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ators with prior degenerate and the conditions are strictly larger class when compare with others
in the literature.
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1. INTRODUCTION
Several generalizations of Banach’s contraction map [2] given by
(1.1) d(Tz,Ty) < ad(z,y)

for x,y € X, X a metric space and € (0, 1) have been obtained in many ways to study the
existence properties of nonlinear operators, for example, séel[4, 24]. Many of these general-
izations have been unified in the sense that if[0, c0) — [0, c0) is nondecreasing and upper
semi-continuous function from the right, the ni&satisfying

(1.2) d(Tz, Ty) <1(n); n € [0,00)

is a nonlinear contractive condition. The conditipn1.2) is the result of Boyd and Wohg [10] if
¥(n) < nwheren = d(z,y). In [19], it is proved that if)(n) = a(n)n, wherea : (0,00) —

[0,1) is a decreasing function, then the mApatisfying [1.2) also has a unique fixed point. A
similar result, wherex(n,,) — 1 whenn,, — 0, can be found in[3]. The result of Reich [21]
followed from the Banach’s contraction mapqify) = 1 — @ wherey : [0, 00) — [0, 00) is

lower semi-continuous function for whiek(0) = 0, thena(n) is increasing if0, 1). Condition

(1.2) is also related to the weakly contractive map defined by Alber and Guerre-Delabriere [1]
if there is a nondecreasing and lower semi-continuous funetitor which «(n) = n — (),
wheren = d(z,y). See also[12, 29] for related literature. Going by the work of Rhoadés [25],
one can easily deduce that the functieim) = 1 — %"7) with ¢(n) < nis similar to the result

of Rakotch [19]. It is also evident thatif : [0,00)* — [0,00) is semi-continuous function
such that the majp’ satisfies the inequality

(1.3) d(Tz,Ty) < ¥(n,w),

where(n, w) € [0, 00)?, then the contractive type conditions of Kannan [18] and Chattajea [11]
are embedded in the conditign ({1.3)ifn, w) = a(n + w) for a € (0,1). Both inequalities
(1.2) and[(1.B) are related in such a way that i 0, theni)(n, 0) = ¢ (n) for all n € [0, c0).

Let o : [0,00) — [0,00) be a continuous and nondecreasing function with) = 0 and

¥ : [0,00)" — [0,00), i = 1(1)5, be a continuous function for which

(1.4) 0 (d(Tx,Ty)) < (r); T € [0,00)", with o > 1.
and a weakly form as:

(1.5) 0 (d(Tz,Ty)) < o(7) — @(7); T € [0,00)".
or as:

(1.6) o(d(Tz, Ty)) < a(r)e(t); 7 €1[0,00)",a € F.

A vast amount of literature can be obtained from|(1/4)}(1.6); for few recent papers in this regard,
see[9] 17, 26, 28]. The efficacy for some of these conditions does not perform effectively as
expected from the numerical view. So, this paper aims to introduce two independent nonlinear
contractive conditions to study the existence properties as well as the effectiveness of nonlinear
operators.

2. PRELIMINARIES

Definition 2.1. [8] A metric spaceX is said to be metric convex if for eachy € X thereis a
z # x,y for which

d(z,y) = d(z,2) + d(z,y)
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Lemma 2.1. [10] Let X be a convex metric space aiitd: X — X be a self map satisfying
d(Tz, Ty) < (d(z,y)), forz,y € X.

Let+(n) = sup{d(Tz,Ty) : x,y € X, n=d(z,y)}. Then,

. s>0,t>0andn = s+t < coimpliesy(n) < (s) + ¥(t);
Il. +(n) is upper semi-continuous from the right[6f o).

The following definitions generalize some nonlinear contractive conditions in the literature.

Definition 2.2. Let X be a metrical convex space. The nilBp X — X is called a general
nonlinear contractive map (first kind) if theredst € [0, co) such that

(2.1) d(Tz, Ty) < (s) +(t), forz,y € X,
wherey : [0, 00) — [0, 00) is upper semi-continuous function.

Further, since) is continuous at the origin, for any,, v, € ¥ ands,t,n € [0, 00) with
n = s +t, there exists) = ¢, + ¢, € ¥ such that)(n) < ¢, (s) + ¥,(t).
In view of this, another contractive condition is defined as follow:

Definition 2.3. Let X be a metrical convex space. The nip X — X is called a general
nonlinear contractive map (second kind) if thera.is € [0, co) such that

(22) d(Tl‘7Ty) < %(3) + wQ(t)a for T,y € Xa
wherey is upper semi-continuous function.

