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ABSTRACT. In this paper we study noncoercive variational inequalities, using the Schwarz
method. The main idea of this method consists in decomposing the domain in two subdo-
mains. We give a simple proof for the main result concernifif) error estimates, using the
Zhou geometrical convergence and R approximation given for finite element methods by
Courty-Dumont.
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1. INTRODUCTION

We are interested in the following noncoercive variational inequality
Findu € H} (Q) solution of

(1.1) {aw%;gigg—m

where(? is a smooth bounded domain&fwith boundaryo(Q.
and the noncoercive bilinear form(u, v).

Or equivalently
Findu € H] () solution of

_ > _
(1.2) { b(u,v UU)S_\I;%;)\\;’U u)
where
(1.3) b(u,v) =a(u,v) + A(u,v)
and) > 0 large enough such thav € H; () we have
(1.4) b(v,v) = p ||U||§{1(Q) >0

In Sectior] 2, we give the continuous V.| problem, we study the existence and the uniqueness of
the solution, then we introduce the continuous Schwarz method. In Settion 3, we consider the
discrete problem and we establish a survey similar to the one of the continuous case. In Section
[4, we give a simple proof for the main result concerning error estimates ihhaeorm for

the problem studied, while taking as a basis on the combination of the Zhou [16] geometrical
convergence and the tié&° approximation given for finite element methods by Courty-Dumont

for variational inequalities.

2. THE CONTINUOUS PROBLEM

2.1. Notations and assumptions.Let’s consider the functions

(2.1) a; (), ai(x), ao(z) € C? (ﬁ) reN1<ij<n

such that

(2.2) Z ai; ()€ > a €26 e R a0 > 0
1<i,j<n

(2.3) a;;(z) = aji(x);a0(z) > >0

We define the bilinear formju, v € H} (Q2)

(2.4) a(u,v) = / ( Z aij(x)%% + Z ai(a:)g—xuv + ao(x)uv> dx
A j

)

1<i,5<n 1<i<n
Let f be
(2.5) feL*(NC*(Q);f>0
and
(2.6) Kug={veH" (Q),v—ge Hj(Q),0<v<¥onQ}

with the obstaclel andg is a regular function defined aif).

(2.7) U, g W (Q),p > 2.suchthab < g < ¥ onof
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2.2. The continuous problem. Findu € Ky 4 the solution of
(2.8) b(u,v—u) > (f+Au,v—u), Vv € Ky

Theorem 2.1.(cf. [11]) Under the conditiong (1}1) t¢ (1.4) arjd (R.1) [fo (2.7), the problen] (2.8)
has an unique solution € Ky 4. Moreover we have

(2.9) u€ W (Q),2<p< oo

3. THE DISCRETE PROBLEM

3.1. Discretization. LetV;,, = V},, (€2;) be the space of continuous piecewise linear functions
on 7" which vanish ord2 N ;.
Forw € C (A;), we define the following space

(3.1) Vi = {v e Vi, /v =000 N Q0 = mp, (w) on A}

Wherer,, denotes the interpolation operator &n Fori = 1,2, let 7 be a standard regular

finite element triangulation if2;, h; being the meshsize. We suppose that the two triangula-
tions are mutually independent én U ), A triangle belonging to one triangulation does not
necessarily belong to the other. We assume that the corresponding matrices resulting from the
discretizations of problem, are M-matrices. (Cf./[16]).

3.2. Position of the discrete problem. The discrete probleme is fing, € H} (2) the solution
of

(3.2) b (up,vp, — up) > (f + Aup, vy, — up)
' up <rpW v, < W

Let u;, be the solution of
(33) bh(’L_Lh, Uh) = b(u, ’Uh)

whereu is the solution of the continuous variational inequality.
We proved that

(3.4) |u — @y|| < Ch?|inh|?
and
(3.5) |u — rpul| < Ch?|Inh|?

We given assumption related @2.1), we taken ¥ 5,..cn)-
ThusVz € B(zo; Ch) such thatu(xy) = ¢(x) then

(36) fu(2) — p(x)| < CR|inhP

Theorem 3.1. (Cf.[8]) Under the conditions in (1}1) t¢ (1.4),(2.1) fo (R.7), (3.3)[t0(3.6) and

the the maximum principle, there exists a constanindependent of such that
(3.7) lu = unll oo ) < C1h® |In A

Lemma 3.2. (Cf.[10]) Under the conditions in (1}1) t¢ (1.4) and (R.1), (2.6)[to [2.9) and the

maximum principle, there exists a constafitindependent ok such that
(3.8) |up — || < Coh?|In h|?
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3.3. Domain Decomposition Method. We decomposg into two overlapping polygonal sub-
domains?; and{2, such that

(3.9) Q=0,UQ,

In Theorem??, the solutionu satisfies the condition of the following local regularity
(3.10) u/ Qe WH(€,;),2 < p< o0

We denote)(); the boundary of?; and

(3.11) AL =091 Ny, Ay = 00 N Y

We assume that

(3.12) ANA, =0

wheref; = (f + \u") /Q;,0 = 1,2

andu; = u/Q;, b (u,v) =b(u,v) /Qi;i=1,2.

3.4. The discrete Schwarz method.We give the discrete Schwarz method as follows
starting from

(3.13) ul, = 0 andud, =,

such thatiy, is a solution of the following equation

(3.14) b (Un,v) = (f + Nap,v), Vv € Ky

We define the discrete sequence of Schwajfz, _, such that

upt € V,ff%) is a solution of -
u’n
(3.15) by (ui v — ) > (fr + Aufy, v — Ul Yo €V,
u’ff{l <rp,v, o <r,v

and
n+1
uptt e v“in ) is a solution of

un+1
(3.16) b (ugfjlﬂj - ugfjl) > (f2 + Augy, v — ug;l) Vo € Vh(2 )
u;l;[l <r,v, o <r,v

Zhou in [16] gives the algebraic form of the discrete algorithm and the geometrical convergence
of the sequences.

Theorem 3.3. Cf. [16] Under the conditions irf (I]1) t¢ (1.4) ar{d (.1), the sequence
(wiy)  (ugy ') s =0
converge geometrically to the unique solutionf the discrete problem, such that

30 € 10,1[,Vn > 0.

(3.17) Hulh — u?h“HLoo(Qi) < ()" Huh — u?LHLm(Ai) i=1,2.
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4. L*°—ERROR ESTIMATE
4.1. L>—error estimate. We finish byL>— error estimate.
Theorem 4.1. There exists a constant independent ok such that
(4.1) | — ! , S COR*nhf*=1,2.

Proof. We have

(P

o n+l . o, ntl
s — iy Hmo(m)éuul in] pooqay) + [t = ui HLW(QA

We used Theorenis 3.1 and]3.3

< C1h? |In h)* + (0)" H“h - U’?IHLOO(AZ')

< Cih? A + (0)" [Juy — PR | oo (a)
and the LemmAa_3l2
< C1h? In k| + (6)"Cyh? |In h)?
< (C1 + (0)"Cs) h* |In h|?

Therefore,
n+1 2 2
i = u || ) < CR* IR
This completes the prook
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