0,1);
Lipu = du (0) = fi;
(32) { Lot = Bu(0) + 1/ (1) = fu.

whereA, B, are linear operators ande C, f; € (F (A) ,E)%ﬁp, fo € (E(A), E)%ﬂi,p.

3.1. Homogeneous problem.Consider the principal part of the problem (3.1, 3.2) with a pa-
rameter

(3.3) Lo\ D)u=—u"(z)+ (A+AX)u(x) =0, z € (0,1);
Ligu = du (0) = fi;
(34) { Lt = Bu(0) + 1/ (1) = fu.

Theorem 3.1. Assume that the following condition are satisfied
(1) Ais aclosed, positive and densely defined linear operatoEpn

(2) 0 #0;
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(3) Bis alinear continuous fronk’ (A%> into £ and fromFE (A) into E <A%> :
Then, for\ such thatarg \| < ¢ < 7, |\| — oo, the problem4), fof, € (E(A),E).

Evp’

fa € (E(A),E)., 1 ,, hasaunique solution € W7 (0,1; £ (A), E), and for the solution of
2 " 2p?

the problem[(B_f]ﬁj@, the following coercive estimate holds

||u”||Lp(O71,E) + ||Au||Lp(0,1,E) + [Al ||U||Lp(o,1,E)
1—L
11l sy, + A2 ([ fllg
o5 P
L,
1.1
Mlienery, ,, +AEF )
2" 2p

Proof. From the condition (1), by virtue of Theorgm P.1, flarg A| < ¢, there exists the

semigroupexp (—x (A + AI)) which is holomorphic forz > 0 and strongly continuous for

x > 0. By virtue of [20][Lemma 5.4.2/1], an arbitrary solution ¢f (3.3) belonging to the space

W2 (0,1; E(A), E) has the form

(3.5) u(x) = exp (—fo) g1 + exp (— (1—2x) AE) g2

wheregy, g2 € (E(A), E) . .

The functionu given by the formula[(3]5) satisfies the boundary conditipng (3.4) if

591+5€XP< A)QQ i
—A3 exp (—A/\)91+A§92+Bg1+Bexp< E) = fa.

92

1

3.6 61 0 0 Jexp (=43
(3.6) ( B A > i A7 exp <—A§> Bexp <_A§)

The first matrix of operators is invertible, its inverse is

a7 I 0
3.7) AZBA

Multiplying the two hand-sides of (3.6) by the inverse matrix(3.7), we get the following system
g1+ exp <—A§> 92 =3/
—exp (—Af) g1+ gs = —%A;53f1 + A;§f2

Hence the solution is written as

g =3fi+Ru(\)h +1R12 (A) fa3 )
g2=—5U+TN)A B+ T +TN) A fot+ R (M) fu

whereR;; () are given by
RH(A):—§(I+T(A))exp( A+ LI+ T (\)exp (—Al
Ris (V) = = (1 +T () 43 exp (=43
Ry (A) =1(T+T (A ))exp< )

m >N

Il
7\
=
~_

2

>l
N—
s
> |
NI
S
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6 A. AIBECHE AND K. LAIDOUNE

and satisfyl| R;; (A)|| — 0 when|\| — oco. (I +T (X)) is the inverse of + exp <—2A§) :
Finally, the solution. is given by

w(z) = exp (_xA§ ) G fit R (M) fi+ Ria () f2) +

_1

> ol

exp (— (1—2)A

From the assumptions of Theorém|3.1 and the properties of interpolation spaces, the following
applications are continuous,

(I+T(\)A B . (E(A),E),
T+TO) A (B(A).B)y, ., — (E(4).E),
Letu (z) = vy + v2 + v3, Where
N T
vy = exp <—xA§> Sfl;
vy = exp (— (1—x)A§>%(I+T(/\))A;§Bf1;
v = exp (= (1-2) A3) T+ T () 477
Then,