The goal of Definition$ 2]2 ar[d 2.3 is to ensure that no term is lost in the process of approxi-
mating nonlinear operators with prior degenerate.

Remark 2.1. Observe that by combining conditions (1.4) and](2.1)(or] (2.2)), there results
0(d(Tz,Ty)) <¢(s) +(t); s,t € [0,00),

or
o (d(Tx, Ty)) < () + Ya(t), s,t € [0,00),

with o > 1,1, 1,, wherep is an altering distance. Each of these conditions is more general
than the results in [28].

Remark 2.2. If s = t in Definition[2.3, then condition (2.2) is similar tp (1.2). df# ¢,

then fewer conditions that are facilitated by an operator satisfying Zamfirescu type condition in
[5,122,/23] 27] are embedded in conditipn {2.2)if(s) = as andy,(t) = Bt with o + 5 < 1.

For instance, (i}, (d(x,y)) = ad(z,y) andy,(d(y, Tx)) = Ld(y, Tx) with a + L < 1; (ii)

Uy (d(z,y)) = ad(z,y) andy,(d(z, Tz)) = 2ad(z, Tz) with a < 3; and (i) ¢, (d(z,y)) =
ad(z,y) andy,y(d(x, Tz)) = p(d(z, Tx)) with o < 1.

(iv) More so, the mafi” satisfying the Reich operator in[21], farb, c € R* witha+b+c < 1

may be redefined as

d(Tz, Ty) < ?—erd(w, y) + iLd(y,Tx)

This inequality is related to the form (2.2) when= 1—+b andg = CILJF b

(v) The map satisfying the Ciri¢ [14] type conditions could also be embedded in the[folm (2.2).
(vi) The rational type contraction map defined(in/[15] is also related to the forth (2.2) by letting

Ui (d(z,y)) = ad(z,y) andi,(t) = Gt, wheret = Ay, Ti/l(rldafl(yf;v T'z))

with o + 5 < 1.
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Motivated by the above general nonlinear contractive conditipn$ (2.1)[and (2.2), this paper
presents a class for each of the general conditions as follows:

Definition 2.4. Let X be a metrical convex space afid: X — X. The mapT is called a
general(«;, ¢)-weak contractive map, first and second kinds respectively, if it satisfies

(2.3) d(Tz, Ty) < ai(s)e(s) + aa(t)ep(t)
and
(2.4) d(Tz,Ty) < ar(s)py(s) + aa(t)ps(t)

for z,y € X, wherep, ¢, andy, are lower semi-continuous and nondecreasing functions and
a1, ap € F = {ayla; 1 [0,00) — [0, 3), i = 1,2} with the imposition thaty; (u,) — 5 implies
u, — 0.

Condition [2.8) is obviously a Geraghty contractioh [3] i 0, «; = a« andp(s) = s.

Definition 2.5. Let X be a metrical convex space aiid: X — X. The mapI is a general
weakly contractive map, first and second kinds, respectively, if it satisfies

(2.5) d(Tz,Ty) < s —p(s) +t — ()

(2.6) d(Tx, Ty) < s —py(s) +1 — po(t)

forz,y € X ands,t € [0, c0), wherey, ¢, andy, are lower semi-continuous and nondecreas-
ing function.

Observe that the conditiop (2.5) is obtained by takifg) = £ — ¢(¢), for £ € [0, 00).

A similitude of conditions[(2]3)] (2]4)] (2.5) and (R.6) follows from Renjark 2.1.
Without preconceiving, it is worthwhile stating thatXf is star-shaped, the conditiofs (2.5) and

(2.8) may not be applicable. A counter example is given as follow:

Example 2.1. Consider the M-shaped = {(0,0),(1,4),(2,1),(3,4), (4,0)} furnished with
the metric given by
x, x#0,
d(z,0) =
0, =0

andT : X — X defined byl'(z1, z5) = { gh;z))a il Ei% , With (t) = %t.
y 42/, 1 2

Condition [2.5) (or[(2J6)) is not applicable since far,2),(3,2) € X, the line segment
joining (1,2) and (3, 2) lies on the region not inX. On the other hand, if we consider the
metrical convex hull ofX (denoted byco X), then any two points iroX has a line segment
contained inco X, and in turn, inequality (2]5) (of (2.6)) is applicable.

The following useful definitions can be found i [5, 23].

