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ABSTRACT. The aim of this work is study a dynamic contact problem between a deformable
body and a foundation where the deformations are supposed to be small. The contact is with
adhesion and normal compliance. The behavior of this body is modeled by a nonlinear elastic-
visco-plastic law. The evolution of bonding field is described by a nonlinear differential equa-
tion. We derive a variational formulation of the contact problem and we prove the existence and
unigueness of its solution. The proof is based on the construction of three intermediate problems
and then we construct a contraction mapping whose unique fixed point will be the weak solution
of the mechanical problem.
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2 B. TENIOU AND M. SOFONEA

1. INTRODUCTION

The phenomena of contact with or without friction are frequently met. The contact of the
tires of a car with the ground, the shoe with disc of break are current examples. Because of the
industrial importance of the physical processes that take place during contact, a considerable
effort has been made in mathematical analysis, numerical approximation and numerical simu-
lation of these problems.

Process of adhesion is important in many industrial setting where parts nonmetallic, are glued
together. For this reason, adhesive contact between bodies when a glue is added to prevent
the surfaces from relative motion, has recently received increased attention in the mathematical
literature. In this work we introduce an internal variable of surface, known as bonding field and
denoted in this paper by, which describes the fractional density of active bonds on the contact
surface. The problems of contact with adhesion were studied by several authors. Significant
results on these problems can be found In [2], [3], [4], [6] and references therein.

Here, the novelty consists in the introduction of the bonding field into the contact between
a body elastic-visco-plastic and a deformable foundation where the process is dynamic. The
main contribution of this study lies in the proof of existence and unicity of the weak solution of
the mechanical problem.

This work is organized as follows. In Sectiph 2 we present some notations and preliminaries.
In Sectior] B we state the mechanical models of elastic-visco-plastic contact with adhesion, list
the assumptions on the data of the mechanical problem and deduce its variational formulation.
In Sectiorj 4 we state and prove the existence of a unique weak solution to mechanical problem;
the proof is based on arguments of evolutionary equations and Banach fixed point.

2. NOTATIONS AND PRELIMINARIES

In this section, we specify the notations standards used and we remind some definitions and
results necessary for the study of this mechanical problem.
We denote byS”" the space of second order symmetric tensor8n( N = 1, 2, 3) while ".”
and||-|| represent the inner product and the Euclidean nori®drandS”, respectively. Thus,
for everyu,v € RY ande, 7 € SV we have :

1 1
u-v=uw;, |ul|=w-uw?, o-1=o0y7; |of=(c-0)2

Here and below, the indicés; run between, N and the summation convention over repeated
indices is adopted.

Let Q) ¢ RY be a bounded domain with a Lipschitz boundBrgind letr denote the unit outer
normal onl". Moreover, we use also the spaces :

H={u=(w)/ucl*Q)}, Q={o=/(0y)/oy=0;cl?(Q) }
Hi ={ueH/e(u)eQ}, Q1 ={oceQ/Divoce H}

Wheree : H, — @, Div : Q — H are the deformation and the divergence operators,
respectively, defined by :

e(u) = (g5 (), &)= % (Ojui + Oiuy),  Divo = (9;0i5)

The spaceé/, Q, H, and(@), are real Hilbert spaces endowed with the canonical inner products
given by :
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(u,v)y = /uividac Yu,v € H

0
(0,7)g = /O’ijTijdlL' Vo, 7 €Q
0

(W, 0) g, = (W, 0) g + (e (u),e(v))g Vu,ve€H

(o, 7'>Q1 = (o, T>Q + (Divo, Divr), Vo, 7 € Q
The associated norms are denoted|by;, || [l [|-[|, €tl-ll,, respectively.
Since the boundarl is Lipschitz continuous, the unit outward normal vectan the boundary
is defined almost everywhere for every vector field H,, we also use the notatianfor the
trace ofu onI" and we denote by, andw, the normal and tangential components:ain the
boundaryl’, given by :

U, =U "V, Uy =U— UV

For a regularly (say’!) stress fieldr, the application of its trace on the boundary.tis the
Cauchy stress vectarv. We define, similarly, the normal and tangential components of the
stress on the boundatry, by :

o, =(ov) v, o, =0v—0,V
And we recall that the following Green’s formula holds :