HU’//HLP(O,LE) + HAUHLP(O,LE) + |Al ||U|’Lp(0,1,E) <

[Axvillr, 01,5 + 1Axvallr 01,5 + 1ANUsIl L, 0,1,m) T 1AV L, 0,0,5) + 1AVl 2, 0.1.5)

+ HAU3||LP(O,1,E) + Al ||U1||Lp(0,1,E) + Al ||U2||Lp(o,1,E) + Al ”USHLP(U,LE) :

However, from Theorein 2.1, we have

Ay exp <—xA§> %fl

R A \
Lp(O,l,E)

1
<0 (Iilemm,, + A5 10)

2p’

Similarly we estimate the other terms.

3.2. Non homogeneous problem.Consider, now the Non homogeneous problem equation
with a parameter

(3.8) Lo(A,D)u=—u" () + (A+ X)) u(x)=f(x), z€(0,1);
Ligu = 0u (0) = fi;

Then, we have the result

Theorem 3.2. Suppose the following conditions satisfied
(1) Ais aclosedR—positive and densely defined linear operatori@nvhich isU M D;
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(2) 6 #0;
(3) Bis a linear continuous fronk (A%> into £ and fromE (A) into E <A%> .

Then, the operator
EO ()\) N g £0 (/\) u = (L() ()\, D) u, Llou, LQ()U)
for f1 € (E'(A) ,E)pr,fg € (E(A) ,E)%Jr%,p and\ such thatarg A\| < ¢ <, |\| = o0, is
an isomorphism fromi’;? (0, 1; E (A) , E)into L, (0,1, E)x (E (A), E)%,px(E (A) ,E)%Jr%’p, pE
(1, 00), and the following coercive estimate holds

1"l 1, 0.0,) T 1Al L 0,1, + (Al 01,

1—L
sc(||fuLp<o,1,E)+Hfluw(A),E) CAEE AL

1
Tpup

1_ 1
ol |+ ||f2||E) ;

+o5p

NI

whereC does not depend ok

Proof. In Theoren] 31, we proved the uniqueness. The solution of the proplepi (3.8, 3.9) be-
longing tolV} (0, 1; E (A) , E) can be written in the form (z) = u, () +uz (z) , whereu, (z)
is the restriction td0, 1] of @, (=) solution of the equation

(3.10) Lo(A, D)t (z) = f (), z € R
with f (z) = f () if z € [0,1] andf (z) = 0 otherwiseu, (z) is the solution of the problem
(3.11) Lo (A, D)uy = 0, Liguy = f1 — Lious; Laoua = fo — Lagus.

The solution of the equatioh (3]10) is given by the formula
+0o0 N
(3.12) in () = o= [ e i) Lo (i)™ FF ) d

whereF f is the Fourier transform of the functigh(z), Lo (), o) is the characteristic pencil of
the equation(3.30) i.&q (\,0) = A+ A\ — o°1.
From (3.12), it follows that

|| ~1

HL;, RE) T ||Au1||Lp RE) T Al ||u1||Lp (R,E)

| P~y Lo i)™ FF (1) +||FraLe (i FF ()

n Hp—lALo (i) FF (p)

Ly(R,E) Lp(R,E)

LP(RvE) ‘

whereF' is the Fourier transform.
We show that the operator-valued functions

T (A p) = ALo (A, i:u)il s Do (A, ) = (i“)zk Al_kLO (A, Z‘:u)il ; k=01

are Fourier multiplier inL,, (R, F) . For|arg \| < ¢ andu € R, we have(—\ — 1?) € S,,.
Then by virtue of the resolvent properties of the positive operatave obtain

1T (i)l = | A Lo (A i) U <
(3.13) 172 O )l = [[ALo (Vi) || < C
1T O\ )l = || Lo (N, i) || < €
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using [3.1B), for al € R\ {0}, we obtain

