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2 DION GIJSWIJT& JAN VAN NEERVEN

1. I NTRODUCTION

The motivation of this paper comes from a well-known transference result for the vector-
valued Fourier transform. LetX be a complex Banach space. TheFourier transformof a
functionf ∈ L1(Rd;X) is defined by

FRdf(ξ) :=

∫
Rd

e−2πix·ξf(x) dx, ξ ∈ Rd.

Likewise, theFourier transformof a functionf ∈ L1(Td;X) is defined by

FTdf(k) :=

∫
Td

e−2πik·tf(t) dt, k ∈ Zd.

Proposition 1.1. LetX be a complex Banach space, fixd ≥ 1 andp ∈ (1, 2], and let1
p
+ 1

q
= 1.

The following assertions are equivalent:
(i) FRd extends to a bounded operator fromLp(Rd;X) intoLq(Rd;X);

(ii) FTd extends to a bounded operator fromLp(Td;X) into `q(Zd;X).
In this situation, denoting the norms of these extensions byϕp,X(Rd) andϕp,X(Td), we have

ϕp,X(Rd) ≤ ϕp,X(Td) ≤ C−d/q
q ϕp,X(Rd),

whereCq is the global minimum of the periodic function

x 7→
∑
m∈Z

∣∣∣sin(π(x+m))

π(x+m)

∣∣∣q, x ∈ R.

This function, as well as several others considered below, have removable singularities. It is
understood that we will always be working with their unique continuous extensions.

A complex Banach spaceX which has the equivalent properties (i) and (ii) is said to have
Fourier typep; this notion has been introduced in [5]. Proposition 1.1 goes back to [4]; in
its stated form the result can be found in [2, 3]. Related results may be found in [1]. These
references do not comment on the location of the global minimum. A quick computer plot (see
Figure 1) suggests that the minimum is taken in the points1

2
+ Z. To actuallyprovethis turns

out to be surprisingly difficult. This is the modest objective of the present note:

Proposition 1.2. For every real numberr ≥ 1, the functionfr : [0, 1] → R defined by

fr(x) :=
∑
m∈Z

∣∣∣sin(π(x+m))

π(x+m)

∣∣∣2r

, x ∈ [0, 1],

has a global minimum atx = 1
2
.

Our proof has developed essentially by trial and error. We believe it is perfectly possible that
a truly pedestrian proof can be given, but we failed to find one despite many hours of efforts.
As a consequence of Proposition 1.2 we obtain the explicit estimate

ϕp,X(Rd) ≤ ϕp,X(Td) ≤ πd(
2(2q − 1)ζ(q)

)d/q
· ϕp,X(Rd),

noting that ∑
m∈Z

1

|1
2

+m|q
= 2(2q − 1)ζ(q).

For even integersq = 2n, the constant on the right-hand side may be evaluated explicitly in
terms of the Bernoulli numbers. To further estimate this constant, recall that for anyx ∈ `2(Z)
the functionq 7→ ||x||q := (

∑
m∈Z |xm|q)1/q is decreasing on[2,∞) and limq→∞ ||x||q =
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ON THE CONSTANT IN A TRANSFERENCE INEQUALITY 3

Figure 1: A plot offr, wherer = 1.02k for k = 1, 2, 4, . . . , 256.

supi∈Z |xi|. Takingxm := |1
2

+ m|−1 we find(
∑

m∈Z |
1
2

+ m|−q)1/q ≥ 2 for everyq ≥ 2, and
hence in particular

ϕp,X(Rd) ≤ ϕp,X(Td) ≤ (1
2
π)dϕp,X(Rd).

2. THE MAIN RESULT

The proof of the proposition is based on the following lemmas. The main idea is contained
in the first lemma.

Lemma 2.1. Let g : R+ → R+ be a non-decreasing convex function, and letx1, . . . , xn ∈ R+

andy1, . . . , yn ∈ R+ be such that

(i) x1 + · · ·+ xn ≥ y1 + · · ·+ yn;
(ii) there existst ∈ R+ such that

• xi ≤ yi if yi < t;
• xi ≥ yi if yi ≥ t.

Theng(x1) + · · ·+ g(xn) ≥ g(y1) + · · ·+ g(yn).

