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1. I NTRODUCTION

This paper deals with the second-order non-canonical retarded difference equations of the
form

∆(µ(`)∆η(`)) + φ(`)η(σ(`)) = 0, ` ≥ `0 > 0, (E)

where`0 is a positive integer and̀∈ N(`0) = {`0, `0 + 1, ..., },
(H1) {µ(`)} and{φ(`)} are positive real sequences with

(1.1) Ω(`0) =
∞∑

`=`0

1

µ(`)
< ∞;

(H2) {σ(`)} is a monotone increasing sequence of integers withσ(`) ≤ `− 1 for ` ≥ `0.

By a solution of(E), we mean a real sequence{η(`)}which is defined and satisfies(E) for all
` ≥ `0. A nontrivial solution of(E) is said to beoscillatory if it is neither eventually negative
nor eventually positive, otherwise, it isnonoscillatory. Equation(E) is called oscillatory if all
its solutions are oscillatory. We say that(E) is in non-canonical form if (1.1) holds.

Oscillatory and asymptotic behavior of solutions of various types of difference equations are
discussed over the past few decades. A large amount of papers and monographs have been
devoted to this problem, see for example [1, 2, 4, 6, 8, 9, 18, 16, 15, 10, 11, 5, 7, 3] and the
references cited therein. There is a significant difference in the structure of nonoscillatory (say
positive) solutions between canonical and non-canonical equations. It is well known that the
first difference of any positive solution{η(`)} of canonical equations is of one sign eventually
where as non-canonical one both sign possibilities of the first difference of any positive solution
have to be treated. These type of equations are studied in the literature (see [12, 13, 17]) by
extending known results for canonical equations.

Very recently in [7], the authors extended the technique of Koplatadze [8] to half-linear sec-
ond order delay differential equations. The objective of this paper is to obtain new difference
inequalities that lead to new monotonicity properties of solutions, which are applied to obtain
new oscillatory criteria for delay difference equations in non-canonical form. The obtained
results would improve and complement to those obtained for linear equations reported in the
literature.

2. BASIC L EMMAS

From a discrete lemma of Kiguradze [1], the set of positive solutions of(E) has the following
structure.

Lemma 2.1. Let {η(`)} be an eventually positive solution of(E). Then{η(`)} satisfies one of
the following conditions:

(S1) : µ(`)∆η(`) > 0, ∆(µ(`)∆η(`)) < 0,
(S∗) : µ(`)∆η(`) < 0, ∆(µ(`)∆η(`)) < 0,

for all ` ≥ `1 ≥ `0.

Lemma 2.2. If

(2.1)
∞∑

`=`0

Ω(` + 1)φ(`) = ∞,

then the positive solution{η(`)} of (E) satisfies(S∗), and

(i) lim`→∞ η(`) = 0;
(i) η(`) + µ(`)Ω(`)∆η(`) ≥ 0;
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(iii) { η(`)
Ω(`)
} is eventually increasing.

Proof. Let {η(`)} be an eventually positive solution of(E) satisfying condition(S1) for ` ≥
`1 ≥ `0. Summing up(E) from `1 to∞, we obtain

µ(`1)∆η(`1) ≥
∞∑

`=`1

φ(`)η(σ(`)).

Since{η(`)} is positive and increasing, there exists a positive constantM such thatη(`) ≥ M
andη(σ(`)) ≥ M eventually. Hence, we have

µ(`1)∆η(`1) ≥ M
∞∑

`=`1

φ(`) ≥ M

∞∑
`=`1

Ω(` + 1)φ(`)

which contradicts (2.1), and we conclude that{η(`)} satisfies(S∗). Therefore, there exists a
finite limit lim`→∞ η(`) = K.

We claim thatK = 0. If not, thenη(`) ≥ K > 0. Summing up(E) from `1 to `− 1, we get

−µ(`)∆η(`) ≥ K

`−1∑
s=`1

φ(s).

Summing up again from̀1 to∞, we get

η(`1) ≥ K
∞∑

`=`1

1

µ(`)

`−1∑
s=`1

φ(s) = K
∞∑

`=`1

Ω(` + 1)φ(`) = ∞.

This contradictsK > 0, which proves part (i).
To prove part (ii) we proceed as follows: The monotonicity ofµ(`)∆η(`) implies that

η(`) ≥
∞∑

s=`

−µ(s)∆η(s)

µ(s)
≥ −µ(`)∆η(`)

∞∑
s=`

1

µ(s)

= −Ω(`)µ(`)∆η(`),

which proves part (ii).
Next, we verify part (iii). Indeed, in view of part(ii), we have

∆

(
η(`)

Ω(`)

)
=

Ω(`)µ(`)∆η(`) + η(`)

Ω(`)Ω(` + 1)
≥ 0

which proves part (iii). The proof of the lemma is complete.

