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ABSTRACT. We will investigate the stability in the sense ch@Gug for theG-type functional
equationf(p(z)) = I'(x) f(x) + ¢ (z) and the stability in the sense of Ger for the functional
equation of the fornmy (p(x)) = I'(z) f(z). As a consequence, we obtain a stability results for
G-function equation.
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1. INTRODUCTION

In 1940, the stability problem raised by S. M. Ulaim[[12] was solved by D. H. Hyers in [4].
The result of Hyers has been generalized to the unbounded case by Th. M. Rassias [11], and
Rassias’s result also has been extended byar@a [2] and R. Ger[3].

The gamma function

[(x) = /000 e "t (v > 0)

is a solution of the gamma functional equatign: + 1) = xg(x), whose stability is researched
in papers ([5],[6],[7],[8], [9], [10]).
The G-function introduced by E. W. Barnes/ [1]

G(z)=(2m 2516_@6_7¢ 1+ -1 kel—“%
(=) = (2m) H [+ }
does satisfy the equatiad(z + 1) = I'(x)G(z) andI'(1) = G(1) = 1, wherey is the Euler-
Mascheroni's constant defined by= lim,, ... (>_;_, + —logn) = 0.577215664 - - - .

The properties and the availability ¢f-function depend on those of the gamma function.
Since the double gamma functidi is defined by the reciprocal of th@-function (seel[1]),
I'y(x) = 1/G(x), and its functional equation can be written in the fdrgz+1) = I's(z) /T'(2).
Therefore the stability problem for tiig-function is equivalent to the stability for the reciprocal
of the double gamma function.

In this paper, we will investigate the stability in the sense ai/Gg and Ger for the func-
tional equations

(1.1) flo(@)) = () f(x) + (x),
(1.2) fp(@)) = T(2) f(2),
(1.3) flx+1) =T(x)f(z),

wherey, ¢ are given functions, whil¢ is the unknown function. The equatidn ([1.3) will be
called theGG-functional equation because its solution is the G-function.
In sectior{ 2, we will study the stability in the sense div@ug for the functional equations

€.0), (1.2).

In section B, we will consider the stability in the sense of Ger for the functional equations
(T2, (1.3).

Throughout this paper, |8, R, andR, denote the set of real numbers, the set of all positive
real numbers and the set of all nonnegative real numbers, respectively. Each positive real num-
ber is fixed,n andk are natural numbers. Let: R, — R, be strictly increasing function
with ©°(z) = z andy"(z) = p(p"(z)) for all z, and lety : R, — R, ande : R, — R, be
some function.

2. STABILITY IN THE SENSE OF GAVRUTA FOR THE EQUATION (1.1)

In this section, we will investigate the stability in the sense atig for the equatiorj (1}1).
Therefore we can obtain the stability in the sense af@g for the equation[ (1I}2) and the
Hyers-Ulam stability of equationf (1.1) and (1.2) as corollaries.

Theorem 2.1. Lete be a given function such that

- clph(@) ~ .
(2.1) w(z) = ]; T T (1)) < Vr € R,.
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If a functionf : R, — R, satisfies the inequality

(2.2) |f(p(2)) = D(2)f(x) —¥(@)| < e(z)  Voe Ry,
then there exists a unique solutign R, — R, of the equatior{1.)with
(2.3) l9(z) = f@)l sw(z)  Voe R,

Proof. For anyx € R, and for every positive integer, letw,, : R, — R, andg, : R, —
R, be the functions defined by

wWn\ T ::n_1 ( (l’)
() ZH o IT(i(@))]

and

IR { CA{C0) M e W AL C5)
) T T T ) 2 T T (@)
forall x € R, respectively.
By (2.2), it follows that

fle(z)) x), _ &)
L flx) — <

| ©) = T = e
Substituting:c by ¢ (x) in this inequality, and then dividing both sides of the obtained inequality

by IT)=) IT (' (x))], we get

forall z e R,.

e(¢"(z))
j—o [T (@ (@)

(2.4) |Gn1(7) — gu(w)| = T

By induction onn we prove that

(2.5) |gn () — f(2)] < wn(x)

for all z € R, and for all positive integers. For the case: = 1, the inequality[(25) is an
immediate consequence pf (2.2).

Assume that the inequality (2.5) holds true for someThen we obtain the inequality for
n + 1 by (2.4) in the following way:

|gni1(2) = F(@)] < gnt1(2) = gn(@)] + |gn(2) = f(2)]
. @)
~ = P ()]
= wpt1(x).

