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2 JANUSZ BRZDȨK

1. INTRODUCTION

The stability theory of functional equations (currently known as Hyers-Ulam stability) was
essentially started in 1941 by D.H. HYERS [25], who provided a partial solution of a problem
by S.M. ULAM, concerning approximate homomorphisms between groups. However, a special
case of Ulam’s problem, for real functions, was posed earlier by GY. PÓLYA and G. SZEGÖ [42,
Teil I, Aufgabe 99] (cf. [22, p. 125]). Generalizations and further extensions of that problem
have been proposed by several mathematicians (see, e.g., [4, 5, 6, 23, 26, 30, 31, 32]). Begin-
ning in the year 1978, TH.M. RASSIAS’S research work has provided generalizations of D.H.
HYERS’S theorem with a number of applications and stimulated further development in this
field of research (see, e.g., [16, 27, 28, 29, 43, 44]). For more details, discussions and surveys
on the results obtained so far we refer, e.g., to [2, 15, 17, 20, 27, 33, 36, 37, 44]; some very
recent results can be found, for instance, in [3, 7, 9, 10, 11, 12, 13, 16, 21, 22, 24, 28, 45, 46].

Usually the problem is considered for functions with values in Banach spaces, but actually
it had been stated for functions with values in metric spaces, e.g., in the following way (see
[47]): Given a group G1, a metric group G2 with metric d and a positive number ε, find a
positive number δ such that, for every f : G1 → G2 satisfying: d(f(xy), f(x)f(y)) ≤ δ for all
x, y ∈ G1, there exists a homomorphism h : G1 → G2 with d(f(x), h(x)) ≤ ε for all x ∈ G1.
Motivated by this, we prove some stability results for functions with values in metric spaces.
Moreover, inspired by G-L. FORTI [18] and the talk of P. VOLKMANN at the 42nd International
Symposium on Functional Equations (Brno, The Czech Republic, 2004), as the main tool we
use a result on the stability of a functional equation for a single variable. This approach enables
us to show that it is quite natural to consider the stability of conditional versions of some well
known functional equations on restricted domains (such an approach has already been applied
in [40] and [8]).

2. THE MAIN TOOL

Let us start with the following theorem, concerning stability of the equation Ψ ◦ f ◦ a = f .
For a function a mapping a nonempty set K into K in the sequel we write a0(x) = x for x ∈ K
and an = a ◦ an−1 for n ∈ N, where N denotes the set of positive integers.

The theorem can be easily derived from [18], however, for the convenience of the readers we
present it here with a proof.

Theorem 2.1. Assume that (Y, d) is a complete metric space, K is a nonempty set, f : K → Y ,
Ψ : Y → Y , a : K → K, h : K → [0,∞), λ ∈ [0,∞), d(Ψ ◦ f ◦ a(x), f(x)) ≤ h(x) for
x ∈ K,

(2.1) d(Ψ(x),Ψ(y)) ≤ λd(x, y) for x, y ∈ Y,

and

(2.2) H(x) :=
∞∑
i=0

λih
(
ai(x)

)
<∞ for x ∈ K.

Then, for every x ∈ K, the limit F (x) := limn→∞Ψn ◦ f ◦ an(x) exists and F : K → Y is a
unique function such that Ψ ◦ F ◦ a = F and d(f(x), F (x)) ≤ H(x) for x ∈ K.
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Proof. Note that

d (Ψn ◦ f ◦ an(x), f(x)) ≤
n∑

i=1

d
(
Ψi ◦ f ◦ ai(x),Ψi−1 ◦ f ◦ ai−1(x)

)
≤

n∑
i=1

λi−1d
(
Ψ ◦ f ◦ ai(x), f ◦ ai−1(x)

)
≤

n−1∑
i=0

λih
(
ai(x)

)
for x ∈ K and n ∈ N. Hence, for every x ∈ K and m ∈ N, k ∈ N ∪ {0},

d
(
Ψm+k ◦ f ◦ am+k(x),Ψk ◦ f ◦ ak(x)

)
≤ λkd

(
Ψm ◦ f ◦ am+k(x), f ◦ ak(x)

)
≤ λk

m−1∑
i=0

λih
(
ak+i(x)

)
≤

m+k−1∑
i=k

λih
(
ai(x)

)
.