(3.14) ‘%ﬁuﬂﬂscmw, <l

0
‘@Tk—&-l (A, H)‘

From theR —positivity of the operator, the operator-valued functiofis(\, 1) , Ti11 (A, i)
are R—bounded withR—bound independent of. Moreover, it is easy to see from (3]|13)

that the operator-valued functioms(%) T (A p) and p <’£ Trs1 (A, ) are R—bounded

with R—bound independent of. Then, by the Definitio it follows that the functions
T (A 1), Tkt1 (A, ) are Fourier multiplier irL, (R, E) . Then, we have

~1/
181, + 1408, 5,7 + A Nl ey < O A,

and so,
||u/1/||Lp(O,1,E) + ”AulHLp(O,LE) + |A| ||U1||L,,(0,17E) <C ||f||Lp(o71,E) :

Thus, by Theorerh 3|1, the problem (3.11) has a unique soluti¢n) that belong to the space
W2 (0,1; E(A), E) for larg \| < ¢ and for sufficiently large)|. Moreover, for a solution of
the problem|(3.1]1), we have

||u/2,||Lp(0,1,E) + HAUQHLP(O,I,E) + Al ||u2||Lp(0,1,E)

¢ <||f1—L10U1H(E(A),E) A% || fimLiowa |

Lo
1_ 1
+ || f2- Loout || (g ay 5y + [A[272 || fo- Laoua ||
+a5p
_ 1
1f1ll e ay,m) ) +”L10u1||(E(A),E)1 + A2 | fillg
2P7P Tp’p
+ A7 ([ Laowa |l g + 1 fall ay oy + [ L2ow || (), 1)
DI ba

+ A (| foll g+ A2 || Laota ||
We have

HLlOulu(E(A),E) = [[6u1 (0 )H E(A),E)

P % P

< Clw (O)H(E(A) E)

S

1 Y
%,P

Therefore, by virtue of [17, section 1.8], we obtain

”LIOUIH(E(A),E) <C ||U1HW3(0,1;E(A),E) <C “fHLp(O,l,E) :

LI
We have

A (Lol = A% [[6ur (0)]] g
C A2 [|ur (0)]]
By Theorem[[20, 1.7.7/2], fon € C, u; € W7 (0,1;E)and (Ey = E, Ey = E, 75 = 7, =
vY=0,po=p1=p, s=0,1=2),

2 1 941
(3.15) 0 e )1 < € (1% gy + ™% sl 1.

IA
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Dividing by IM!% and substituting\ = 2 for A € C andu, € Wj (0,1; E), from (3.15) we get

1—L
A2 O <€ (o + 1N el .1.0)

< Clfllz, 018
Similarly, we get the other bounds and by the same way the coerciveness esjimate.

3.3. Perturbed problem. Consider, now the general problem with a parameter
(3.16) L Du=—u"(z)+(A+X)u(z)+ Ax)u(z)=f(x), x € (0,1)

N1
Liu = 6u(0)+ ZT1SU (z1s) = f1;
s=1

Na
(3.17) Lyu = Bu(0)+u (1)+ Y Toau(ra) = fo.
s=1
whereA, B, A (x) arelinear operators ande C, f; € (E (A),E)%,p,f2 €(E(A) ,E)%ﬂi’p,and

T,.s are, generally speaking, unbounded operators.in

Theorem 3.3. Suppose the following conditions satisfied
(1) Ais aclosedR—positive and densely defined linear operatoriénvhich isU M D,
(2) 0 # 0;
(3) Bis a linear continuous fronk (A%> into £ and fromE (A) into E <A%> ;
(4) the imbedding? (A) C E is compact;
(5) for anye > 0 and for almost alkz € [0, 1],
|A (z) ul| < e|Aull + C (&) [Jull, w e D(A);

for u € D (A) the functionA (x) u is measurable ofp, 1] in E.
(6) fore > 0andu € (E(A),E) L, wherep € (1,00), 0 = 5 + 5;, mp = {0, 1} we

2p?
have
HTks““(E(A),E)W < ¢ ||UH(E(A),E)%WP +C @) ullg, k=1, 2
|Tsullp < C(e) lullg;
1Tasully < ellullipaym, +CE) Iullg;
3P