Definition 2.6. LetT : X — X, e > 0, g € X. An elementz is called arc—fixed point of
T provided that

d(Txo,z0) < €

The set of alk-fixed points ofF.(T) = {x € X : X is anc — fixed point of T}. Any mapT' is
said to have an—fixed point property ifF.(T') # (.
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Lemma 2.2. Let (X, d) be a metric space an@ : X — X be a self map such that is
asymptotically regular, that is

d(T"z, T" ') — 0 asn — oo,
forall z € X. ThenT has the=-fixed point property.

Definition 2.7. Let S,T : X — X havees—fixed point property. The map is called an
approximate operator df if there exists > 0 such that

d(Sz,Tx) <p, Ve e X

In view of Definition[2.T, ifp andq are thez—fixed points ofS andT’, respectively, then the
following estimate holds
d(p,q) < é(p), ¥ p,q € F(T).

In this case, the diameter 6t (7") is given by
O(Fe(T)) < ¢(2¢),
whered(F.(T')) = sup {d(p,q) : p,q € F:(T)}.

3. MAIN RESULTS

In this section, some existence properties of nonlinear operator are proved with the imposition
of conditions [(2.B),[(2]5) andl (2.6) for few independent inputs and their performance estimates
are obtained. The following result is a general nonlinear contractive Geraghty-type.

Theorem 3.1.LetC be a convex subset af and7" : C' — C'is a map satisfyingZ.3)for which

s = d(z,y) andt = d(z, Tx), wherez,y € C'anday, oy € F. Then,T has approximate fixed
point. Moreover, ifS is the approximate operator df andu,v € F.(T) are the approximate
fixed points of5, T', respectively. Then, the estimate

(5 +2)

2

(3.2) S(F(T)) < , fore >0, a € (0,1)

holds.

Proof. Selectr, € X and letz,, be a sequence defined by = T"x,. By the condition of the
theorem, there gives

d(2p, Tpy1) = d (T2, T o)
<o (d(T”_lmo, T”xo)) © (d (T”_lxo, T”a:o))
+ (d(T”’lxo, T”:CO)) © (d (T"’lxo, T"xo))
= [ozl (d(T”_lxo, T"mo)) + o (d(T”_lxo, T"xo))} Y (d (T”_lxo, T”xo))
Sinceay, ay € F, this last inequality reduces to
d (T”a:o, T”Hacg) < (d (T"_lxo, T”xo))
By the property ofp, " — 0 asn — oo. Thus, by Lemma 2|2, we have
lim d (T"xo, T”+1:1:0) —0

n—oo

Hence,T" has approximate fixed point.
More so, letu,v € X and defines ~ Su andv ~ Twv. Letp > 0 and consider the particular
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casep(§) = a& fora € (0,1) and¢ € [0, o). By condition of the theorem and Definitipn 2.6
and 2.7, there results

d(u,v) < d(Su,Sv) +p
< an(d(u, 0))p(d(u, 0)) + ax(d(u, )l d(u, Su)) + p

a a
= Ed(u,v) +-c+p

2
This implies
d(u,v) < 227
-
By taking ¢(p) = %f;p, we have
242
S(F.(T)) < (21+_ )E fore 0.

As required.n
The following result is nonlinear contractive map of rational-type.

Theorem 3.2. Let C' be a convex subset 6f andT : C' — C'is a map satisfyind2.5) for

d(y, Ty)(1 + d(z, T))

1+d(z,y)
has approximate fixed point. Moreoversiis the approximate operator af andwu, v € F.(T)
are the approximate fixed points 8f7, respectively. Then, the estimate

whichs = d(z,y) andt = , Wherez,y € C'ands,t € [0,00). Then,T

2
(3.2) S(F(T)) < 5 fore >0, a € (0,1)
holds.

Proof. Selectz, € X and letz,, be a Picard sequence such that= T"z,. By the condition
of the theorem, there gives
d(xp, Tpe1) =d (T”xo, T”+1x0)
<d (T"_lxo, T"mo) — (d (T”_lxo, T"xg))
d(T"zo, T ag) (1 + d(T™ 2o, T 10))
1+ d(Trag, Trag)
d(T"xo, T o) (14 d(T" 2, TM20))
I ( L+ d(Trxg, Trag) )
=d (T”’lxo, T”xo) — (d(T”’lxo, T"xo))
+ d(T"xo, T 20) — ¢ (d(T"xo, T ' 39))