We claim that{g, (z)} is a Cauchy sequence. Indeed, py|2.4) (2.1), we have fom
that

+ wp ()

|9 (@ )| < Z |91 (%) — gin()]

asm — 00.
Hence, we can define a functign R, — R, by

(2.6) g(x) = lim g,(z).
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From the definition ofy,,, we havey, (p(z)) = T'(x)g,11(z) + ¥ (z), hence the function
satisfies[(1]1).
We show from|(2.b) thag satisfies the inequality (4.3) as follows:
lg(x) = f(@)] = Tim |ga(x) = f()] < lim wn(z) =w(z) Vo€ Ry

If h: R, — R, is another such function, which satisfies {1.1) dnd](2.3), then we have
n—1

lg(x) — h(z)] = MWW@)—MW%NMIIEE%Eﬂ

Jj=0

A
DO
£

2
5
=
=
=3

") Tl
- 2 7
(Z;rwowwwﬂu»Q ngwuwﬂ

(¢ ()

= 2 Z - ‘

k=n szo T (7 ()]
forall x € R, and all positive integers, which tends to zero as — oo, sincew(x) is bounded.
This implies the uniqueness gf i

Corollary 2.2. If afunctionf : R, — R, satisfies the inequality
2.7) f(p(x) ~T(2)f(z) —d(x)| <6 Va€ R,
then there exists a unique solutign R, — R of the equatior{1.T)with
(2.8) l9(x) — f(@)| < 6ux) Vo€ Ry,
where the functiom(z) := 327 T]%_, oy forallz € R

In particular, if (z) > 2 in the stability inequality(2.7), then there exists a unique solution
g : Ry — R, of the equatior{I.T) with

o' (¢(2))

Proof. Sete(x) = 4 in Theoren{ 2.Jl. The infinite serigg(x) satisfies the conditior] (3.1).
Indeed, the sequence of partial sufag(z)} defined by

n k 1
() == ;jl:[o —F(goj(x))

is a Cauchy sequence with simple calculation.
In the case of(z) > 2, the defined functiom(z) implies

co k

1 1 1 1
lemwmnémw(“ﬁwm»+nwmf+m>

_ T(e)
I(@) (T(p(@) — 1)

Theorenj 2.3 and Corollafy 2.4 follow immediately from Theofem 2.1 and Cor¢llary 2.2 with
() = 0.
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Theorem 2.3. Let the functiore satisfies the conditio@.1). If a functionf : R, — R,
satisfies the inequality

[f(p(x) =T(x)f(2)] <e(z)  Voe Ry,
then there exists a unique solutign R, — R of the equatior{l.2) satisfies the inequality
(2.3)forallz € R..

Corollary 2.4. If afunctionf : R, — R, satisfies the inequality
(2.10) f(p(x)) ~T(@)f(@)| <6 VaeR,,

then there exists a unique solutign R, — R, of the equatior(1.2) satisfying(2.8) for all
T € R+.

In particular, if o(z) > 2 in the stability inequality2.10) then there exists a unique solution
g : Ry — R, of the equatior{I.2) satisfying(2.9).

The case of(z) = x + 1 in Theorenj 2.3 and Corollay 2.4 provide the stability in the sense
of Gavrug and the Hyers-Ulam stability for the G-functional equatfon|(1.3), respectively. The
latter is referred in papelr [10].

Theorem 2.5. Let the functiore satisfies the condition (3.1). If a functigh: R, — Ry
satisfies the inequality

flx+1)~T@)f(x)| <e(w)  VaeR,,
then there exists a unique G-functiéh: R, — R, such that
w e(z+k)
l9(z) — f(@)] < w(z) : ; T, 0+ J)|
Corollary 2.6. If afunctionf : R, — R, satisfies the inequality
[flx+1)~T(@)f(x)| <6 VaueR,,
then there exists a unique G - functiéh: R, — R, with

de
6) ~ £(e) < 5

VZ’ € R+ \V/ZU € R+.

forall x € R,.

Proof. Setp(z) = z+1,¢(x) = 0in Corollary{2.2. Then the sequence of partial syms(z)}
defined by

n 1 de
i@ =2 1 vy = vy

k=0 j=0

3. STABILITY IN THE SENSE OF GER FOR THE EQUATION (1.2)

In this section, we will investigate the stability in the sense of Ger for the equéatign (1.2).
Therefore we can obtain the stability in the sense of Ger for the G-functional eqyatipn (1.3) as
a corollary.

Theorem 3.1.Let a functionf : R, — R, satisfies the inequality

(3.1) |% —1| <e(x) Vx € Ry,
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wheres : R, — (0, 1) is a function such that

[e.e]

(3.2) Za(gpj(x)) < +o0.