(0, (u))g + (Divo,u)y = /Uyuds Yu € Hy
T

LetI'; be a measurable part 6fsuch thatneas (I'y) > 0 and letl” be the closed subspace of
H, defined by :

v:{UEHl/’U:O Onfl}
Sincemeas (I';) > 0, the following Korn’s inequality holds :

le (@l = cllully, YueV
Wherec > 0 is a constant depending only éhandl’;.
Over spacé” we consider the inner product defined by :

(u,v)y = (e(u),e(v))g Yu,veV
It follows from Korn’s inequality thaf.||,, and||.||,; are equivalent norms oW. Therefore

(V. |I.lly,) is areal Hilbert space. Moreover, by the Sobolev trace theorem, there exists a positive
constant > 0, depending only of2, I'; etI'; such that :

[0l 2y < ellolly Vo eV
Finally, we shall use the notatiag for the set defined by :

Q={3:[0,T] — L*(I3): 0<B(t) <1 Vte[0,T],ae. ons}

For the convenience of the reader, we recall the following abstract result which may be found
in [1] (p.140).
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Theorem 2.1.LetV ¢ H C V' be a Guelfand triple. Assumethatl : V — V'is a
hemicontinuous and monotone operator which satisfies :

(Av,0) 0y > wlols +a YoeV

[Av]lyr < c(llofly +1) YveV

wherew, ¢ are two strictly positive constants and € R. Then, giverug € H and f €
L2 ([0,T]; V"), there exists a unique which satisfies :

we L2([0,T]: V)N C(0,T]: H), ueL2<[o,T];V')
w(t)+ Au(t)=f(t) aete]0,T]

u (0) = wo.

We end this preliminary with the following version of the classical theorem of Cauchy-
Lipschitz which can be found in [5] (p. 60).

Theorem 2.2. Assume thatX, ||.||y) is a real Banach space. L€t (¢,.) : X — X be an
operator defined almost everywhere|6n7’[, satisfying the following conditions :

1) ||F (t,u) — F (t,v)||x < Lpllu—v|y VYu,veXae.te]0,T], forsomeLp

2)t — F(t,u) € L ([0,T];X) Yue X,andsome > 1.
Then, for every,, € X, there exists a unique functiane W1 ([0, 7] ; X') such that

{ w(t)=F(t,u(t)) ae.teclo,T]
u (0) = uo.

These two theorems will be used in Secfion 4, to prove the theorem of existence and unique-
ness of weak solution of mechanical problem.

3. MECHANICAL PROBLEM AND VARIATIONAL FORMULATION

We consider an elastic-visco-plastic body which occupies a bounded déh@iR” (N =
2, 3) and assume that its bounddryis regular and partitioned into three disjoint measurable
partsI'y, I'; andI's such thatneas (I'y) > 0. Let[0,7] , denote the time interval of interest.
The body is clamped oh; x [0, 71, therefore, the displacement field vanished there. A volume
force of densityf, acts in{2 x [0, 7] and surface traction of densit acts onI's x [0, T].
The body is in adhesive contact ©n x [0, 7] with a foundation, the contact is frictionless and
modeled with normal compliance. Moreover, the process is dynamic. Under these conditions
the formulation of the mechanical problem is the following.
ProblemP.Find a displacement field : 2 x [0,7] — RY , a stress field : QO x [0, 7] — SV
and a bonding field : I'; x [0,7] — [0, 1] such that

BL)o(t)=As(u(t)) +E(u(t)) + /0 G(o(s)—Ae(u(s)),e(u(s)))ds inQx]0,T]
(3.2) Divo (t) + fo (t) = pu(t) InQx]0,T]

(3.3) u=0 onI'y x]0,T]
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(34) oV = f2 onl's x ]O,T[

(3.5) — 0, =y (u,) —70R(u,) onlsx]0,7]

(3.6) — o, =p (B)R(u,) onTsx]0,T]

(37) 6 - - (’Vuﬁé (uu>2 - Ea) on FB X ]07 T[
+

(3.8) u(0) =wup, u(0)=1vy INQ

(3.9) B(0)=p, onls.

Here [3.1) is the elastic-visco-plastic constitutive law. |(3.2) represents the equation of motion
in which p denotes the density of mass, (3.3) gnd]|(3.4) are the displacement-traction boundary
conditions.

