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1. INTRODUCTION

The motivation of this paper comes from a well-known transference result for the vector-
valued Fourier transform. LekX be a complex Banach space. Theurier transformof a
function f € L'(R?; X) is defined by

Fraf(€) ::/ e 2 f(g) dw, € € RY
Rd
Likewise, theFourier transformof a functionf € L'(T?; X) is defined by
Fraf(k) = / e 2Rt f(tydt, ke Z%
Td

Proposition 1.1. Let X be a complex Banach space,dix 1 andp € (1, 2], and Ietzl) +% =1.
The following assertions are equivalent:

(i) Fra extends to a bounded operator frath(R?; X) into L(R%; X);

(i) F1« extends to a bounded operator frabh(T?; X ) into ¢¢(Z%; X).
In this situation, denoting the norms of these extensions,by(R?) and ¢, (T¢), we have

spp,X (Rd) S gop,X (Td) S Cq_d/qspp,X (Rd)’
whereC,, is the global minimum of the periodic function

dap>

This function, as well as several others considered below, have removable singularities. It is
understood that we will always be working with their unique continuous extensions.

A complex Banach spac& which has the equivalent properties (i) and (ii) is said to have
Fourier typep; this notion has been introduced in [5]. Proposition 1.1 goes badkl to [4]; in
its stated form the result can be found in([2, 3]. Related results may be fouhd in [1]. These
references do not comment on the location of the global minimum. A quick computer plot (see
Figure[:lr) suggests that the minimum is taken in the pc%in%sZ. To actuallyprovethis turns
out to be surprisingly difficult. This is the modest objective of the present note:

sin(7 x—i—m)) s ER

5L'+m

Proposition 1.2. For every real number > 1, the functionfr : [0,1] — R defined by

sm
Z‘ x+m

2r

, x€]0,1],

has a global minimum at = =

Our proof has developed essentially by trial and error. We believe it is perfectly possible that
a truly pedestrian proof can be given, but we failed to find one despite many hours of efforts.
As a consequence of Proposition|1.2 we obtain the explicit estimate

d
™
(pp,X (Rd) S Spp,X(Td) S

(227 = 1)¢(q))

d/q : Spp,X(Rd%

noting that
> T P U

For even integergs = 2n, the constant on the right-hand side may be evaluated explicitly in
terms of the Bernoulli numbers. To further estimate this constant, recall that far arif(Z)
the functiong — ||zl == (X,.cz |zm|?)"/? is decreasing o2, c0) andlim, .. ||z]|, =
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Figure 1: A plot off,., wherer = 1.02* for k = 1,2,4, ..., 256.

Sup; ez |2;]. Takingz,, = |2 + m|™ we find (3", |5 + m|~?)/? > 2 for everyq > 2, and
hence in particular

gop,X (Rd> S @p,X(Td> S (%ﬂ-)dgop,X(Rd)'

2. THE MAIN RESULT

The proof of the proposition is based on the following lemmas. The main idea is contained
in the first lemma.

Lemma2.1l.Letg : R, — R, be a non-decreasing convex function, anddgt .., z,, € R,
andyy,...,y, € R, be such that

(ii) there exists € R, such that
o ;> yify; >t

Theng(zi) + -+ g(x,) > glva) + - + 9(yn)-

Proof. We will prove the lemma by induction om. The case: = 1 is clear:x; > y; implies
thatg(x;) > g(y1) sinceg is non-decreasing. Suppose now that the lemma has been proved for
n=1...,m—1.

If z; = y; for some indext < i < m, then we may remove; andy; and apply the induction
hypothesis.

If z; > y,; for every indexl < i < m, then again the result is immediate singcé non-
decreasing. Therefore, we may assume that y; for some indext < i < m. Then, by the
first condition in the lemma, there is also an ingdrr whichz; > y,. By the second condition
in the lemma we then have <y, <t <y; < ;.