+

Solving further, we obtain
© (d (T"xo, T"on)) <d (T"’lxo, T”xo) — (d (T”’lxo, T"mo))
Letl, = d(T" 'z, T"xo) and consider the antiderivatitedefined by

1
r(¢) = / i

Sincey(l,) < I, then forp(l,+1) > ¢(¢), wherep(l,) < ¢ <1,, we have

I d§ ln - Qp(ln) ln - QO(ln>

P(L) = T(o(l) = / - (™

o 20 =
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Thus,

L(ln) =T(e(ln) 21 = T(p(n) <T(l) =1<--- <T(lp) = (n+1)
This implies
(3.3) p(ln) <T7HI(lo) = (n+1))

Let x(s) = T"1(T'(Ily) — (n + 1)). By hypothesisy is nondecreasing implies that bdthand
I'~! are increasing functions, hengeis nonincreasing. For fixed(/y), it follows that

lim x(s) =0

§—00

From inequality[(3.B)¢(1.) < 0 and by hypothesis op, we havey(l,,) = 0.
Therefore,

lim /,,; = lim d (T"xO,T"HxO) — 0

which implies thatl’ has approximate fixed point.

More so, letu, v € C and define; ~ Su andv ~ T'v. Due to the general nature gfwhich may
be difficult to analyze, we suppose, in particular, théf) = o for a € (0,1) and¢ € [0, 00).
Forp > 0, using condition of the theorem and Definitjon|2.6 2.7, this gives

d(u,v) < d(Su, Sv) +p

< d(u,v) — ¢(d(u,v)) +

d(v, Sv)(1 +d(u, Tu)) (d(v, Sv)(1 + d(u, Tu)))
1+ d(u,v) 1+ d(u,v) P
< (1 - a)d(u,v) + (1 - a)liﬂd—m

This further implies
(3.4) ad*(u,v) — (p — a)d(u,v) — [e(1 —a)(1+&)+p] <0

Lete = d(u,v) > 0andp < h=¢(1 —a)(l +¢) + p such thaue? — (p — a)e — p = 0.
Then,

p—at(p—aP+dap (p—a)£(p+a)
2a 2a

e =

Using this in [3.4), we have

(ae — p)(e+1) < 0
p

Sincee + 1 > 0, thene — = < 0. Hence,
a

d(u,v) < =, forp>0,ac(0,1).

QI

Letting ¢(p) = B, by Definition, we obtain
a

2
S(F.(T)) < f fors >0, a € (0,1).

It is not difficult to see that it — 0, there is sufficiently small for all a € (0,1). &

Remark 3.1. If T : C' — C satisfies[(26) fos = d(x,y) andt = d(y’le)J(rldJ(r d(I)’Tx))
T,y

thenT has approximate fixed point since bagthandy, belong to the same family.
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Theorem 3.3.LetC be a convex subset af andT" : C' — C'is a map satisfying2.5)for which

s = d(z,y) andt = d(z,Tx), wherez,y € X ands,t € [0,00). Then,T has approximate
fixed point. Furthermore, it is the approximate operator &f and u,v € F.(T) are the

approximate fixed points ¢f, 7', respectively. Then, the following estimate holds:

(3.5) S(F(T)) < B _a“k, for e > 0.

Proof. Selectry € X and letr,, be a Picard sequence such that= T"z,. Then,
d(xp, Tny1) =d (T”xo, Ty 0)
<d (T" Yo, T w0) — @ (d (T o, T o)) + d (T o, T(T" 1))
@ (d (T o, T(T" ' zg)))

= 2d (T" 20, T"xo) — (d (T"‘lxo, T”ajo))
This further implies that
(3.6) d (T":}:o, T”+1x0) <d (T”_lxo, T"xo) — 2 (d (T”_lxo, T”xo)) <d (T”_lxg, T"xo)
Sinced (T"xy, T" o) < d(T" xg, T"x0), then d (T"xy, T"'xy) is a non-increasing and
non-negative sequence. Ldbe a non-negative real number for which

¢ = lim d (T”xo, T”+1x0) = lim d (T"_le,T”xo) ,

By inequality [3.6), we have
L= ()
This implies thatp? (1) <0 = ¢ (1) < 0. By the hypothesis op, ¢ (1) = 0, and thus,
¢t = lim d (T"J:O,T"Hmo) — 0

n—oo

Therefore,I" has approximate fixed point.
Furthermore, let,, v € X and define, =~ Su andv ~ Tv. Letp > 0 and consider the particular
casep({) = a& fora € (0,1) and¢ € [0, 00), by condition of the theorem and Definitibn P.6
and 2.7, there results
d(u,v) < d(Su,Sv) +p
= (1 —a)[d(u,v) + €] +p