Since
∑m+k−1

i=k λih (ai(x)) → 0 with k → ∞, F (x) := limn→∞Ψn ◦ f ◦ an(x) exists and
d(F (x), f(x)) ≤ H(x) for every x ∈ K. Moreover Ψ is continuous (in view of (2.1)), whence
for every x ∈ K we have

F (x) = lim
n→∞

Ψn+1 ◦ f ◦ an+1(x) = Ψ
(

lim
n→∞

Ψn ◦ f ◦ an(a(x))
)

= Ψ ◦ F ◦ a(x).

It remains to show the uniqueness of F . We suppose thatG : K → Y , d(f(x), G(x)) ≤ H(x)
for x ∈ K and Ψ ◦ G ◦ a = G. By induction it is easy to show that Ψn ◦ G ◦ an = G and
Ψn ◦ F ◦ an = F for n ∈ N. Hence, for x ∈ K,

d(F (x), G(x)) = d (Ψn ◦ F ◦ an(x),Ψn ◦G ◦ an(x))

≤ λnd (F ◦ an(x), G ◦ an(x))

≤ λnd (F ◦ an(x), f ◦ an(x)) + λnd (f ◦ an(x), G ◦ an(x))

≤ 2λnH (an(x))

= 2
∞∑

i=n

λih
(
ai(x)

)
.

Since, for every x ∈ K,
∑∞

i=n λ
ih (ai(x))→ 0 with n→∞, this completes the proof.

Now, in a series of corollaries we show applications of Theorem 2.1 to the problem of stability
of functional equations in several variables, on restricted domains. For the sake of preservation
of reasonable simplicity, we confine ourselves to some rather less general situations.

However, before we begin, let us recall that a groupoid (G,+) (i.e., a nonempty set G en-
dowed with a binary operation + : G2 → G) is uniquely divisible by 2 provided, for each
x ∈ X , there is a unique y ∈ X with x = 2y (we write 2x := x + x for x ∈ G); such an ele-
ment y will be denoted by x

2
or 1

2
x in the sequel. In what follows, we use the notion: 20x := x,

2nx = 2(2n−1x) and (only for groupoids uniquely divisible by 2) 2−nx = 1
2
(2−n+1x) for x ∈ G,

n ∈ N.
We say that a groupoid (G,+) is square symmetric provided the operation + is square sym-

metric, i.e., 2(x + y) = 2x + 2y for x, y ∈ G; it is easy to show by induction that, for each
n ∈ N (and also for all integers n, if the groupoid is uniquely divisible by 2),

(2.3) 2n(x+ y) = 2nx+ 2ny for x, y ∈ G.
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4 JANUSZ BRZDȨK

Such groupoids have been already considered in the theory of stability of functional equations,
e.g., in [38] and [39] (see also [41]).

Clearly, every commutative semigroup is a square symmetric groupoid. Next, let X be a
linear space over a field K, a, b ∈ K, z ∈ X and define a binary operation ? : X2 → X by:
x ? y := ax + by + z for x, y ∈ X . Then it is easy to check that (X, ?) provides a simple
example of a square symmetric groupoid.

Finally, we say that (G,+, d) is a complete metric groupoid provided (G,+) is a groupoid,
(G, d) is a complete metric space and the operation + is continuous with respect to the metric
d.

3. THE CAUCHY EQUATION

In this part we assume that (X,+) and (Y,+) are square symmetric groupoids, (Y,+, d) is
a complete metric groupoid, K ⊂ X , and χ : X2 → [0,∞). We start with the stability of the
conditional Cauchy functional equation

(3.1) F (x+ y) = F (x) + F (y) for x, y ∈ K with x+ y ∈ K.