We now dscribe briefly the conditions (8.5)-(3.7) on the contact suifgce(3.5) represents

the normal compliance condition with adhesion whgyes given function; alsaR (u,) =

~ ~ 2
(—R(w)),, R(u,)’ = [R (u,,)} and R is the truncation operator..6) is the tangential

boundary condition in which, (3) is a given function and is a truncation operator :

: . _{ s if s <L

Lgr if [Is] > L

L > 0 being the characteristic length of the bond. Equatfior] (3.7) describes the evolution of the
bonding field with given material parametegsande,. Also, the datas,, vy andg, in (3.§) and

(3.9) are the given initial displacement, velocity and bonding fields respectively.

Assumptions.

For the study variational of the mechanical problem, we assume that the opetatbendg
satisfy the following conditions :

(@) A:Q x SYN — SN such that

(b) 3m 4 > 0 such that(A (z,e1) — A (z,€3)) - (1 — €2) > maller — |
a.e.xr € 1) Vgl,sg S SN

(¢)3L4 > 0 suchthat||A(x,e1) — A(z,&2)|| < Laller — e2|

a.e.x e V81,52 S SN

(d) The mapping: — A (x,¢) is Lebesgue measurable

aezrc, VeesV

(e) The mapping: — A (z,0) € Q

(3.10)
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( (@& :Q x SN — SN such that
(b) dLe > 0 such that“g (117,81) - & (ZL’,&Q)H < L¢ ||€1 — 52”
Vei,e0 € SN, a.e.x € Q)

(3.11) (c) The mapping: — & (z,¢) is Lebesgue measurable
aercQ Vee SV
L (d) The mapping: — & (2,0) € Q
@G : xSV x 8N — SV suchthat
(3.12) (b)ILg > 0 such that||G (z,01,e1) — G (x, 09, &9) ||

< Lg (|loy — o2 + [ler — €2])
Voi,09,e1,69 € SN, a.e.xr € (.

The normal compliance functign, and the tangential function. satisfy the assumptions :

(@)p, : I's x R — R, such that
(b) 3L, > 0 such that|p, (z,71) — p, (x,72)| < L, |11 — 73]
Vri,ro € R,a.ex el
(3.13) \ (©) (o (z,71) = po (2,72)) (11 —12) 2 0
Vri,m € R,a.ex €l
(d) For anyr € R, x — p, (x,r) is measurable oh;
L e)p, (x,r)=0forallr <0

( (@) p, : I's x R — R, such that
(b) 3L, > 0 such that|p, (z, 51) — pr (z, 52)| < L, |51 — Po
V51,52 € R,a.e.x € I's
(3.14) (c) IM, > 0 such that|p, (x, 5)| < M,
V3 e R, a.e.x el
(d) Foranyg € R, = — p, (z,3) is measurable ohs
\ (e) The mapping: — p, (z,0) € L* (T';)

We suppose that the adhesion coefficients satisfy :

(3.15) v, € L®(T3), e €L*(T3), 7,6 >0 ae. onls
We suppose that the mass density satisfies :

(3.16) p € L™ (Q), there existp® > 0 such thap (z) > p* a.e.x € Q
And the body forces and surface traction have the regularity :

(3.17) fo€ 2(0.7): H),  fre L2 ((0,7]; 12 (1)")

The initial data satisfy :

(318) Ug € V, Vo € H, 60 € L? (Fg), 0< 60 <1 a.e.onl
We will use a modified inner product di, given by :

(3.19) (w,v))y = (pu,v)y Yu,v € H
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that is, it is weighted wittp, and we let||.|||; by the associated norm :

(3.20) ol = (pv,v)f; Vv € H

We denote by’ the dual space of. Identifying I/ with its own dual, we can write the
Guelfand triple :

VcHCV

We use the notatioq, .), ., to represent the duality pairing, betweknandV. We have :

(3.21) (u,v) oy = (w,v)y Yue HoveV

From the assumption made on the body forces and surface traction and from Riesz-Frechet's
theorem, it results the existence of unique elenfefy € V' such that :

(3.22) (F (@) )y v = (fo (), v) g + (fa () >U>L2(F2)N VueV,tel0,T]

Moreover, we have :

(3.23) feL2QQThvj

Finally, we define the function of contact with adhesjonZ> (I';) x V' x V — R by :

(3.24) N@MMZApAwwﬂwié%ﬁﬁw»m@+/p4@§Wwa

I's

3.1. Variational formulation. By applying Green’s formula, and using the equation of motion
and the boundary conditions,we easily deduce the following variational formulation of Prob-
lemP:

ProblemPV : Find a displacement : [0,7] — V, a stress fieldr : [0,7] — @ and a
bonding fields : [0, 7] — L (I's) such that :