Proof. We will prove the lemma by induction onn. The casen = 1 is clear:x1 ≥ y1 implies
thatg(x1) ≥ g(y1) sinceg is non-decreasing. Suppose now that the lemma has been proved for
n = 1, . . . ,m− 1.

If xi = yi for some index1 ≤ i ≤ m, then we may removexi andyi and apply the induction
hypothesis.

If xi ≥ yi for every index1 ≤ i ≤ m, then again the result is immediate sinceg is non-
decreasing. Therefore, we may assume thatxi < yi for some index1 ≤ i ≤ m. Then, by the
first condition in the lemma, there is also an indexj for whichxj > yj. By the second condition
in the lemma we then havexi < yi < t ≤ yj < xj.

Let ε := min(yi − xi, xj − yj) and definex′i := xi + ε, x′j := xj − ε, andx′k := xk for all
other indices. Thenx′1, . . . , x

′
m, y1, . . . , ym satisfy the conditions in the lemma (with the same

t) andx′i = yi or x′j = yj. Hence, by the induction hypothesis, we have

(2.1) g(x′1) + · · ·+ g(x′m) ≥ g(y1) + · · ·+ g(ym).
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4 DION GIJSWIJT& JAN VAN NEERVEN

Sincexi ≤ x′i ≤ x′j ≤ xj, we can writex′i = λxi + (1 − λ)xj for someλ ∈ [0, 1]. Since
x′j = xi + xj − x′i, we havex′j = (1− λ)xi + λxj. By the convexity ofg it follows that

(2.2) g(x′i) + g(x′j) ≤ (λg(xi) + (1− λ)g(xj)) + ((1− λ)g(xi) + λg(xj)) = g(xi) + g(xj).

Combining inequalities (2.1) and (2.2) we obtain the lemma forn = m, thus completing the
induction step.

In order to apply this lemma we need a number of technical facts. The first (cf. [2, (6.14)]) is
elementary and is left as an exercise.

Lemma 2.2. f1(x) = 1 for all x ∈ [0, 1].

Let h : R → R be defined by

h(x) := sinc2(πx) =
(sin(πx)

πx

)2

, x ∈ R.

Lemma 2.3. Let r ≥ 1. The following assertions hold on the interval[0, 1]:

(i) the functionh(x) + h(x− 1) has a global minimum atx = 1
2
;

(ii) for all m = 1, 2, 3, . . . , h(x+m) + h(x− (m+ 1)) has a global maximum atx = 1
2
;

(iii) the function
h(x) + h(x− 1)− (h(x)r + h(x− 1)r)1/r

has a global maximum atx = 1
2
;

(iv) for all m = 1, 2, 3, . . . andr ≥ 1,

(h(x+m) + h(x− (m+ 1)))r − h(x+m)r − h(x− (m+ 1))r

has a global maximum atx = 1
2
.

Assuming the lemmas for the moment, let us first show how the proposition can be deduced
from them.

Proof of Proposition 1.2.Fix r ≥ 1 and set, forx ∈ [0, 1],

sm(x) := h(x+m) + h(x− (m+ 1)) (m = 0, 1, 2, . . . )

and
s̃0(x) := ((h(x))r + (h(x− 1))r)1/r.

In view of part (iv) of Lemma 2.3 it suffices to prove that

s̃ r
0 + sr

1 + sr
2 + · · ·

has a global minimum atx = 1
2
.

Fix an arbitraryx ∈ [0, 1] and set

xm := sm(x), ym := sm(1
2
) (m = 0, 1, 2, . . . )

and
x̃0 := ((h(x))r + h(x− 1)r)1/r, ỹ0 := ((h(1

2
))r + h(−1

2
)r)1/r.

In view of parts (i) and (ii) of Lemma 2.3 we have

x0 ≥ y0, xi ≤ yi (i = 1, 2, . . . )(2.3)

Lemma 2.2 implies

x0 + x1 + x2 + · · · = y0 + y1 + y2 + · · ·(2.4)

By (2.3) and (2.4),

x0 + x1 + · · ·+ xn ≥ y0 + y1 + · · ·+ yn (n = 0, 1, 2, . . .)(2.5)
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Part (iii) of Lemma 2.3 implies

x̃0 − x0 ≥ ỹ0 − y0.(2.6)

By (2.5) and (2.6),

(2.7) x̃0 + x1 + · · ·+ xn ≥ ỹ0 + y1 + · · ·+ yn (n = 0, 1, 2, . . .)