Remark 2.1. In the above results, we do not assume thatσ(`) is retarded or advanced argument.

3. OSCILLATION RESULTS

In this section, first we will establish new monotonic properties for solutions of(E) from the
class(S∗), and then we obtain new oscillation criteria for(E).

Lemma 3.1. Let (2.1)holds. Assume that there exists aδ > 0 such that

(3.1) min
`≥`0

{
φ(`)Ω2(` + 1)µ(`), φ(`)Ω(` + 1)Ω(` + 2)µ(` + 1)

}
≥ δ

eventually. If{η(`)} is a positive solution of(E), then

(i) { η(`)
Ωδ(`)

} is decreasing;

(ii) lim`→∞
η(`)

Ωδ(`)
= 0;
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(iii) { η(`)
Ω1−δ(`)

} is increasing.

Proof. Let {η(`)} be an eventually positive solution of(E). Then (2.1) implies that{η(`)}
satisfies(S∗) for ` ≥ `1 ≥ `0.

Summing up(E) from `1 to `− 1, we get

−µ(`)∆η(`) = −µ(`1)∆η(`1) +
`−1∑
s=`1

φ(s)η(σ(s))

≥ −µ(`1)∆η(`1) + η(`)
`−1∑
s=`1

φ(s),

which, in view of (3.1), leads to

− µ(`)∆η(`) ≥ −µ(`1)∆η(`1) + δη(`)
`−1∑
s=`1

1

µ(s + 1)Ω(s + 1)Ω(s + 2)

= −µ(`1)∆η(`1) + δη(`)
`−1∑
s=`1

∆

(
1

Ω(s + 2)
− 1

Ω(s + 1)

)
= −µ(`1)∆η(`1) + δη(`)

(
1

Ω(` + 1)
− 1

Ω(`1 + 1)

)
≥ δη(`)

Ω(` + 1)
,(3.2)

where we have usedη(`) → 0 as` →∞. Hence

∆

(
η(`)

Ωδ(`)

)
=

Ωδ(`)∆η(`)− η(`)∆(Ωδ(`))

Ωδ(`)Ωδ(` + 1)
.(3.3)

By Mean-value Theorem, we have

∆
(
Ωδ(`)

)
≥ −δ

µ(`)

Ωδ(`)

Ω(` + 1)
.(3.4)

Using (3.4) in (3.3) and, in view of (3.2), we get

∆

(
η(`)

Ωδ(`)

)
≤ [Ω(` + 1)µ(`)∆η(`) + δη(`)]

µ(`)Ωδ+1(` + 1)
≤ 0.

That is, η(`)
Ωδ(`)

is decreasing, and therefore there existslim`→∞
η(`)

Ωδ(`)
= k ≥ 0.

We claim thatk = 0. Indeed, ifk > 0, thenη(`) ≥ kΩδ(`) > 0 eventually. Now define the
auxiliary sequence

z(`) = (µ(`)Ω(`)∆η(`) + η(`))Ω−δ(`).

Based on Lemma 2.2, it is obvious thatz(`) ≥ 0 and

∆z(`) = ∆(µ(`)∆η(`))Ω1−δ(` + 1) + µ(`)∆η(`)∆(Ω1−δ(`))

+Ω−δ(` + 1)∆η(`) + η(`)∆(Ω−δ(`)).(3.5)

By Mean-value Theorem

∆(Ω1−δ(`)) ≥ −(1− δ)

µ(`)
Ω−δ(` + 1)(3.6)
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and

∆(Ω−δ(`)) ≤ δ

µ(`)
Ω−1−δ(` + 1).(3.7)

Using (3.6) and (3.7) in (3.5) yields

∆z(`) ≤ −φ(`)η(σ(`))Ω1−δ(` + 1) + δ∆η(`)Ω−δ(` + 1) + δ
η(`)

µ(`)
Ω−1−δ(` + 1)

≤ −δη(`)Ω1−δ(` + 1)

µ(`)Ω2(` + 1)
+ δ∆η(`)Ω−δ(` + 1) + δ

η(`)

µ(`)
Ω−1−δ(` + 1)

= δ∆η(`)Ω−δ(` + 1).(3.8)

Sinceη(`) ≥ kΩδ(`) ≥ kΩδ(` + 1) and using (3.2), we get from (3.8) that

∆z(`) ≤ −kδ2

Ω(` + 1)µ(`)
< 0.