(3.25) o (t) = As (u (t)) + Ee (u (t)) +/0 G(o(s)— As(u(s)),e(u(s)))ds Vte]0,T]

(326) <u <t> 7w>V’><V + <U (t) € (w)>Q + ] (5 (t) y U (t) 7w>
= <f (t) 7w>V'><V Vw S MVt S ]OaT[

(3.27) MQ:—@ﬁ@ﬂﬂwmf—%) ae. telo,T|

(3.28) u(0) =uo, w(0)=wvo, [(0)= 0o
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4. EXISTENCE AND UNIQUENESS OF SOLUTION

Theorem 4.1. Assume thaf (3.10)-(3.18) hold. Then there exists a unique solutien3), to
ProblemPV and it satisfies :

(4.1) we HY([0,7]: V)N CH([0,T]; H), iie L? ([O,T] ; v’)
(4.2) oeL2([0,7]:Q), Divoe L? ([O,T] ;v’)
(4.3) Be W' ((0,7];L* (T's)) N Q

We conclude that under the stated assumptions, mechanical problem has a unique weak so-
lution.
The proof of this theorem will be carried out in several steps. In the first step we consider the
following variational problem in whichy € L2 ([0,7]; V"), is given.
Problem1. Find a displacement field, : [0,7] — V such that :

(4.4) iy (1)) + (Ae (u (1)) 12 (w)>Q (1) w)y
= (f(t),w)y, YweV,telo,T|

(4.5) uy (0) =wg, 1, (0) =1
Lemma 4.2. There exits a unique solutian, to Problem1 and satisfiefs (4.1).
Proof. Let A: V — V', an operator defined by :
(4.6) (Av,w)y, = (Ae (v) e (), Yo,weV
The operatorA thus defined is hemicontinuous, monotone and satisfies the conditions of the
Theorenj 2.1. Then there exists a unique functipwhich satisfies :
vy € L2(0.T1;V) N C ([0, T): H]), v, € L2 ((0,7]; V")
Uy (8) + Avy () + 0 (1) = [ (1) VE€]0,T]

vy (0) = vo

Now, we define the function,, : [0,7] — V by :

4.7) uy, (t) = /Ot vy (s)ds +ug Vit e[0,T]

From the definitions of the function, and the operatod, we deduce that the Problem1 has
a unique solution.,, which satisfies[(4]1). Moreover, if; are solutions of Problem1 foj; <
L2 ([0,T];V"),4 = 1,2, Then there exists a constant- 0 such that :

.8) / s (s) — e ()2 ds < o / I (s) — o (8)[2 ds ¥t € 0, T
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In the second step, we use the solutignof the Problem1 to formulate the second following
auxiliary problem :
Problem2. Find a bonding fields,, : [0, 7] — L?* (I's) such that :

(4.9) By (8) = = (3B () R (g (0] — ) @@ t€[0,7]

(4.10) B, (0) = Bo

Whereu,, represents the normal component of the functipre H* ([0,77];V).
Lemma 4.3. There exits a unique solutigs, to Problem2 and satisfiefs (4.3).
Proof. Let F), : [0, 7] x L?(I'3) — L?(I'3) be a mapping defined by :

Fy (t.6,) = = (38 () R (g (0)° — )

It follows that F), is a Lipschitz continuous with respect to second argumsenuniformly in
timet. Moreover, foranys, € L? (T'3), the mapping — F, (¢, 3,) belongs ta_> ([0, T ; L* (T'3)).
Then from Theoreth 22, we deduce the existence of a unique furigtieri? > ([0, T; L? (T'3)),
which satisfies| (4]9)-(4.10). The regularity ¢ Q, follows from (4.9)4(4.1D) and assumption
0 < By < 1a.e. onl's. Moreover ifu; are solutions of Probleml1 ang are solutions of
Problem2 fomy; € L2 ([0,7];V"), i = 1,2, then it exists a constant> 0 such that :

(4.11) 181 () = Ba (Dl oy < € / s (s) = ws (s)lly ds Ve € [0,7]
]

We use again the solution, of the Probleml to formulate the third following auxiliary
problem :
Problem3. Find a stress field,, : [0, 7] — @ such that :

(4.12) oy (t) = Ee (uy (1)) + /0 G (o, (s),e(uy,(s)))ds Vte|0,T]

Lemma 4.4. The Problem3 has a unique solutiep € H* ([0, T]; Q).