Finally, by (2.3) and (2.6),

x̃0 ≥ ỹ0.(2.8)

A simple calculation shows that̃y0 >
4
π2 andyi <

4
π2 for i = 1, 2, . . . . Taking t = 4

π2 in
Lemma 2.1 andg(x) := xr now implies, by virtue of (2.3), (2.7), and (2.8), that

x̃ r
0 + xr

1 + · · ·+ xr
n ≥ ỹ r

0 + yr
1 + · · ·+ yr

n

holds for everyn. Taking limits forn→∞ completes the proof.

3. PROOF OF L EMMA 2.3

This section is devoted to the proof of Lemma 2.3, which is based on the following
observations:

Lemma 3.1. On the interval[0, 1]:

(i)
cos(1

2
πx)

1− x2
takes a global maximum atx = 0;

(ii)
(x2 + 1) cos2(1

2
πx)

(1− x2)2
takes a global minimum atx = 0.

Proof. We start by showing that

(3.1)
√

2 sin(1
4
πx) ≥ x for all x ∈ [0, 1].

To this end, considerf(x) :=
√

2 sin(1
4
πx) − x. Observe thatf ′(x) = π

√
2

4
cos(1

4
πx) − 1 is

decreasing on[0, 1], hencef is concave. Sincef(0) = f(1) = 0 this implies thatf(x) ≥ 0 for
x ∈ [0, 1], which proves the claim.

(i): The value atx = 0 of the given function equals1, so it suffices to show thatcos(1
2
πx) ≤

1− x2 for all x ∈ [0, 1]. This follows from the double-angle formula for cosine and (3.1):

cos(1
2
πx) = 1− 2 sin2(1

4
πx) ≤ 1− x2.

(ii): The given function has value1 atx = 0, hence it suffices to show that for allx ∈ [0, 1],

(x2 + 1) cos2(1
2
πx) ≥ (1− x2)2.

On the interval[1
2
, 1] we substitutex = 1− y. We then must prove that fory ∈ [0, 1

2
],

(2− 2y + y2) sin2(1
2
πy) ≥ (2y − y2)2.

Since2y ∈ [0, 1], we can use (3.1) to obtain
√

2 sin(1
4
π · 2y) ≥ 2y, and hencesin2(1

2
πy) ≥

2y2. This implies that

(2− 2y+ y2) sin2(1
2
πy) ≥ (2− 2y+ y2)(2y2) = (y2 + (2− y)2)y2 ≥ (2− y)2y2 = (2y− y2)2,

which concludes the proof on the interval[1
2
, 1].
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Forx ∈ [0, 1
2
] we have

(x2 + 1) cos2(1
2
πx) ≥ (x2 + 1)

(
1− π2

8
x2

)2

= (x2 + 1)(1− π2

4
x2 +

π4

64
x4)

≥ 1 + (1− π2

4
)x2 + (

π4

64
− π2

4
)x4

= 1 + (1− π2

4
)x2 + (

π4

64
− π2

4
− 1)x4 + x4

≥ 1 +
[
(1− π2

4
) +

1

4
(
π4

64
− π2

4
− 1)

]
x2 + x4

≥ 1− 2x2 + x4

= (1− x2)2,

noting thatπ
4

64
− π2

4
− 1 < 0 and(1− π2

4
) + 1

4
(π4

64
− π2

4
− 1) ≈ −1.9537471 · · · > −2

Proof of Lemma 2.3.(i): We have

h(x) + h(x− 1) =
sin2(πx)

π2x2
+

sin2(πx)

π2(x− 1)2
=

(2x2 − 2x+ 1) sin2(πx)

π2x2(x− 1)2
=: g(x).

We must show that

f(x) := g(x+
1

2
) =

8

π2

4x2 + 1

(4x2 − 1)2
cos2(πx)

has a global minimum inx = 0 on the interval[−1
2
, 1

2
]. But this follows from Lemma 3.1 and

the fact thatf is even.
(ii): For m = 1, 2, 3, . . . we have

h(x+m) + h(x− (m+ 1)) =
[2x2 − 2x+ (m+ 1)2 +m2] sin2(πx)

π2[(x+m)2(x− (m+ 1))2]
=: gm(x).