Corollary 3.1. Suppose that X is uniquely divisible by 2, 1
2
K ⊂ K (i.e., a

2
∈ K for a ∈ K),

and there exist ξ, η ∈ (0,∞) such that ξη < 1,

(3.2) χ
(x

2
,
y

2

)
≤ ηχ(x, y) for x, y ∈ K,

(3.3) d(2x, 2y) ≤ ξd(x, y) for x, y ∈ Y.
Let ϕ : K → Y satisfy

(3.4) d(ϕ(x+ y), ϕ(x) + ϕ(y)) ≤ χ(x, y) for x, y ∈ K with x+ y ∈ K.
Then there is a unique solution F : K → Y of (3.1) with

d(ϕ(x), F (x)) ≤ ηχ(x, x)

1− ξη
for x ∈ K.

Proof. From (3.4) we obtain d
(
ϕ(x), 2ϕ

(
x
2

))
≤ χ

(
x
2
, x

2

)
for x ∈ K. Hence, by Theorem 2.1

(with f = ϕ, Ψ(z) = 2z, λ = ξ, h(x) = χ
(

x
2
, x

2

)
, and a(x) = x

2
), for every x ∈ K the limit

F (x) exists and d(f(x), F (x)) ≤ H(x). Take x, y ∈ K with x + y ∈ K. Since (2.3) and (3.4)
yield

d
(
2nϕ

(
2−n(x+ y)

)
, 2nϕ

(
2−nx

)
+ 2nϕ

(
2−ny

))
≤ (ξη)nχ(x, y)

for n ∈ N, so letting n→∞ we obtain F (x+ y) = F (x) + F (y).
Thus we have shown that (3.1) holds. Suppose F0 : K → Y also is a solution of (3.1) and

d(f(x), F0(x)) ≤ H(x) for every x ∈ K. Then Ψ ◦ F0 ◦ a = F0, whence, by Theorem 2.1,
F = F0, which implies the uniqueness of F .

Remark 3.1. For instance, if in Corollary 3.1 the metric d is invariant, i.e.,

(3.5) d(x+ z, y + z) = d(x, y) = d(z + x, z + y) for x, y, z ∈ Y,
then

d(2x, 2y) ≤ d(2x, x+ y) + d(x+ y, 2y) = 2d(x, y) for x, y ∈ Y,
whence (3.3) holds with ξ = 2. Moreover, (3.5) implies

d(bn + cn, b+ c) ≤ d(bn + cn, bn + c) + d(bn + c, b+ c) ≤ d(cn, c) + d(bn, b)

for every bn, cn, b, c ∈ Y , n ∈ N, which yields continuity of +.
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Note also that the classical Hyers result in [25] with constant χ cannot be derived from
Corollary 3.1, because then condition (3.2) holds with η ≥ 1. However, it can be deduced from
the following.

Corollary 3.2. Suppose that Y is uniquely divisible by 2, 2K ⊂ K (i.e., 2a ∈ K for a ∈ K),
and there exist ξ, η ∈ [0,∞) such that ξη < 1,

(3.6) d

(
1

2
x,

1

2
y

)
≤ ξd(x, y) for x, y ∈ Y,

(3.7) χ (2x, 2y) ≤ ηχ(x, y) for x, y ∈ K.
Let ϕ : K → Y satisfy (3.4). Then there is a unique solution G : K → Y of (3.1) with

d(ϕ(x), G(x)) ≤ ξ2χ(x, x)

1− ξη
for x ∈ K.

Proof. From (3.4) and (3.6) we get

d

(
1

2
ϕ(2x), ϕ(x)

)
≤ ξd(ϕ(2x), 2ϕ(x)) ≤ ξχ(x, x)

for x ∈ K. Now, we can use Theorem 2.1 analogously as in the proof of Corollary 3.1 (with
λ = ξ, f = 2ϕ, Ψ(z) = 1

2
z, h(x) = ξχ(x, x) and a(x) = 2x). Then, with G = 1

2
F , for every

x ∈ K we get

d (ϕ(x), G(x)) ≤ ξd (f(x), F (x)) ≤ ξ2χ(x, x)
∞∑
i=0

(ξη)i.