=0
Then there exists a unique solutign R, — R of the equatior{I.2) with
9()
3.3 alr) < =—=~ < B(x),
(3:3) (@) < §y = 8
wherea(z) := [[72,(1 — (¢’ (x))) and B(z) := [[7Z,(1 + &(¢’(x))) forall z € Ry.
Proof. The condition ) implies thei[ >~ (1 + e(¢(x))) converges. Hence, we can define
the functionsa, 3 for all = € Ry such that) < a(x) := [[72,(1 — e(¢’(2))) < [[}Zo(1 +

e(p?(2))) := B(z) < +o0, that is, these series are bounded.
For anyz € R, and for every positive integer, we define

-l

For all positive integers:, n with n > m, we have

as S0 SE@) @) e
7 gm(x)  D(em(@)flem(x)) Dot (@) f(em () Tlem (@) f(em(z)
It also follows from [[3.1) that

i f(* () ”
(3.6) 0 <1~ (@) < Fioyy Froaay < L)
forallz € R, andj =0,1,2,---. From [3.5) and (3]6), we get
TT0 - ctel(on) < 240 < [T+ =)
or

[y

n—

3 log(1 — e(¢/(0)) < log ga(x) ~ oggm(z) < 3 log(1 +e( ().

1
3

Since) " log(1—c(¢(2))) = log ax) andd 2 (log(1+e(¢’(2))) = log B(x), it follows
thatlim,, .o 352, log(1—&(¢/(x))) = limg, o0 -2, log(1+e(¢’(2))) = 0 by boundedness
of a, 3. Hence, we note thdtog ¢,,(x)} is a Cauchy sequence for alle R, . Itis reasonable
to define a functiory : R, — R, by

(3.7) g(e) =" = lim g,(x)  Vr € Ry,
whereL(z) := lim,,_., log g,(z).
We get that
(3.8) g(p(x)) =L(x)g(x)  Vre R,
Since
gn(z) _ fle(2)) fla+2p fle" (@)

AJMAA Vol. 3, No. 2, Art. 19, pp. 1-8, 2006 AJMAA


http://ajmaa.org

STABILITY OF THE G-TYPE FUNCTIONAL EQUATION 7

we get

n—1

n—1
. T
[T0 - @) < =2 < [0+ @)
j=0 i=0
for all z € R, . This inequality implies|(3]3) with the definition of, 3 asn — oc.
Assumeh : R, — R, is a solution of equationi (3.8) which satisfies the inequd]ity] (3.3).

By (3.8), we have

g(2) _ gle"(@) _ g(¢"(@) [("(x))
hz)  h(em(z)  fle"(@) hp™(z))
foranyx € R, and for any natural number.
Hence, we have

alp™(z)) _ glx) _ Ble"(2))
Ble™(x)) ~ h(x) ~ ale"(z))
for any natural numbet. By the boundedness of the seriges

o0

a(¢"(2)) = [[(1 - (P (@) — 1

Jj=n

<

asn — oo. Similarly 5(¢"(z)) — 1 asn — oc.
Therefore, it is obvious thdi(x) = g(x). 1

From the proof of Theoren 3.1, we can see that the assumptign (3.2) is a weak condition for
the convergence ef andj. The special casg(x) = = + 1 has been considered in [10].

Corollary 3.2. Let a functionf satisfies inequality3.), in whiche : R, — (0,1) is a
function such that

o0 o0

a(z) = [[1 —e(¢’(2))) and )= [](1 +e( (@)

j=0 j=0
are bounded for all: € R, . Then there exists a unique solutipn R, — R, of the equation

(1.9) satisfying(3.3)for all z € R..

Corollary 3.3. Letd > 0 be given. If a mapping : R, — R, satisfies the inequality
flx+1) )
L < —=/=
@@ =
then there exists a unique solutign R, — R, of the gamma functional equati@h.3)such
that for anyz > 577 the following inequality is satisfied

M@_ﬁ; B(x),

wherea(z) := [720(1 — Gryme) @and 6(z) == [T72(1 + Gryres)-

Proof. Applying Theorel withp(z) = 241, &(z) = -2, if 2 > 5759, then) ™, W
converges by the-series method. Hence, we get the desired repult.

VZL' € R+,

4. EXAMPLES
We apply the result of Theorem 8.1 with= 1.
Ex1l. e(1414)= for¢ > 1. Note that the series ;- , - in the case > 1 converges.
Ex2. e(1+41i)= Note thaty >*

<1+ 7

(1+), =e— 1.

=0 ( 1+z)
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