We must show that

fm(x) := gm(x+
1

2
) =

8

π2

4x2 + 4m2 + 4m+ 1

[(4x2 − (2m+ 1)2]2
cos2(πx)

has a global maximum inx = 0 on the interval[−1
2
, 1

2
]. For this, it suffices to check that the

functions
4x2 + 1

(4x2 −M2)2
cos2(πx) and

1

(4x2 −M2)2
cos2(πx)

are decreasing on[0, 1
2
] for eachM ≥ 3, or equivalently, that
√
x2 + 1

M2 − x2
cos(1

2
πx) and

1

M2 − x2
cos(1

2
πx)

are decreasing on[0, 1] for eachM ≥ 3. It suffices to prove this for the first function, since this
will immediately imply the result for the second function.

Straightforward algebra shows that the derivative of the function

ψM(x) :=

√
x2 + 1

M2 − x2
cos(1

2
πx)

has a zero atx if and only if

2x(x2 + 2 +M2) cos(1
2
πx) = π(M2 − x4 + (M2 − 1)x2) sin(1

2
πx).
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But,
2x(M2 + 2 + x2) cos(1

2
πx) ≤ 2x(M2 + 2 + x2)

and, since0 ≤ x ≤ 1,

π(M2 − x4 + (M2 − 1)x2)x ≤ π(M2 − x4 + (M2 − 1)x2) sin(1
2
πx),

while also, using thatM ≥ 3 and0 ≤ x ≤ 1,

2(M2+2+x2) ≤ 2(M2+2+(M2−1)x2) < π(M2−1+(M2−1)x2) ≤ π(M2−x4+(M2−1)x2)

since2(M2 + 2) < π(M2 − 1) for M ≥ 3. It follows that the derivative ofψM has no zeros on
(0, 1], and then from

ψM(0) =
1

M2
> 0 = ψM(1)

it follows thatψM is decreasing on[0, 1].
(iii): Proceeding as in (i), we have

h(x) + h(x− 1)− ((h(x))r + (h(x− 1))r)1/r

=
1

π2

[ 1

x2
+

1

(1− x)2
−

( 1

x2r
+

1

(1− x)2r

)1/r]
sin2(πx) =: g(x).

We must show that

f(x) := g(1
2

+ x) =
1

π2

[
(1

2
− x)2 + (1

2
+ x)2 − ((1

2
− x)2r + (1

2
+ x)2r)1/r

] cos2(πx)

(1
4
− x2)2

has a global maximum inx = 0 on the interval[−1
2
, 1

2
]. The functionf is even, and by Lemma

3.1,cos2(πx)/(1
4
−x2)2 takes its maximum atx = 0. It thus remains to show that on the interval

[0, 1
2
] the function

φr(x) := (1
2
− x)2 + (1

2
+ x)2 − ((1

2
− x)2r + (1

2
+ x)2r)1/r

is decreasing on[0, 1
2
]. The derivative of this function equals

φ′r(x) = 4x− 2
(
(1

2
− x)2r + (1

2
+ x)2r

)1/r−1(
(1

2
+ x)2r−1 − (1

2
− x)2r−1

)
.

To show thatφ′r(x) ≤ 0 we must show that(
(1

2
+ x)2r + (1

2
− x)2r

)1/r−1(
(1

2
+ x)2r−1 − (1

2
− x)2r−1

)
≥ 2x

for x ∈ [0, 1
2
], or, after substitutinga = 1

2
+ x andb = 1

2
− x, that

a2r−1 − b2r−1 ≥ (a− b)
(
a2r + b2r

)1−1/r

for all a ∈ [1
2
, 1]. In view of(

a2r + b2r
)1−1/r

=
[(
a2r + b2r

)1/(2r)
]2r−2

≤
[(
a2r−1 + b2r−1

)1/(2r−1)
]2r−2

=
(
a2r−1 + b2r−1

)1−1/(2r−1)
,

with p := 2r − 1 it suffices to show that

ap − bp ≥ (a− b)(ap + bp)1−1/p

for all a ≥ b ≥ 0. We can further simplify this upon dividing both sides bybp. In the new
variablex = a/b we then have to prove that

xp − 1 ≥ (x− 1)(xp + 1)1−1/p

for all x ≥ 1.
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Using that(1 + y)α ≤ 1 + αy for y ≥ 0 and0 ≤ α ≤ 1, we have

(x− 1)(xp + 1)1−1/p = (xp − xp−1)(1 + x−p)1−1/p ≤ (xp − xp−1)[1 + (1− 1

p
)x−p].