Next, by (2.3) and (3.4), for every x, y ∈ K with x+ y ∈ K, we have

d
(
2−nϕ (2n(x+ y)) , 2−nϕ (2nx) + 2−nϕ (2ny)

)
≤ (ξη)nχ(x, y)

for n ∈ N, which implies that F is a solution of (3.1) and so is G.
The proof of uniqueness is analogous as in the proof of Corollary 3.1.

4. THE JENSEN EQUATION

Let (X,+) and (Y,+) be square symmetric groupoids, uniquely divisible by 2. Moreover,
assume that (X,+) has a neutral element 0X , d is a complete metric in Y , (3.5) holds, K ⊂ X ,
and χ : X2 → [0,∞). Now, we are in a position to consider stability of the conditional Jensen
functional equation

(4.1) F

(
x+ y

2

)
=
F (x) + F (y)

2
for x, y ∈ K with

x+ y

2
∈ K.

Corollary 4.1. Assume that 0X ∈ K, 2K ⊂ K, and there exist ξ, η ∈ [0,∞) such that ξη < 1,
(3.6) holds and

(4.2) χ (2x, 0X) ≤ ηχ(x, 0X) for x ∈ K.
Let ψ : K → Y satisfy

(4.3) d

(
ψ

(
x+ y

2

)
,
ψ(x) + ψ(y)

2

)
≤ χ(x, y) for x, y ∈ K with

x+ y

2
∈ K.

Then there exists a unique solution F : X → Y of (4.1) such that

d(ψ(x), F (x)) ≤ ηχ(x, 0X)

1− ξη
for x ∈ K.
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Proof. Replacing in (4.3) x by 2x and y by 0X we obtain

d

(
ψ (x) ,

ψ(2x) + ψ(0X)

2

)
≤ χ(2x, 0X)

for x ∈ K. In view of Theorem 2.1 (with λ = ξ, f = ψ, a(x) = 2x, Ψ(y) = 1
2
(y + ψ(0X)),

and h(x) = χ(2x, 0X)), for every x ∈ K the limit F (x) exists, d(f(x), F (x)) ≤ H(x) and
consequently, by (4.2),

d(F (x), ψ(x)) = d(F (x), f(x)) ≤
∞∑
i=0

ξih(2ix) = ηχ(x, 0X)
∞∑
i=0

(ξη)i.

Next, by induction, in view of (2.3), (3.5) and (3.6), we get

d

(
Ψn ◦ f

(
2n

(
x+ y

2

))
,
1

2
[Ψn ◦ f (2nx) + Ψn ◦ f (2ny)]

)
≤ ξnd

(
ψ

(
2n

(
x+ y

2

))
,
1

2
[ψ (2nx) + ψ (2ny)]

)
≤ (ξη)nχ(x, y)

for every x, y ∈ K with x+y
2
∈ K, whence F is a solution of (4.1) (because the mapping

Y 3 z → z
2
∈ Y is continuous on account of (3.6)).

Analogously as in the proof of Corollary 3.1 we show that F is unique.

Corollary 4.2. Assume that (Y,+) is a commutative group, 0X ∈ K, 1
2
K ⊂ K and there exist

η, ξ ∈ [0,∞) such that ηξ < 1, (3.3) holds and

(4.4) χ
(x

2
, 0X

)
≤ ηχ(x, 0X) for x ∈ K.

Let ψ : K → Y satisfy (4.3). Then there exists a unique solution G : X → Y of (4.1) such that

d(ψ(x), G(x)) ≤ ξχ(x, 0X)

1− ηξ
for x ∈ K.

Proof. (4.3), (3.3) and (3.5) imply that, for every x ∈ K,

d
(

2
(
ψ
(x

2

)
− ψ(0X)

)
, ψ(x)− ψ(0X)

)
≤ ξd

(
ψ
(x

2

)
,
ψ(x) + ψ(0X)

2

)
≤ ξχ(x, 0X).