Then, the operator

L) :u— LN u=(L(\D)u,Liu, Lau)
for f1 € (E'(A) ,E)ﬁﬁp,fé € (E(A),E)%Jrﬁ’p and )\ such thatarg \| < ¢ <, |\| — oo, is
anisomorphism frori’? (0, 1; E (A) , E)into L, (0,1, E)x (E (A) E)%vpx (E(A), E)%Jrip ,DE
(1, 00), and the following coercive estimate holds

Hu//HLP(O,l,E) + ”AUHL,,(O,LE) + |A| Hu”LP(O,l,E)
_ 1
scovmmwwwmmwﬂl-uw2wmu
2p’p
1_ 1
Wl ., + N 1l ) s

+o5

Nl

whereC does not depend ok
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Proof. Letu be a solution of(3.16, 3.17) belongingitd? (0, 1; E (A) , E). Thenu is a solution
of the problem
Ly(\,D)u = f(x) A(z)u
Llou — fl Zs 1 Tlsu (xls) )
Logu = f5 — 28 1 Trsu (2025)

From Theorem 3]2, we get the estimate

( ),:L‘E(O,l);

||u//||Lp(0,1,E) + ||Au||Lp(0,1,E) + Al ||U||Lp(0,17E)

fi— Zi\gl Tisu (xls)

<0 (I =A@ ulyorm +

(BB,
_ 1 1_ 1
HIATE | fr = N Thgu () E+|)\|2 w | fo— 002 1T2s u (T2) .
—i—‘f — i\g Thott (Tos
2= 2ot Tosu (2s) EWy

sc@mmmm+mummmwﬁwmmw@

o
+—z£ﬂw@m + AT (|
- (BALE) 1,
A . (
+ A w(@n) |+ 1 llea, , |
1 1
+ 2 Tosu (29s + A2
ze12<z>wwﬂli A2 || foll
L N, 2tap
S |0 T ()| )-

From the Condition (5) and Lemma]20, 5.2.1/2], foe W (0,1; E (A) , E),

|A (2 )UHLP o1, =€ ||U||W2(01 B(A),E) T C(e) HUHLP(O,LE) 3

In view of Theorem|([20D, 1.7.7/1] and the Condition (6), it follows that for- 0 andu €
W2 (0,1;E(A), E)

[ Tsu (xls)H(E(A),E)L <¢ HUHW2 0,1;8(A),E) C(e) ||U||Lp(0,1,E)

2p P

'@

Similarly we estimate the other terms.
Then, we have

(1—Ce) HUNHLP(O,LE) + (1= Ce) HAUHL,,(O LE) T (1= Ce) Al HUHLP(O,LE)
1_i
<€ (Ifllayonm * Millsn ey, , + N il

Tpi
1 1
el mn s +W2%MM)

+o5p

~
Nl

Choosinge such thatCe < 1, the coerciveness estimate follows easily. Consequently, for
larg A\| < ¢ and|)| sufficiently large, a solution of proble!. (6, 3.17)4} (0,1, E (A) , E)

is unique. By virtue ofTheore@ 2, the operafgr(\) from W7 (0, 1; £ (A) , E) |ntoL (0, 1, F)x

(E(A) ’E%vp X (E(A), E)5 o is an isomorphism, then Fredholm and by virtue of Lemma
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[20, 1.2.7/2)), it follows that the operatdl; ()

L) us (A (@), £ T (), 22 T (@)
W2(0,1;E(A),E) — L, (0,1, E) x (E(A) ,E)ﬁ’p x (E(A) 7E)§+ﬁ,p
from W2 (0,1, E(A),E) into L, (0,1, E) x (E (A),E)%,p x (E(A) ’E)%+i7p IS compact.
The proof of the theorem is completed by applying Theorem [20, 1.2.8,] to opetéior =
Lo(A)+Li(A).n

4. COMPLETENESS AND THE ABEL BASIS PROPERTY
4.1. Completeness of root vectors.Consider a particular case of probldm (3[16, B.17), namely

(4.1) LAD)u=—-u"(x)+(A+A)u(x)+A(x)u(x) =0, z € (0,1);
Liu = 6u(0)+ ZTlsu (r15) = 0;

4.2) Lou = Bu(0)+d (1) + Z Tosu (z25) = 0.