Summing up the last inequality from̀1 to `− 1, we obtain

z(`1) ≥ kδ2
`−1∑
s=`1

1

µ(s)Ω(s + 1)
≥ kδ2

`−1∑
s=`1

∫ Ω(s)

Ω(s+1)

dv

v

= kδ2 ln
Ω(`1)

Ω(`)
→∞ as ` →∞

which is a contradiction. Thus

lim
`→∞

η(`)

Ωδ(`)
= 0.

Finally, we prove part (iii). Equation(E) can be rewritten in the equivalent form

(3.9) ∆(Ω(`)µ(`)∆η(`) + η(`)) + Ω(` + 1)φ(`)η(σ(`)) = 0.

Summing up (3.9) from̀ to∞ and taking into account the fact thatη(`)
Ω(`)

is increasing, we get

Ω(`)µ(`)∆η(`) + η(`) ≥
∞∑

s=`

Ω(s + 1)φ(s)η(σ(s))

≥
∞∑

s=`

Ω(s + 1)φ(s)η(s)

≥ η(`)

Ω(`)

∞∑
s=`

Ω(s)Ω(s + 1)φ(s)

≥ η(`)

Ω(`)

∞∑
s=`

Ω2(s + 1)φ(s)

≥ η(`)

Ω(`)

∞∑
s=`

δ

µ(s)
= δ

η(`)

Ω(`)

∞∑
s=n

∆(−Ω(s))

= δη(s),

that is

Ω(`)µ(`)∆η(`) + (1− δ)η(`) ≥ 0.(3.10)
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Now

∆

(
η(`)

Ω1−δ(`)

)
=

Ω1−δ(`)∆η(`)− η(`)∆(Ω1−δ(`))

Ω1−δ(`)Ω1−δ(` + 1)
.(3.11)

By Mean-value Theorem

(3.12) −∆(Ω1−δ(`)) ≥ (1− δ)

µ(`)
Ω−δ(`).

Using (3.12) in (3.11) and, in view of (3.10), we obtain

∆

(
η(`)

Ω1−δ(`)

)
≥ Ω(`)µ(`)∆η(`) + (1− δ)η(`)

Ω(`)µ(`)Ω1−δ(` + 1)
≥ 0.

The proof of the lemma is complete.

Remark 3.1. Based on the above lemma, it is obvious that{
η(`)

Ωδ(`)

}
is decreasing and

{
η(`)

Ω1−δ(`)

}
is increasing,

which immediately gives the following oscillatory criterion.

Theorem 3.2.Assume that(2.1)and (3.1)hold. If

(3.13) δ >
1

2
,

then(E) is oscillatory.

Proof. Assume, for the sake of contradiction, that{η(`)} is an eventually positive solution
of (E). Then{η(`)} satisfies either(S1) or (S∗). In view of condition (2.1),{η(`)} satisfies
condition(S∗). From Lemma 3.1, we see that (3.2) implies

−Ω(`)µ(`)∆η(`) ≥ −Ω(` + 1)µ(`)∆η(`) ≥ δη(`)

and from (3.10), we have

(1− δ)η(`) ≥ δη(`),

i.e.,

δ ≤ 1

2
,

which contradicts (3.13). The proof of the theorem is complete.

If δ ≤ 1
2
, then one can improve the results given in Lemma 3.1. SinceΩ(`) is decreasing,

there exists a constantα ≥ 1 such that

Ω(σ(`))

Ω(`)
≥ α,

we introduce the constantδ1 > δ as follows

(3.14) δ1 =
αδδ

1− δ
.

Lemma 3.3. Assume that(2.1)and (3.1)hold. If {η(`)} is a positive solution of(E), then

(3.15) δ1η(`) + Ω(`)µ(`)∆η(`) ≤ 0.
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Proof. Let {η(`)} be an eventually positive solution of(E). In view of (2.1) of Lemma 2.2, it
satisfies condition(S∗) for all ` ≥ `1 ≥ `0.

Summing up(E) from `1 to `− 1 and using the fact that{ η(`)
Ωδ(`)

} is decreasing, we get

−µ(`)∆η(`) ≥ −µ(`1)∆η(`1) +
`−1∑
s=`1

φ(s)η(s)Ωδ(σ(s))

Ωδ(s)

≥ −µ(`1)∆η(`1) +
η(`)

Ωδ(`)

`−1∑
s=`1

φ(s)αδΩδ(s + 1)

≥ −µ(`1)∆η(`1) +
δαδη(`)

Ωδ(`)

`−1∑
s=`1

Ωδ(s + 1)

µ(s)Ω2(s + 1)

≥ −µ(`1)∆η(`1) +
δαδη(`)

Ωδ(`)

`−1∑
s=`1

∫ Ω(s)

Ω(s+1)

dv

v2−δ

= −µ(`1)∆η(`1)−
δ1η(`)

Ωδ(`)
Ωδ−1(`) + δ1

η(`)

Ω(`)
.