Hence, according to Theorem 2.1 (with Ψ (z) = 2z, λ = ξ, f = ψ−ψ(0X), h(x) = ξχ (x, 0X),
and a(x) = x

2
), for every x ∈ K the limit F (x) exists and d(F (x), f(x)) ≤ H(x). Since one

can easily show by induction that

d

(
2Ψn ◦ f

(
2−nx+ 2−ny

2

)
,Ψn ◦ f(2−nx) + Ψn ◦ f(2−ny)

)
≤ ξnd

(
2ψ

(
2−nx+ 2−ny

2

)
, ψ(2−nx) + ψ(2−ny)

)
≤ ξnηnχ(x, y)

for every n ∈ N and x, y ∈ K with x+ y ∈ K, letting n→∞ we obtain that F is a solution of
(4.1). To complete, observe that G := F + ψ(0X) satisfies (4.1) as well and d(G(x), ψ(x)) =
d(F (x), f(x)) ≤ H(x) for every x ∈ K. The uniqueness of G results from Theorem 2.1.

Remark 4.1. In the case where X is a commutative group, the assumption that 0X ∈ K in
Corollaries 4.1 and 4.2 is not very restrictive for we can always replace K by K0 := {x− x0 :
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x ∈ K}, with any x0 ∈ K, and then the functions ψ0 : K0 → Y , ψ0(z) := ψ(z + x0),
χ0 : X2 → [0,∞), χ0(z, w) = χ(z + x0, w + x0), satisfy

d

(
ψ0

(
z + w

2

)
,
ψ0(z) + ψ0(w)

2

)
≤ χ0(z, w) for z, w ∈ K0 with

z + w

2
∈ K0.

However we need then to reformulate conditions (4.2) and (4.4) in a suitable way.

5. THE QUADRATIC EQUATION

In this part we assume that (X,+) is a square symmetric group with the neutral element 0X ,
(Y,+) is a square symmetric groupoid with the neutral element 0Y , d is a complete metric in Y
satisfying (3.5), K ⊂ X , 0X ∈ K, and χ : X2 → [0,∞). Moreover, we write 4z := 2z + 2z
for z ∈ Y . Now, we are in a position to study the stability of the conditional quadratic equation

(5.1) F (x+ y) + F (x− y) = 2F (x) + 2F (y) for x, y ∈ K with x+ y, x− y ∈ K.

Corollary 5.1. Assume thatX is uniquely divisible by 2, 1
2
K ⊂ K, and there exist ξ, η ∈ (0,∞)

such that ξ < 1, ξ2η < 1 and (3.2), (3.3) hold. Let γ : K → Y satisfy

d (γ(x+ y) + γ(x− y), 2γ(x) + 2γ(y)) ≤ χ(x, y)(5.2)

for x, y ∈ K with x + y, x − y ∈ K. Then there exists a unique solution F : X → Y of (5.1)
such that

(5.3) d (γ(x), F (x)) ≤ d(γ(0X), 0Y ) +
ξd(2γ(0X), 0Y )

1− ξ2 +
ηχ(x, x)

1− ξ2η
for x ∈ K.

Moreover, in the case η < 1, 2γ(0X) = 0Y .

Proof. (3.5) and (5.2) yield

d(0Y , 2γ(0X)) = d(2γ(0X), 4γ(0X)) ≤ χ(0X , 0X)

and

d

(
γ(x) + γ(0X), 4

[
γ

(
1

2
x

)
+ γ(0X)

])
≤ d

(
γ(x) + γ(0X), 4γ

(
1

2
x

))
+ d

(
4γ

(
1

2
x

)
, 4

[
γ

(
1

2
x

)
+ γ(0X)