This implies
€+ a”
d(u,v) < M
Zrzo a” — 1
. 4P 00"
By takin = ——=" we have that

ST < B2 forz s,

a

It is easily seen that — 0 ase — 0. &

Theorem 3.4.LetC be a convex subset af and7" : C' — C'is a map satisfying2.6)for which
s = d(z,y) andt = d(z,Tx), wherez,y € X ands,t € [0,00). Then,T has approximate
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fixed point. Furthermore, i is the approximate operator &f andu,v € F.(T) are the
approximate fixed points ¢f, 7', respectively. Then, the following estimate holds:

(3.7) STy < 8 _ab)g, fore >0, 0<ab<l.
Proof. Selectry € X and letz,, be a Picard sequence such that= T"x,. If ¢, ¢, € @ for
which (¢, + p,)t = (%), t € [0, 00), then,
d(xp, xpe1) =d (T" T"+1x0)
<d (T" 120, T”xo) 01
— o (d (T 2o, T(T™
= 2d (T"’lxo, T”aco) -

( ( T 1x0,T":E0)) +d (T”_lxo, T(T"‘lajo))
)

(d (T”’lxg, T"xo))

That s,

(3.8) d (T wo, T ag) < 2d (T o, T o) — ¢ (d (T 2o, T o))

Letl, 1 = d(T"xo, T" ' x) @and( € (21, 1,41] fOr (1) > (¢), then

— — e dg _2ln_ln+1 2ln_ln+1
P(20) — Dy — /l KTy Thh s

This implies
I'2L) —T(h1) > 1 = T(ly) <T(2,) —1<---<T(2) — (n+1)
That s,
l, <T7YI'(2ly) —n)

Let x(s) = I'"'(I'(2ly) — n). Sincey is nondecreasing, then bothandT'~! are increasing
functions imply thaty is nonincreasing. For fixed(2l), it follows that

lim x(¢) =0
¢— 00

Hence/,, < 0implies thatl,, = 0.
Therefore,
lim U1 = lim d (T"2o, T 29) — 0.

Furthermore, let,, v € X and define, ~ Su andv ~ Tv. Letp > 0 and consider the particular
case wherey, () = a& andp,(u) = bu fora,b € (0,1) and&, p € [0, 00).
So,

d(u,v) < d(Su, Sv) +p
< d(u, v) = ¢y (d(u,v)) + d(u, Su) — y(d(u, Su)) + p
=1 —-a)d(u,v)+ (1 =be+p
This gives
d(u,v) < W
By letting ¢(p) = (1%25“), we have that

STy < B _ab)g, fore >0, a,b € (0,1).

It is obvious thaty — 0 ase — 0. &
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Theorem 3.5.LetC' be a convex subset af and7" : C' — C'is a map satisfying2.5)for which

s =d(x,y)andt = d(y, Txz), wherex,y € X ands,t € [0, 00). ThenT has approximate fixed
point. Furthermore, ifS is the approximate operator @fandu, v € F.(T') are the approximate
fixed points of5, T', respectively. Then, the estimate

(3—a)e

(3.9) S(F(T)) < 5 —

1
, f0r5>0,§<a<1.

holds.

Proof. Selectry € X and letx,, be a Picard sequence such that= T"z,. Then,
d(2p, Tpy1) = d (T"xo, T o)
<d (T”_lxo, T”a:o) —p (d (T”_lxo, T”xo)) —d (T”a:o, T(T”_lxo))
— ¢ (d (T2, T(T" "20)))
=d (T”_lxo, T”xo) — (d (T”_lxo, T”xo))
<d (T”flxo, T"xo)

This means thaf (T™zy, T""'z,) is non-increasing and non-negative sequencel teb be a
real number such that

[ = lim d (T o, T" " 2o) = lim d (T" 2o, T"x0) ,

Then,
1<l—p()
This givesy (1) < 0. By the hypothesis op, ¢ (1) = 0. This implies that
I = lim d (T"xo, T" 'xg) — 0

n—oo

Therefore,I" has approximate fixed point.