Therefore it remains to prove that forx ≥ 1 andp ≥ 1 we have

xp − 1 ≥ (xp − xp−1)[1 + (1− 1

p
)x−p],

or, multiplying both sides withx, that

xp+1 − x ≥ xp+1 − xp + (1− 1

p
) (x− 1).

that is, we must show that

fp(x) := xp ≥ x+ (1− 1

p
)(x− 1) =: gp(x).

Now

f ′p(x) = pxp−1, g′p(x) = 2− 1

p
.

It follows that f ′p(x) ≥ g′p(x) ≥ 0 for x ≥ 1, sincep ≥ 2 − 1
p

(multiply both sides byp).
Together withfp(1) = gp(1) it follows thatfp(x) ≥ gp(x) for x ≥ 1 andp ≥ 1. This concludes
the proof of (iii).

(iv): Fix m ≥ 1. Forx ∈ [−1
2
, 1

2
] we have

(h(x+ 1
2

+m) + h(x+ 1
2
− (m+ 1)))r − h(x+ 1

2
+m)r − h(x+ 1

2
− (m+ 1))r

=

[( 1

(x+ (m+ 1
2
))2

+
1

(x− (m+ 1
2
))2

)r

−
( 1

(x+ (m+ 1
2
))2

)r

−
( 1

(x− (m+ 1
2
))2

)r
]

× π−2r
(
cos2(πx)

)r
.

We must show that this function has a global maximum on[−1
2
, 1

2
] atx = 0. Since by Lemma

3.1cos(πx)/(1− 4x2) has a global maximum atx = 0, it suffices to prove that[
((a+ x)−2 + (a− x)−2)r − (a+ x)−2r − (a− x)−2r

]
· (1− 4x2)2r

has a global maximum atx = 0, where we have writtena := m + 1
2
≥ 3

2
. Since the function

x 7→ xr is convex, we have1
2
(a+x)−2r + 1

2
(a−x)−2r ≥ (1

2
(a+x)−2 + 1

2
(a−x)−2)r and hence

21−r((a+ x)−2 + (a− x)−2)r − (a+ x)−2r − (a− x)−2r ≤ 0

with equality forx = 0. Therefore, it suffices to show that

(1− 21−r)((a+ x)−2 + (a− x)−2)r(1− 4x2)2r

has a global maximum atx = 0. It is enough to show that the functiong(x) := ((a + x)−2 +
(a− x)−2)(1− 4x2)2 is decreasing on[0, 1

2
].

Computing the derivative ofg we find

g′(x) = −16x(1− 4x2)((a+ x)−2 + (a− x)−2) + (1− 4x2)2(−2(a+ x)−3 + 2(a− x)−3)

= (1− 4x2)(a+ x)−3(a− x)−3k(x),
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where

k(x) = −16x(a2 − x2)((a+ x)2 + (a− x)2) + (1− 4x2)(2(a+ x)3 − 2(a− x)3)

= −16x · 2(a4 − x4) + (1− 4x2) · 4x · (3a2 + x2)

= 4x[−8(a4 − x4) + (1− 4x2)(3a2 + x2)]

= 4x[4x4 + (1− 12a2)x2 + (3a2 − 8a4)].

Sincea >
√

3
8
, the functionp(y) := 4y2 + (1 − 12a2)y + (3a2 − 8a4) has a positive

and a negative root. The sum of the two roots equals12a2−1
4

and therefore the positive root
is larger than3a2 − 1

4
≥ 26

4
. It follows that p is negative on[0, 1

4
] and hence thatg′(x) =

(1− 4x2)(a+ x)−3(a− x)−3 · 4x · p(x2) ≤ 0 on [0, 1
2
], which finishes the proof.

Added in proof. After this paper had been accepted for publication, Tom Koornwinder sent us
the following interesting proof for the case that the parameterr in Proposition 1.2 is integral.
With his kind permission we reproduce it here.