Proof. We use the Banach fixed point theorem to prove Lerimp 4.4. Moreover aifid o;
represents the solutions of Problem1 and Problem3, respectively, &% ([0,7]; V"), i =
1,2, there existg > 0 such that :

(4.13) o1 (t) — o2 (Bl

< (@ -l + [ o) - w @l das) we o
]

In the fourth step for every € L* ([0,77;V"), we note byu, the solution of Problem13,
the solution of Problem2 ang, the solution of Problem3.
Moreover we define the operatar: L2 ([0,7]; V') — L*([0,T]; V") by :

(4.14) (A (), whyr oy

_ { (€2 (uy (1) .= W)+ (3 G (0 (5) = (g (5)) ds,= w)) -+
5 (B (t) g (8), ) Vo € Vit € [0,T)
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Lemma 4.5. The operatorA has a unique fixed point*.

Proof. Let ;1o € L* ([0, T]; V") andt € [0,T)]. For simplicity we note w; = u,,, v; = 1,
B; = By, fori = 1,2. By integrating the differential equatiop (#.9), and using the definitions
of R, R and a Gronwall's Lemma also the fact that operadds strongly monotonous and the

estimated (4]8)] (4.11}, (4]14) we deduce that :
t
1Amy () = Ama ()5 < C/ Imn () =12 ()3 ds - vt € [0, 7]
0

Reiterating this inequality fom given times in[0, 7], we obtain :

m m Cm m
[A"m — A 772HL2(07T;V’) < ml [ — 772“L2(0,T;V’)
Which implies that form sufficiently large a poweA™ of A is a contraction in the Banach
spaceL? ([0,7];V"). Then,A has a unique fixed point' € L* ([0, T];V"). O

Now, the proof of the Theorem 4.1 is a consequence of the preceding lemmas.

Proof. Existence.Letn* € L2 ([0,77; V’) be the fixed point of the operatdrand letu be the
solution of Problem1, for, = »*, i.eu = u,-. We denote by the function given by[(3.25)
and byg the solution of Problem2 fay = »*, i.e 3 = 3,.. Clearly, equalities (3.27) and (3]28)
hold from (4.%) and[(4]9)[ (4.10). Moreover, singe= An*, it follows from (4.5) and|[(4.1]5)

that (3.2T) holds, too. The regularity of the solution expresse (4.1) follows from Lemma
[4.2. Sinceu € H'([0,T];V), it follows from (3.23), assumptions (3]10) afd (3.11) that
L?([0,T]; Q). Choosing nows = ¢ in ),go e D(Q)", and using the definitions of, ;

given respectively by (3.22), (3.24) we obtain :

(4.15) Divo (t) + fo (t) = pu(t) a.et €]0,T]
Now, assumptions (3.16}, (3]17), the fact that L2 ([0,7]; V") and [4.15) imply thaDivo €
L2 ([0,T]; V).

Recall also that the regularity of the bonding figlde W' ([0,T]; L*(T'3)) N Q follows
from Lemmd 4.B. We conclude that, o, 3) is a solution of ProblemPV and it satisfi¢s (4.1)-

@3). O
Proof. Uniqueness. The uniqueness of the solution follows from the uniqueness of the fixed
point of the operatoA and from the unique solvability of Problem1, Problem2 and Problem3.

Indeed; let(u, o, 3) be a solution of ProblemPV which satisfies {4[1){(4.3) and denotg by
L2 ([0,T];V"), the function defined by :

(Ee(u(t) 2 W)g + {36 (0 (). (u () ds.e(w)) +
+j(B(t),u(t),w) YweV,tel0,T]
Equalities |(3.25), (3.27) and (416) associated with the condition initi@) = wy, @ (0) = v,

imply thatw is a solution of Problem1 and, since it follows from Lemmg 4.2 that this problem
has a unique solution denoteg, we conclude that :

(4.16)  (n(t),w)y = {

(4.17) U= u,

Next, (3.27) and the condition initiat (0) = /3, imply that3 is a solution of Problem2 and,
since it follows from Lemmg 4|3 that this problem has unique solution deritede conclude
that :
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(4.18) B =0,

Using now [(4.1b) and (4.16)-(4.1.8) we obtain that = n and by the uniqueness of the fixed
point of the operatoA, guaranteed by Lemnja 4.5, it follows that :

(4.19) n=n"

0

The uniqueness of the solution is now a consequenge of| (4.17)-(4.19) combineld with (3.25).
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