Furthermore, let,v» € X and defineu ~ Su andv ~ Tw. Suppose, in particular, that
w(&) = a fora € (0,1) and¢ € [0,00). For p, using the condition of the theorem and
Definition[2.6 andl 2]7, there results

d(u,v) < d(Su,Sv) +p

< 2(d(u,v) — @(d(u, v))) + d(u, Su) — (d(u, Su)) + p
= 2(d(u,v) = p(d(u,v))) + € = p(e) +p
=2(1 —a)d(u,v) + (1 —a)e+p

By resolving, this gives

E+ P 500
Zrzo ar—2 -
e+ P s
Zrzo ar—2

d(u,v) <

This is only valid fora € (3,1). Letting¢(p) = , the diameter of the sét.(T")

is obtained as:

(3—a)e
s(E(r) < 5=

1
, fore > 0anda € (5, 1).
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Theorem 3.6.LetC' be a convex subset af and7" : C' — C'is a map satisfying2.6)for which

s =d(x,y)andt = d(y, Txz), wherex,y € X ands,t € [0, 00). ThenT has approximate fixed
point. Furthermore, ifS is the approximate operator @fandu, v € F.(T') are the approximate
fixed points of5, T', respectively. Then, the estimate

(3.10) S(F(T)) < B Y

1
- fore>0, - <a,b<l.
Satb—1 7Y@

holds.
The proof is similar to the proof of Theorgm B.5.

Remark 3.2. a. Observe that ifi = 1 in the estimateqd (3.1), (3.2, (8.5) afd {3.9), then
the right hand inequalities of the estimates do not ex@eethat is,¢(2¢) < 2. This
is not a mere coincident, the numbieris the least of the estimates. Similarly for the
estimateg (3]7) and (3.10) when= b = 1.

b. A similar estimate could be obtained for the functigtis) = HLl andp(t) = c(e!—1)

, 1 :
if a = 1—a(t), wherea(t) = T fort > 0anda = 1—¢, forc € (0, 1), respectively.

Remark 3.3. If ¢ is an approximate fixed point & in Theoren{ 3.R[ 3|3 and 3.4, the error
estimate

en <T7H((eg — (n—1)), forn > 1.
holds, wherd(t) = % andI'~! is its inverse. This is similar to the estimate contained in
([2], Theorem 3.1).

We present the error estimates of Theofem[3.1, 3.5 and 3.6 in the following Theorems:

Theorem 3.7.LetT : C' — C be a map satisfyinZ.3)for whichs = d(x,y) andt = d(z, Tx)
with F.(T') # ). Then the Picard iterative process converges to:ttiged pointy of 7" with the
following estimate:
¢" (o)

2n

en <
holds.
Proof. SinceT satisfies conditior{ (2]3) for = d(x,y) and¢ = d(x, Tx) with F.(T) # 0. By

Theoren] 3.JIT" has as-fixed pointg, say. Select, € C' and letz,, be a Picard sequence, for
q € F.(T), we have

d(zn,q) = d(Tx,—1,Tq)
< aq(d(zn-1,9))e(d(zn-1,q)) + aa(d(Tn_1,2,))(d(Tn_1,2,))

SinceT is asymptotic regulaw/(z,_1,x,) — 0 implies thatp(d(x,_1,z,)) — 0 asn — oc.
Fora; € F, this gives
1
d(wn,q) < 5(d(2n-1,9))

By lettinge,, = d(q, x,,), we have

1 1 1
€n S 5(10(6n71) S §¢2<€n72) S e S 2_ngpn(60)

For obvious reasory,, is a non-increasing sequence. So, it converges &ay, and by the
hypothesis op, e = 0. 1
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Remark 3.4. If ¢ = 0 in Theorenj 3.7 and € F in the sense of Geraghty-type condition, then
the error estimate,, < ¢"(ey). Clearly,

1
2790"(60) < ¢"(eo)-
Theorem 3.8.LetT : C' — C be a map satisfyinff.5)for whichs = d(z, y) andt = d(y, Tx)

with F.(T') # (. Then the Picard iterative process converges to:tfiged pointy of 7" with the

following estimate:
neg

e, < 201 [F(T) —(n—1)
holds, wherd'(¢) = [ % andT'! is its inverse function.