Lete := min(y; — x;, 7; — y;) and definer; := z; + ¢, 2 := 2; — ¢, andx), := z;, for all

other indices. Then',... 2/ y,...,y, satisfy the conditions in the lemma (with the same
t) andz} = y; or x; = y;. Hence, by the induction hypothesis, we have
(2.1) 9(2) + -+ g(x,) = g(yn) + -+ + 9(ym)-

AJMAA Vol. 13, No. 1, Art. 2, pp. 1-11, 2016 AJMAA


http://ajmaa.org

4 DioN G1IswIJT& JAN VAN NEERVEN

Sincex; < z; < 2 < x;, we can writez; = Av; + (1 — \)x; for some € [0,1]. Since
T = x; + x; — 13, We haver’; = (1 — AN)x; + Az;. By the convexity ofy it follows that
(2.2) g(}) + g(2}) < (Ag(xi) + (1 = Ng(x;)) + ((1 = Ng(zi) + Ag(z;)) = g(:) + g(x;).

Combining inequalitieq (2}1) anf (2.2) we obtain the lemmanfee m, thus completing the
induction stepa

In order to apply this lemma we need a number of technical facts. The firstl(cf. [2, (6.14)]) is
elementary and is left as an exercise.

Lemma 2.2. fi(x) = 1 forall = € [0, 1].

Leth : R — R be defined by
T _ /sin(mz) 2
h(z) := sinc*(mz) = (—wx ) , xeR
Lemma 2.3. Letr > 1. The following assertions hold on the interyal 1]:
(i) the function:(z) + h(x — 1) has a global minimum at = £;
(i) forall m=1,2,3,..., h(z + m) + h(z — (m + 1)) has a global maximum at = 3;
(iii) the function
h(x) 4+ h(x — 1) — (h(z)" + h(z — 1)")/"
has a global maximum at = %;
(iv) forallm=1,2,3,... andr > 1,
(h(x+m)+h(x—(m+1)))" —h(z+m)" —h(z — (m+1))"
has a global maximum at = 3.

Assuming the lemmas for the moment, let us first show how the proposition can be deduced
from them.

Proof of Propositionn T]2Fix » > 1 and set, forr € [0, 1],
Sm(x) :=h(x +m)+ h(x — (m+ 1)) (m=0,1,2,...)
and
So(2) = ((h(2))" + (h(z — 1)")".
In view of part (iv) of Lemma 23 it suffices to prove that
Sy + s sy
has a global minimum at = 1.
Fix an arbitraryz € [0, 1] and set

T = S (), Ym = sm(%) (m=0,1,2,...)
and
Zo = ((h(x))" +h(z = 1)) go == ((h(3))" + h(=5)")"".
In view of parts (i) and (ii) of Lemmpa 2|3 we have

(2.3) To > Yo, T <Y (1=1,2,...)
Lemmd 2.2 implies

(2.4) TotTi+rat =Yttt

By (2.3) and[(Z.1),

(2.5) Totrt - +T, Yty Un (n=0,1,2,...)
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Part (i) of Lemmd 2.B implies

(2.6) To — To > Yo — Yo
By (2.3) and[(2.5),
(2.7) To+ri+- -+, >Yo+yi++ Yn (n=0,1,2,...)
Finally, by (2.3) and[(2]6),
(2.8) To 2 Yo-
A simple calculation shows that > % andy; < & fori = 1,2,.... Takingt = % in

Lemmd 2.1 ang(x) := 2" now implies, by virtue of[(ZI3)[(2]7), and (2.8), that
To+ay+ -+, 2Pty +

holds for everyn. Taking limits forn — oo completes the proo#

3. PROOF OF LEMMA 2.3

This section is devoted to the proof of Lemra]2.3, which is based on the following
observations:

Lemma 3.1. On the interval0, 1]:

1
0] M takes a global maximum at= 0;
— X
2 1 2(1
(ii) (@” + 1) cos (3m2) takes a global minimum at = 0.
(1 —22)?
Proof. We start by showing that
(3.1) ﬁsin(iﬂx) > forallz e]0,1].

To this end, considef (z) := 2sin(rz) — z. Observe thaf’(z) = ™2 cos(irz) — 1is
decreasing ofD, 1], hencef is concave. Sincg(0) = f(1) = 0 this implies thatf (x) > 0 for
x € |0, 1], which proves the claim.