Since η(`)
Ωδ(`)

→ 0 as` →∞, we obtain

−Ω(`)µ(`)∆η(`) ≥ δ1η(`).

The proof of the lemma is complete.

Now we are ready to present the main results of this section.

Theorem 3.4.Assume that(2.1), (3.1)and (3.14)hold. If

(3.16) lim
`→∞

inf
`−1∑

s=σ(`)

φ(s)Ω(s + 1) >
1− δ1

e
,

then(E) is oscillatory.

Proof. Assume, for the sake of contradiction, that(E) has an eventually positive solution
{η(`)}. Condition (2.1) implies that{η(`)} satisfies condition(S∗). Consider the auxiliary
sequence

w(`) = Ω(`)µ(`)∆η(`) + η(`).

It follows from Lemma 2.2 (ii) thatw(`) > 0, and furthermore

(3.17) ∆w(`) = ∆(µ(`)∆η(`))Ω(` + 1) = −φ(`)Ω(` + 1)η(σ(`)).

On the other hand, since{ η(`)
Ωδ(`)

} is decreasing, then from (3.15) we have

Ω(`)µ(`)∆η(`) + δ1η(`) ≤ 0.

Thus
w(`) ≤ (1− δ1)η(`).

Using the last inequality into (3.17), we see that{w(`)} is a positive solution of

(3.18) ∆w(`) +
φ(`)Ω(` + 1)

1− δ1

w(σ(`)) ≤ 0.

This is a contradiction since by Theorem 2.1 of [14], condition (3.16) implies that (3.18) has no
positive solution. The proof of the theorem is complete.
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Corollary 3.5. Assume that(2.1), (3.1) and (3.14)hold. If σ(`) = ` − τ , whereτ ≥ 1 is an
integer such that

lim
`→∞

inf
`−1∑

s=`−τ

φ(s)Ω(s + 1) > (1− δ1)

(
τ

τ + 1

)τ+1

,

then(E) is oscillatory.

Proof. The proof follows by applying Theorem 6.1.1 of [2] instead of Theorem 2.1 of [14]. The
proof of the corollary is complete.

Theorem 3.6. If

lim
`→∞

sup

Ω(σ(`))

σ(`)−1∑
s=`0

φ(s) +
`−1∑

s=σ(s)

Ω(s + 1)φ(s)

+
1

Ω(σ(`))

∞∑
s=`

Ω(s + 1)φ(s)Ω(σ(s))

}
> 1,(3.19)

then(E) is oscillatory.

Proof. Assume, for the sake of contradiction, that{η(`)} is an eventually positive solution of
(E). It follows from (3.19), that there exists a constantM > 0 such that

lim
`→∞

sup

Ω(σ(`))

σ(`)−1∑
s=`0

φ(s) +
`−1∑

s=σ(s)

Ω(s + 1)φ(s)

+
1

Ω(σ(`))

∞∑
s=`

Ω(s + 1)φ(s)Ω(σ(s))

}
≥ M.(3.20)

We claim that (3.20) implies (2.1). Indeed, if not, then
∑∞

`=`0
Ω(` + 1)φ(`) < ∞, which means

that there exists an integer`∗ ≥ `1 ≥ `0 such that

(3.21)
∞∑

`=`∗

Ω(` + 1)φ(`) <
M

6
.

That is, for` ≥ `0

Ω(σ(`))

σ(`)−1∑
s=`1

φ(s) = Ω(σ(`))
`∗−1∑
s=`1

φ(s) + Ω(σ(`))

σ(`)−1∑
s=`∗

φ(s)

≤ Ω(σ(`))
`∗−1∑
s=`∗

φ(s) +

σ(`)−1∑
s=`∗

Ω(s)φ(s)

≤ Ω(σ(`))
`∗−1∑
s=`1

φ(s) +
M

6
.

Hence, for̀ ≥ `∗
`−1∑

s=σ(`)

Ω(s + 1)φ(s) ≤
`−1∑

s=σ(`)

Ω(s)φ(s) ≤ M

6
.
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On the other hand, for̀≥ `∗

1

Ω(σ(`))

∞∑
s=`

Ω(s + 1)φ(s)Ω(σ(s)) ≤
∞∑

s=`

Ω(s + 1)φ(s) <
M

6
.