Proof. SinceT satisfies conditior (2]5) for = d(z,y) andt = d(y, Tx) with F.(T) # (. By
Theoren] 3.3I" has as-fixed pointg, say. Select, € C' and letz,, be a Picard sequence, for
q € F.(T), we have
d(xna q) = d(Txnfla TQ)

< d(@n-1,9) = p(d(xn-1,9)) + d(q, Trn1) — ¢(d(g, Trn1))

= d(wn-1,9) — (d(zn-1,9)) + d(q, 2n) — ©(d(q; 7))

S 2d(xn—la Q) - 290(d($n—17 Q)) + d(wn—l> xn) - (;O(d(xn—la xn))
SinceT is asymptotic requla{(z,_1, z,) — p(d(x,_1,x,)) — 0 asn — oco. Thus,

d(qéxn) < d(xn-1,q) — e(d(zn_1,q))

Lete, = d(q, z,) be the estimate at eaehth step so that

1

wlen—1) < ep_1 — 6n

This impliese,, is a non-increasing sequence. Therefore, it converges say, for which
¢(e) < 0. By the hypothesis o, e = 0.
More so, if there exists € [%, e,,—1] such thatp(e,,) > (() for eachn, then

e el dt epg — e, en1 — Len
T(en 1) — T(—= :/ = e = >1
e R A A3 plea)

Further, this gives

3€,_9 negy

) =2 <T(2e,0) =3< - <T(52) = (n—1).

D(F) < Tlen1) =1 < I

By transitivity, we have the estimate
e, < 20 [F(%) —(n—1)

Theorem 3.9.LetT" : C' — C be a map satisfyin@@.g)for whichs = d(z,y) andt = d(y, T'z)
with F.(T)) # (. Then the Picard iterative process converges ta:ttiged pointy of 7" with the
following estimate:

en <T7H((2e9) — (n — 1))
holds, wherd'(¢) = [ % andI' ! is its inverse function.

The proof is immediate and it is left.
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Corollary 3.10. LetC' be a convex subset &f and7 : C' — C'is a map satisfying
d(y, Ty)(1 + d(z,Tx))
1+d(z,y)

with o + 6 < 1. Then,T has approximate fixed point. Furthermore Sifis the approximate
operator? andp, q € F.(T) are the approximate fixed points 8f7', respectively. Then, the
estimate

(3.11) d(Tz,Ty) < ad(z,y) + , forx,ye X

§(F.) <2e(1—a) tfore >0,a+8<1
holds.

Corollary 3.11. LetT : C'— C be a map satisfying
(3.12) d(Tz,Ty) < ad(z,y) + Bd(z,Tz), forz,y e X

with o + 6 < 1. Then,T has approximate fixed point. Furthermore Sifis the approximate
operator? andp, q € F.(T) are the approximate fixed points 8f7’, respectively. Then, the
estimate

(6+2)e

l1—«

0(F.) <

fore>0,a+06<1
holds.

Proof. Selectzy, € X and letz, be a Picard sequence such that = 7"z,. By letting
s—(s) = (1—a)switha=1—aandt — ¢,(t) = (1 — b)t with b = 1 — 8 in Theorenj 3.8.
The proof follows.x

Corollary 3.12. LetC' be a convex subset &f and7 : C' — C'is a map satisfying
(3.13) d(Tz,Ty) < ad(z,y) + Bd(y,Tx), forz,y e X

with o« + 6 < 1. Then,T has approximate fixed point. Furthermore Sifis the approximate
operator? andp,q € F.(T) are the approximate fixed points 8f7', respectively. Then, the
estimate

5(F€)§%fors>0,a+ﬂ<l

holds.
The proof is obvious by the application of Theorem 3.5.

Remark 3.5. i. Corollary[3.12 is similar to the result in [23].
ii. The error estimates for Corollafy 310, 311 and B.12 are, respectively,

en < ae,, €, < (?jg) e, ande,, < (1 fﬁ) €o-

Here, the asymptotic error constants are easily accessible unlike estimations of the férm
which are inexplicable.

4. EXAMPLES AND PROBLEMS

Example 4.1.Let X = [0, 1] be endowed with the usual metid¢z,y) = |z —y| and let
T : X — X be defined by the nonlinear operatdrr = In(1 + x). Then,T satisfies the
hypotheses of Theorefns|3.1)3.3 3.4 with fixed poino.
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Firstly, observe that the associated functigm) = = — Tz is degenerate of order one, since
y(0) = 0,4'(0) = 0 andy"(0) # 0.

k
Letz,y € [0,1] with z > y and considef’> = In(1+2) = >, ., (=1 )"“*1 forall z € [0, 1],
then
(@ —y?) @ —y’) @ —yh) | @)
2 * 3 4 * 5
Sincexr > y, botha? —y? > (z —y)? and(z — y)? > (z —y)P™ hold forp > 1, and imply that

(=gt (- @y (@ —y)

p+1 p p+1 P
Thus,
(4.1)
Tm_Tny_y_(x;y>2+(x_3y)3_(I_Zly)4+<x_5y)5—(x_6y)6+‘“
::c—y—(:c—y)2+(x_zy>2+(x_3y>3+..._ [(x_zy)4+(x;y>6+...]