(i): The value at: = 0 of the given function equals so it suffices to show thabs(;7z) <
1 — z? for all z € [0, 1]. This follows from the double-angle formula for cosine gnd](3.1):

cos(3mz) =1 — 2sin’(3rz) <1 - 2”
(i): The given function has valueatx = 0, hence it suffices to show that for alle [0, 1],
(z* 4+ 1) cos® (A7) > (1 —2?)%
On the intervals, 1] we substituter = 1 — y. We then must prove that fore [0, 1],
(2 =2y +y?) sin’(3my) > (2y — y°)*.

Since2y € [0,1], we can use[(3]1) to obtaif2sin(ir - 2y) > 2y, and hencein®(ry) >
29%. This implies that

(2—2y+y?)sin’(3my) > (2—2y+9°)(20°) = (P + (22— )y > 2-y)*" = 2y —y*)%,

which concludes the proof on the interyal 1].
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Forz € [0, 1] we have

2 2
(z* 4+ 1) cos®(A7z) > (z* + 1) <1 - %xz)
2 4
=@*+1)(1 - %af + g—4x4)
72 72
> 14 (1= D)z 4 (T = Ty
b=t (- T
w2 a7
I A S R R B
+ ( 4)x +(64 1 Jxt +x
. 1,7t
S 1 I B I 1] 24 gt
> 14 (( 4)+4(64 1 Y|z +
>1—22% + 2t
2(1—1‘2)2,

noting that?, — =" — 1 < 0and(l — =) + 1(Z; — = — 1) &~ —1.9537471--- > —2
Proof of Lemma 2]3(i): We have

ot S S, 0 D)

We must show that L2
1 8 4dx*+1 9
f(z):=g(x + 5) = Pmcos (mx)

has a global minimum in = 0 on the interval—1, 3]. But this follows from Lemml and
the fact thatf is even.
(i): Form =1,2,3,... we have
222 — 22 + (m + 1)? + m?] sin®(7x)

h(z+m)+ h(z — (m+1)) = e — T 1)) =: gm(2).

We must show that

L, 8 4% + 4m? + 4m + 1
3= (422 — (2m 4+ 1)2]2
has a global maximum im = 0 on the interval—1, ]. For this, it suffices to check that the

functions

cos?(mx)

Sn() = gm(x +

4% +1 (re) and 1
———— 5 COST (T —
(422 — M2)? (402 — M?)?

are decreasing o, %] for eachM > 3, or equivalently, that

cos? ()

241 1
M2 — 2 M2 — 22
are decreasing 0, 1| for eachM > 3. It suffices to prove this for the first function, since this
will immediately imply the result for the second function.
Straightforward algebra shows that the derivative of the function

2+ 1 1

Uy () = e cos(57)

cos(3mx) and cos(imx)

has a zero at if and only if
20(x” + 2+ M?) cos(3mz) = m(M? — z* + (M? — 1)2*) sin(7z).
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o 20(M? + 2+ z%) cos(3mz) < 2z(M? + 2 + 27)
and, since) < z < 1,
m(M? —2* + (M? — 1)2*)z < 7(M? — 2* + (M? — 1)2%) sin(i7z),
while also, using thal/ > 3 and0 < z < 1,
2(M?*4+242%) < 2(M*42-+(M?*—1)2?) < 7(M?—1+(M?*~1)2?) < 7(M?*—2* +(M>*—1)2?)

since2(M? +2) < w(M? — 1) for M > 3. It follows that the derivative of/,, has no zeros on
(0, 1], and then from

it follows that,, is decreasing ofv, 1].
(iii): Proceeding as in (i), we have
h(z) + h(z — 1) = ((A(x))" + (h(z = 1))
1711 1 1 1 1/ )
- F[ﬁ + (1—x) - (ﬁ + m) } sin”(mzx) =: g(z).