Let us define, in the space= L, (0, 1, E) the operator4 by
D(A) = W2(0,1; E(A),E; Liu=0, k=1, 2)
Au = —u" (2) + Au () + A (z) u (z)

A system of roots vectors of problern (3|16, 3.17) is complete in the spate 1, F) if a
system of roots vectors of the operagis complete in the spacde, (0,1, £) .

Lemma 4.1. (see, B. Shakhmurofd, Theorem 2.8] Suppose that; (I,E (A),E,) ~ 574,
then

5 (LW, LLE(4),E), L, (0,1,E)) ~ j 5.

I (resp. J) is the imbedding of (A) in E (resp. of W (0,1; E(A),E)in L, (0,1, E)) and
s; (I, E(A), E,) are the approximation numbers of the operafdrom £ (A) to E.

Then, we have the result

Theorem 4.2. Let all conditions of Theorem 3.3 be satisfied witli/, £ (A) , F) < Cj™4, ¢ >
0. Then the system of root vectors of the of problem {3.16,] 3.17) is complete in the space
L,(0,1,E).

Proof. From Theorem 3|3, we have
IR (=X AN < CIAT, Jarg Al < ¢ <, Al — oo,
Using Lemma 4]1, we get
s; (J,E(A),E) < Cs; (J,W2(0,1; E(A),E), L, (0,1,E)) < Cj 24,

ies; (J,E(A),E)<Cj™, ¢ > 2L,
So, for the operato, all the condition of[[9, Theorem.126, 2.3, p.50], are fulfilled. This
achieves the proof of the Theorem.
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4.2. The Abel basis property of root vectors. Let us define, in the Hilbert spagé= L, (0,1, H)
the operatord’ by
D(A) = W;(0,1; E(A),E; Liu=0, k=1, 2)
Au = —u" () + Au(z) + A (z) u (z)
A system of root vectors of problem (3]16, 3.17) is called an Abel basis of ariethe space
L, (0,1, H) if a system of root vectors of the operatdt forms an Abel basis of order in the
spacel, (0,1, H).
Theorem 4.3. Suppose the following
(1) The conditions (1)-(5) of Theorgm B.3 be satisfied;
(2) for someg > 0 it holds thats; (I, E (A),E) < Cj79, % <p<mj=1,...,00;
(3) the operatordl’; from (H (A), H>%72 into (H (A), H>i72’ from H into H andT3, from
(H(A) ’H)i? into (H (A), H)%Q, from(H (A), H);2 into H are compact.
Then, a system of root vectors of the problém (3.16,] 3.17) forms an Abel basis ohoeler
<%2, 2([_@) in the space., (0,1, H).
Proof. Let us apply Theorem [20, 2.2.3] to the operattr Using Lemma 3.10, we get
s; (JH(A),H) < Cs; (J,W2(0,1; E(A),E), Ly (0,1,E)) < Cj~ 5%,

Les; (JH(A) H)<Cj7, p> 2L,
By Condition (3) and Lemma [20, 1.2.7/3,], for operatdfs, the Condition (6) of Theorem
[3.3 is fulfilled. Consequently, by virtue of Theorém|3.3, we have
IR (=X, A < CIAT, Jarg (=X)] = 7 — o, [A] = oc.

Sincep > q%, thent — ¢ < % Consequently, all the conditions of Theorem![20, 2.2.3] are
fulfilled. This achieves the proof of the Theorem.