])
≤ ηχ (x, x) + ξd(0Y , 2γ(0X))

for every x ∈ K. Hence

d(0Y , 2γ(0X)) ≤ χ
(
2−n0X , 2

−n0X

)
≤ ηnχ(0X , 0X)

for n ∈ N, whence 2γ(0X) = 0Y when η < 1. Next, by Theorem 2.1 (with f = γ + γ(0X),
Ψ(z) = 4z, λ = ξ2, h(x) = ηχ (x, x) + ξd(0Y , 2γ(0X)), and a(x) = x

2
), for every x ∈ K the

limit F (x) exists and d (F (x), f(x)) ≤ H(x), which implies (5.3). Since, for x, y ∈ K with
x+ y, x− y ∈ K and n ∈ N, we have

d

(
Ψn ◦ f

(
x+ y

2n

)
+ Ψn ◦ f

(
x− y

2n

)
, 2Ψn ◦ f

( x
2n

)
+ 2Ψn ◦ f

( y
2n

))
≤ ξ2nd

(
γ

(
x+ y

2n

)
+ γ

(
x− y

2n

)
, 2γ

( x
2n

)
+ 2γ

( y
2n

))
≤ ξ2nηnχ(x, y),

letting n→∞ we obtain (5.1). The uniqueness of F results from Theorem 2.1.
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Corollary 5.2. Assume that Y is uniquely divisible by 2, 2K ⊂ K, and there are ξ ∈ [0, 1),
η ∈ [0,∞) such that ξ2η < 1 and (3.6), (3.7) hold. Let γ : K → Y satisfy (5.2) for x, y ∈ K
with x+ y, x− y ∈ K. Then there exists a unique solution F : X → Y of (5.1) such that

(5.4) d (γ(x), F (x)) ≤ ξ2

[
χ(x, x)

1− ξ2η
+
d (0Y , γ(0X))

1− ξ2

]
for x ∈ K.

Proof. From (3.5), (3.6) and (5.2), for every x ∈ K, we get

d

(
γ(2x)

4
, γ (x)

)
≤ ξ2[d (γ(2x), γ(2x) + γ(0X)) + d (γ(2x) + γ(0X), 4γ (x))]

≤ ξ2[d (0Y , γ(0X)) + d (γ(2x) + γ(0X), 4γ (x))]

≤ ξ2[d (0Y , γ(0X)) + χ (x, x)].

Hence, according to Theorem 2.1 (with λ = ξ2, f = γ, Ψ(z) = 1
4
z, h(x) = ξ2[χ (x, x) +

d (0Y , γ(0X))], and a(x) = 2x), for every x ∈ K the limit F (x) exists and d (F (x), γ(x)) ≤
H(x), whence (5.4) holds. Since, for x, y ∈ K with x+ y, x− y ∈ K and n ∈ N, we have

d
(
4−nf (2n(x+ y)) + 4−nf (2n(x− y)) , 4−n2f (2nx) + 4−n2f (2ny)

)
≤ ξ2nd (γ (2n(x+ y)) + γ (2n(x− y)) , 2γ (2nx) + 2γ (2ny))

≤ ξ2nχ (2nx, 2ny) ≤ (ξ2η)nχ(x, y),

letting n→∞ we obtain (5.1). The uniqueness of F results from Theorem 2.1.

6. FINAL REMARKS

Let Y be a normed space and d(x, y) = ‖x− y‖ for x, y ∈ Y . Then clearly (3.3), (3.5), (3.6)
hold with ξ ∈ {1

2
, 2}. Hence, in the case where either χ(x, y) = c1‖x‖p + c2‖y‖q or χ(x, y) =

c‖x‖p‖y‖q with some real p, q and c1, c2, c ∈ (0,∞), the assumptions supposed on χ in the
paper are fulfilled at least for some K, p, q. Consequently our corollaries generalize numerous
results concerning the Hyers-Ulam-Rassias stability of the functional equations considered in
this paper (cf. e.g. [15], [27] and [33]).

Some information concerning those functional equations and many further references can be
found in [1].
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[10] J. BRZDȨK, D. POPA and B. XU, The Hyers-Ulam stability of linear equations of higher orders,
Acta Math. Hungar., 120 (2008), 1–8.
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