We must show that

f@) = g(h+2) = 5[5 — 07+ (3 +2) = (= 2 + (5 + 2

1] cos®(ma)

(% _ 1:2)2

has a global maximum im = 0 on the interva[—%, %]. The functionf is even, and by Lemma

,cos?(mc)/(}l — %)% takes its maximum at = 0. It thus remains to show that on the interval
[0, 1] the function

o,(0) = (3 -2+ (5+2)° = (G—2)" + (G + o))"
is decreasing of0, ;]. The derivative of this function equals
/ T r1/7—1 r— r—

S@) =4z -2 -7+ L+ A+ )T - —2)Y).

To show that! (z) < 0 we must show that
r r\1/r—1 r— r—
(G+2)"+ (5 -2)") (G+a) ' =G -2 ) >2
for 2 € [0, 3], or, after substituting = ; + = andb = 1 — z, that
a2r71 - b2r71 > (CL o b) (a2r + b27")

foralla € [1, 1]. In view of

(a2r + bQT)lfl/r _ |:<(1,2r + bQT)l/(2T):|

2r—2 _ .
< [(a2r—1 +b2r—1)1/(27”—1)] _ (a2r—1 +b2r—1)1 1/(2r—1)
with p := 2r — 1 it suffices to show that
a? — W > (a — b)(aP 4 7)1 -1/P

foralla > b > 0. We can further simplify this upon dividing both sides t##y In the new
variablex = a/b we then have to prove that

P —1>(x—1)(z? + 1)1’1/7’

1-1/r

2r—2

Y

forallz > 1.
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Using that(1 + y)* < 1+ ay fory > 0and0 < a < 1, we have

(2 —1)(@? + 1)V = (2P — 2P (1427 ?) VP < (2P — 2P D1+ (1 - 1) P,

p
Therefore it remains to prove that for> 1 andp > 1 we have
1
P — 1> (2P — 2P H[1+(1—>)z7?),
p

or, multiplying both sides witlr, that
1
Pt — x> Pt P (1= ) (- 1).
p

that is, we must show that

Now
1
folx) =paP™t, g (z) =2 - o
It follows that f/(x) > g,(z) > 0for z > 1, sincep > 2 — % (multiply both sides byp).
Together withf,(1) = g,(1) it follows that f,(z) > g,(x) for z > 1 andp > 1. This concludes
the proof of (iii).

(iv): Fix m > 1. Forz € [—3, 1] we have

(hz+32+m)+h(z+3—(m+1)) —h(z+i+m)" —hlz+i—(m+1))

1 1 r 1 r 1 r
- {<(9€+(m+%))2 e (m+%))2) - (($+(m+%))2> - <(37— (m+%))2> }
x 7% (cos®(mx))".

We must show that this function has a global maximunj-eh, ;] atz = 0. Since by Lemma
8.1 cos(mx) /(1 — 42?) has a global maximum at= 0, it suffices to prove that

[((a+2)+(@—2)?) —(a+2) —(a—2)"] - (1 — 42%)*

has a global maximum at = 0, where we have written := m + % > g Since the function

z — z" is convex, we have(a+z) "+ 1(a—z)"* > (3(a+2z) 2+ i (a—2)?)" and hence

2" ((a+2) 2+ (a—2) ) —(a+2) ™ —(a—2)? <0
with equality forz = 0. Therefore, it suffices to show that
(1—=2""((a+2) 2+ (a—2)2)"(1 — 42%)*

has a global maximum at = 0. It is enough to show that the functigiiz) := ((a + x)™> +
(a — z)72)(1 — 42%)* is decreasing ofv, 3].
Computing the derivative aof we find
g (r) = —16z(1 —42*)((a+2)? + (a — ) ?) + (1 — 42*)*(=2(a + ) > + 2(a — ) %)
=(1—42*)(a+2)*(a —2)*k(x),
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where

k(r) = —16z(a* — 2?)((a + 2)* + (a — )*) + (1 — 42%)(2(a + 7)* — 2(a — 7)?)
= —16z - 2(a* — 2*) + (1 — 42?) - 42 - (3a* + 2?)
= 4x[-8(a* — ) + (1 — 42%)(3a® + 2?)]
= dz[4z* + (1 — 12a°)2* + (3a® — 8a*)].