We considerfr(x) on (0, 1). In terms of the Hurwitz zeta-functionζ(s, q) (see [6,
Eq. 25.11.1]) we have

fr(x) = π−2r sin2r(πx)(ζ(2r, x) + ζ(2r, 1− x)), r = 1, 2, . . .

In terms of the digamma functionψ(z) = Γ′(z)/Γ(z) (see [6, Eq. 25.11.12]) this can be
rewritten as

fr(x) =
π−2r sin2r(πx)

(2r − 1)!

(
d

dx

)2r−1

(ψ(x)− ψ(1− x)).

Applying the reflection formulaψ(1− z)− ψ(z) = π cot(πz) (see [6, Eq. 5.5.4]) we obtain

fr(x) =
−π1−2r sin2r(πx)

(2r − 1)!

(
d

dx

)2r−1

cot(πx).

Substitution oft = πx simplifies this expression to

(2r − 1)!

sin2r t
· fr(t/π) = −

(
d

dt

)2r−1

cot t.

Since(d/dt) cot t = −1/ sin2 t, we havef1(t/π) = 1. Also, we obtain the following recursion
relation:

(3.2)
(2r + 1)!

sin2r+2 t
· fr+1(t/π) = −

(
d

dt

)2r+1

cot t = (2r − 1)!

(
d

dt

)2
fr(t/π)

sin2r t
.

A small computation shows that(
d

dt

)2
fr(t/π)

sin2r t
=

(
d

dt

) [
(sin−2r t)

(
d

dt

)
fr(t/π)− 2r(cos t)(sin−2r−1 t)fr(t/π)

]
= (sin−2r t)

(
d

dt

)2

fr(t/π)− 4r(cos t)(sin−2r−1 t)

(
d

dt

)
fr(t/π)

+
(
2r(2r + 1) cos2 t sin−2r−2 t+ 2r sin−2r t

)
· fr(t/π).
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Hence, (3.2) implies that

(2r + 1)!

(2r − 1)!
fr+1(t/π) = (sin2 t)

(
d

dt

)2

fr(t/π)− 4r(cos t)(sin t)

(
d

dt

)
fr(t/π)

+(2r(2r + 1) cos2 t+ 2r sin2 t) · fr(t/π).(3.3)

Sety := cos2 t andD := d/dy. Sod/dt = −2(sin t cos t)D and(
d

dt

)2

=
d

dt
(−2 sin t cos t)D

= −2(cos2 t− sin2 t)D − (2 sin t cos t)

(
d

dt

)
D

= −2(cos2 t− sin2 t)D + (4 sin2 t cos2 t)D2

= (−4y + 2)D + 4y(1− y)D2.

Equation (3.3) can therefore be rewritten as

(2r + 1)!

(2r − 1)!
fr+1(t/π) =

[
4y(1− y)2D2 + ((8r − 4)y + 2)(1− y)D + 2r(2ry + 1)

]
fr(t/π)

=
[
4y(r − yD)2 + 8(r − yD)yD + 2yD + 2r + 4yD2 + 2D

]
fr(t/π).(3.4)

Observe that(r− yD)yk = (r− k)yk. Hence, ifp = p(y) is a polynomial of degreen < r with
nonnegative coefficients, then the same holds for(r − yD)p. The recursion (3.4) and the fact
thatf1(t/π) = 1 now imply thatfr(t/π) is a polynomial iny of degreer − 1 with nonnegative
coefficients. The first few are given explicitly by

f1(t/π) = 1

f2(t/π) =
1

3
+

2

3
cos2 t

f3(t/π) =
2

15
+

11

15
cos2 t+

2

15
cos4 t

f4(t/π) =
17

315
+

4

7
cos2 t+

38

105
cos4 t+

4

315
cos6 t

f5(t/π) =
62

2835
+

1072

2835
cos2 t+

484

945
cos4 t+

247

2835
cos6 t+

2

2835
cos8 t

For integersr, Proposition 1.2 is an immediate consequence.
For half-integersr = n+ 1

2
one could observe that the identity

ψ(2n)(x) = −(2n)!
∞∑

m=0

1

(x+m)2n+1

allows one to express the inequality of Proposition 1.2 in terms of the polygamma functions
ψ(2n). We have not been able, however, to use this fact to give a simpler proof in that case.
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