Sx—y—@—yf+ﬂ—k@wnPx;w?+@§w3+~}

<z-—y—(zr—-y’+(1 <§i%7— )

forz >z —y, whereA(z,y) =min {(z —y)¥ : £ =1,2,3,...} < L.
Hence, we have

00 k
2

k=1

d(Tz, Ty) < |z —y| =z —y[* + (1= N)

=5 —pi(s) +t — po(t)

wherep, (s) = s? andy,(t) = At, for s = d(z, y) andt = d(z, Tz) (See Theorein 3,4).

This implies thatl" is a general nonlinear contractive map [2.6) and for any initial sged
0, 1], the sequence,, = In(1 + z,,_;) converges to the fixed poigt= 0.

More so, from inequality{ (4|1)]" is a general nonlinear contractive map [2.3) deduced as:

1 —|z—y| Wﬁ |l
d(Tz,Ty) < (T) |z =yl + Z - ;T

= a1(8)p(s) + az(t)p(t)

wherea; (s) = 152, ao(t) = 55, ¢(s) = s, ¢(t) = t, for s = d(z,y) andt = d(z, Tz) (See
Theoren] 3.11). Since, o € F it is easily seen that; (s,), as(t,) — % ass,, t, — 0.

Remark 4.1. Similarly, Exampl¢ 4.1 also satisfies the hypothesis of Theprem 3.3atith=
1 1
552 andp(t) = 525, for s = d(z,y) andt = d(z, Tx).

Remark 4.2. If z < y, the results are also valid for the inputs- d(z,y) andt = d(y, Ty).

In Exampl€ 4.1, the error rates for Theoremg B.1], 3.3[and 3.4 are presented ip| Table 4 with
initial seedz, = ;. Results in Tabl¢]|4 show that the sequengén Theorenf 31 compares
favourably to the fixed poinj = 0 than the Theorenjs 3.3 ahd [3.4.
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Table 4.1: Comparison of error rates for Example]4.1

Theoren 3. Theorem) 3.3 Theoren) 3.4
n generations (Also see Theorein 3.7)(Also see Remark 3/3)(Also see Remark 3,3)
25 2.6469 x 10~ 6.2500 x 10— 3.5714 x 10~*
o0 7.0065 x 106 3.5088 x 1072 1.8868 x 1072
100 4.9091 x 10~1 1.8690 x 1072 9.7087 x 1073
200 2.4099 x 10~ 18! 9.6000 x 1074 4.9261 x 1073

Example 4.2. Consider the logistic mapx = 0x(1 — x), wheref € (0, 00) andx € R which
is often used in the study of chaotic phenomenon[Bgje Here, we are interested in the set
of points in the interval0, 1] C R. For this reason, the the numbérlies in (0,4]. Now, let
T :1]0,1] — [0, 1] be given byl'z = 2z(1 — x) and be furnished with the metric defined by

T+y, TFY,
d(z,y) =
0, rT=1y

with o(n) = 1n, ¢1(s) = s ande,(t) = 3t

Example 4.P satisfies all the hypotheses of Theofenjq 3.1} 3|4, 3.3, 3.4 &nd 3.5. However,

Examplg 4. does not satisfy the following weakly contractive maps:
. d(Tz,Ty) <n—(n)forn = d(z,y);

ii. d(Tz,Ty) < HTW — ¢(n,w) forn = d(z, Tx) andw = d(y, Ty); and
iii. d(Tz,Ty) < TH_TW — ¢(n,w) forn =d(xz,Ty) andw = d(y, Tx).

with ¢(n,w) = %(77 + w). Conditions i. and iii. can be seen [n [1,/24] ahd|[12], respectively.
Problem 1. Are conditiong[2.3) and (2.4) equivalent fort = d(z,y) ands = d(z, Tx)?
Problem 2. Are conditiong[2.5)and (2.6) equivalent fort = d(z,y) ands = d(z, Tx)?
Problem 3. Are conditiong[2.5)and (2.6) equivalent fort = d(z,y) ands = d(y, Tx)?
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