Sincea > /2, the functionp(y) := 4y* + (1 — 12a%)y + (3a® — 8a*) has a positive

and a negative root. The sum of the two roots eqé%is*—l and therefore the positive root
is larger than3a® — 1 > 2%, It follows thatp is negative or{0, ] and hence thay/(z) =
(1 —42?)(a+z)3(a — )~ - 4z - p(2?) < 0 0n|0, 3], which finishes the proofi

Added in proof. After this paper had been accepted for publication, Tom Koornwinder sent us
the following interesting proof for the case that the parametearPropositior] 1.p is integral.
With his kind permission we reproduce it here.

We considerf,.(z) on (0,1). In terms of the Hurwitz zeta-functioq(s,q) (see [6,
Eq. 25.11.1]) we have

fr(z) = 7 sin® (72)(((2r,2) + C(2r,1 — ), r=1,2,...

In terms of the digamma functioti(z) = I'(z)/I'(z) (see [6, Eq. 25.11.12]) this can be
rewritten as

—9r s 2p d 2r—1
o) = T () (wta) - w1 - o)
Applying the reflection formula)(1 — z) — ¥(2) = wcot(nz) (seel[6, EqQ. 5.5.4]) we obtain

—m=2sin? (rx) [ d

) = o) (VT o,

Substitution oft = 7wz simplifies this expression to

(2r — 1)! o fa\TT!
Trt . fr(t/'ﬂ'> = — <@) cot t.

sSin

Since(d/dt) cott = —1/sint, we havef,(t/r) = 1. Also, we obtain the following recursion
relation:

% fra(t/m) = — (%)Ml cott = (2r —1)! (i)Q fr(t/7m)

3.2 ! )
(32) dt) sin?t

A small computation shows that

(%)2 fr(t;? _ (%) {(Sin—% £) (%) fo(t/7) = 2r(cost)(sin™2 1 ¢) fT(t/w)}

sin

= (sin™?"¢) (%) f(t/m) — 4r(cost)(sin™>" "1 ¢t) (%) fr(t/m)
+ (2r(2r + 1) cos® tsin™>" 2t + 2rsin > t) - f.(t/m).
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Hence,[(3.R) implies that

r ! 2
%fr+l(t/ﬂ') = (sin®t) <%> fr(t/m) — 4r(cost)(sint) <%> fr(t/m)
(3.3) +(2r(2r + 1) cos® t + 2rsin®t) - f.(t/7).
Sety := cos?’t andD := d/dy. Sod/dt = —2(sint cost)D and

AN
—) = —(—2si D
<t> t( sint cost)

d
= —2(cos®t — sin®t)D — (2sint cost) (@) D
= —2(cos®t — sin®t) D + (4sin®t cos® t) D*
= (—dy +2)D +4y(1 — y) D*.
Equation [(3.B) can therefore be rewritten as
2r + 1)!

E2T——1§‘ fraa(t/m) = [4y(1 = y)’D* + (8r — 4)y +2)(1 — y) D + 2r(2ry + 1)] f,(t/)
(3.4) = [4y(r —yD)* + 8(r — yD)yD + 2yD + 2r + 4yD* + 2D f,(t/7).
Observe thatr — yD)y* = (r — k)y*. Hence, ifp = p(y) is a polynomial of degree < r with
nonnegative coefficients, then the same holdgfor yD)p. The recursion[(3]4) and the fact
that f,(¢t/7) = 1 now imply thatf,(¢/7) is a polynomial iny of degree- — 1 with nonnegative
coefficients. The first few are given explicitly by

fit/m) =1

fo(t/m) = % + gcoszt

fa(t/m) = % + % cos’t + 135 cos* t

fa(t)m) = % + %(205225 + %Cos4t+ %cosﬁt

fs(t/m) = % + %COSQt—F %cosﬁ‘ + %cosﬁt%— ﬁcosgt

For integers:, Propositionj 1.2 is an immediate consequence.
For half-integers: = n + 5 one could observe that the identity

V) =~ Y

allows one to express the inequality of Proposifiorj 1.2 in terms of the polygamma functions
1™ We have not been able, however, to use this fact to give a simpler proof in that case.
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