5. APPLICATION

Let us consider, in the cylindrical domdih= [0, 1] x G, whereG C R", r > 2 is a bounded
domain with an(r — 1)-dimensional boundaryG which locally admits rectification, the non
local boundary value problem for an elliptic differential equation of the second order

L (/\7 z,Y, Dy, Dy) u=Au (ZL‘, y) - D?cu (I7 y) - Z;‘n,jzl D; (aij (y) Dju (.l’, y))
+A@)u(z,.) ly=f(z,y), (z.,y) €[0,1] x G;
(5.1) § Liw=0du(0,y) + 32 Tu(r) = fi(y), y €G;
Lou = Bu (0,y) + D,u (1,y) + ijl Tosu (x95) = f2(y), vy € G;
Pu=73, ., 0y Dju(z,y") =0; (z,y) € [0,1] x I';
wherem <1, § € C*, D, = 5, Dy = DI'...D/", D] = 5. n = (n,...,m,), Inl =
n+...+n,, Tis are generally speaking, unbounded operatofs i{G) , zxs € [0,1], k =1,2.
Theorem 5.1. Suppose the following conditions satisfied
(1) a;; € C*(G), b, € C* ™ (G), T € C%
(2) ai; (y) = aji (y); Iy > 0 such that

r

Z ar; (y) ox0; 27202, ye@, o€ R

k,j=1 k=1
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(3) for anye > 0 and for almost allz € [0, 1],
1A (@) ull, @) < e llullwze + C @) llull,e

the functionA (z) u is measurable o), 1] in L, (G);
(4) fore >0 anduqup (0,1, Pu=0m<2-— %—l)

C(

C(

q

ol ooy < el oy O il
Dol oy < el g Ol

||T15U||Lq((;) C(e) ||U’||Lq(G)’

e lullgy e +C ) lull, )

IA A

1T2sull 1, @

Then,
(1) The operator
L' :u— (L(\x,y, Dy, Dy)u, Lyu, Lou)

for larg \| < ¢ <, |A| — oo, isanisomorphism froi’? (0, 1; W2 (G; Pu = 0) , Ly (G))
into
2—mp— 1 1
Lp(071§Lq(G))EBqu (G Pu=0,m; <2- mk—z—)—a)

and for this solution we have the coercive estimate

RY HUHLP(O,l; Lq(G)) + Huuwg(o,l; W2(G;Psu=0),Lq(G))

2
1-k 1
< C(HfHLp(o,l;Lq@)+ZkaHBzmk;(G)+IM T kaHLq(G));
k=1 P

(2) the system of root vectors of the of problém|(5.1) is complete in the gpdoel, £) ;
(3) the system of root vectors of the probl(5 1) form an Abel basis ofa;rele(q"‘;r L ﬁ
in the spacd., (Q2) .

Proof. Consider inE = L, (G) the operators! and A (x) defined by

D(A) = WZ2(G; Pu=0), ZD ai; (y) Dyu (y))

i,7=1

D(A(z) = Lg(G), A(@)u=A(x)ul,.
Then the problend (5]1) can be rewritten in the form
—u" (z)+(A+ M) u(z)+A@)u(z) = f(x);

(5.2) Su (0) + oM Thu (215) = fu;

Bu (0) + v/ (1) + Y02, Tosu (22,) = fo:

whereu (z) = u (z,.), f(z) = f (z,.) andf, = fi (z) are functions with values in the Banach
space.

We apply Theoreny 3|3 to problerh (5.2). It is clear that the spdce- L, (G) is an
U M D—space which satisfies the multiplier condition and the operatsmpositive. Itis known
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(see, e.g/[18]) that faE = L, (G), the definition ofR—boundedness is reduced to the formula
()| <e(Sher) |
Lg =1 Lg

Using positivity of A and by virtue of the above estimate, we obtain that the operéatisr

R—positive inL, (G) . Moreover, it is known that the embeddifig” (G) C L, (G) is compact

(see, e.g,[17]). Then using interpolation properties of Sobolev spacés ([17]) we obtain
5 (LW (G), Ly (@) < O

Hence all conditions of Theorem B.3 are fulfilled. This completes the proof.
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