Considering the above inequalities, we see that

lim
`→∞

sup

Ω(σ(`))

σ(`)−1∑
s=`1

φ(s) +
`−1∑

s=σ(`)

Ω(s + 1)φ(s)

+
1

Ω(σ(`))

∞∑
s=`

Ω(s + 1)φ(s)Ω(σ(s))

}
≤ M

2
,

which contradicts (3.20), and therefore (2.1) holds. Thus{η(`)} satisfies the conclusions of
Lemma 2.2. Simple calculation shows that(E) can be rewritten as follows

∆(Ω(`)µ(`)∆η(`) + η(`)) + Ω(` + 1)φ(`)η(σ(`)) = 0.

Summing up the last equation from̀to∞, we have

(3.22) Ω(`)µ(`)∆η(`) + η(`) ≥
∞∑

s=`

Ω(s + 1)φ(s)η(σ(s)).

On the other hand, summing up of(E) from `1 to `− 1, we get

(3.23) − µ(`)∆η(`) ≥
`−1∑
s=`1

φ(s)η(σ(s)).

Using (3.23) in (3.22), we obtain

η(`) ≥ Ω(`)
`−1∑
s=`1

φ(s)η(σ(s)) +
∞∑

s=`

Ω(s + 1)φ(s)η(σ(s)).

Hence

η(σ(`)) ≥ Ω(σ(`))

σ(`)−1∑
s=`1

φ(s)η(σ(s)) +
`−1∑

s=σ(`)

Ω(s + 1)φ(s)η(σ(s))

+
∞∑

s=`

Ω(s + 1)φ(s)η(σ(s)).(3.24)

Using that{η(`)} is decreasing and{η(`)/Ω(`)} is increasing, we obtain

1 =
η(σ(`))

η(σ(`))
≥

Ω(σ(`))

σ(`)−1∑
s=`1

φ(s) +
`−1∑

s=σ(`)

Ω(s + 1)φ(s)

+
1

φ(σ(`))

∞∑
s=`

Ω(s + 1)Ω(σ(s))φ(s)

}
.

Takinglim sup asn →∞ on both sides of the last inequality we get a contradiction. The proof
of the theorem is complete.
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4. EXAMPLES

In this section, we illustrate the importance of the obtained results via some examples.

Example 4.1.Consider the second-order retarded difference equation

(4.1) ∆(`(` + 1)∆η(`)) + λ(` + 1)η(`− 2) = 0, ` ≥ 1,

whereλ > 0.

Here,σ(`) = `− 2, Ω(`) = 1
`
, δ = λ, andα = 1.

Soδ1 = λ
1−λ

and the condition (3.17) becomes

lim
`→∞

inf
`−1∑

s=`−2

λ(s + 1)
1

(s + 1)
= 2λ >

(
1− 2λ

1− λ

) (
8

27

)
,

which will be satisfied ifλ ≥ 1
7
. Hence (4.1) is oscillatory ifλ > 1

2
by Theorem 3.2 and by

Corollary 3.5 ifλ ≥ 1
7
.

Example 4.2.Consider the second-order retarded difference equation

(4.2) ∆(`(` + 1)∆η(`)) + λη([`/2]) = 0, ` ≥ 2,

where[`/2] is a greatest integer function andλ > 0.

Here,σ(`) = [`/2], Ω(`) = 1
`
, δ = 2

3
λ, andα = 2.

Soδ1 = 22/3λ (2/3λ)
(1−2/3λ)

and the condition (3.16) becomes

lim
`→∞

inf
`−1∑

s=[`/2]

λ

(
1

(s + 1)

)
≥ lim

`→∞
inf

`−1∑
s=[`/2]

λ = lim
`→∞

λ

`
[`− [`/2]]

≥ λ

2
>

[
1−

2
3
λ2

2
3
λ

(1− 2
3
λ)

]
1

e

and this is true forλ ≥ 1
2
. Therefore by Theorem 3.4 the equation (4.2) is oscillatory ifλ ≥ 1

2

and oscillatory by Theorem 3.2 ifλ ≥ 3
4
.

Remark 4.1. In this paper by establishing new monotonic properties of nonoscillatory solution
of (E), we present new oscillation criteria for(E). Employing the results in [12, 13], we see
that the solutions of (4.1) and (4.2) are either oscillatory or tend to zero asymptotically. Further
both the examples are non-canonical type, the results obtained in [4, 9, 5, 7, 17, 3] cannot be
applicable. So our results improve and complement to that reported in [4, 9, 12, 13, 5, 7, 17, 3].
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