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2 STEVEN G. FROM

1. INTRODUCTION
To discuss the new inequalities to be given later, we shall first need some lemmas.

Lemma 1.1. Suppose thaf” is continuous orfa,b]. Let H(x) be a bounded, continuous
nondecreasing function o, b] with H(a) = 0 and H(b) = 1. Supposé < H(z) < 1on
(a,b). Let

[P (t—a)dH (1)
1) ooy =14 T pErst
lim, ,- ¢(z)=0, z=0.

Let
(1.2) qi(x) = inf{f"(t) s 2 <t <z +g(2)},
and
(13 (@) =sup{f"(1) v <t < glo)}
Let
(1.4 Li=; [ n@le@)d(a)
and

b
(L5) U= [ )o@ dH ).
Then
(1.6) L1§/ ﬂ@ﬂﬂ@—f</xﬂﬂ@)§Uy

For a proof of Lemma 1]1, see Theorem 3.1 of From [5].

Lemma 1.2. Suppose that the assumptions of Lernmpa 1.1 above hold. Then

(a) If ¢” is continuous ofa, b], theng'(z) > —1,a < x < b. Thus,z + ¢g(z) is nondecreas-
ing on|a, b].
(b) Supposé:(x) is a probability density function absolutely continuous with respect to

Lebesgue measure with'(x) = h(z) on [a,b]. Letr(z) = 7.5 be the hazard

function. Ifr(z) is nondecreasing i, a < x < b, theng(z) < p, a < = < b, where
= fab$dH(a:)

The results of Lemmia 1.2 are special cases of well-known results in applied probability and
reliability theory, so we omit the proofs. See, for example, Swartz [11] for part (a) and Barlow
and Proschan [1] for part (b).

Lemmas 1.8 and 1].4 below will also be needed. Lefnma 1.3 is a special case of a more general
result given in Gupta and Gupta [7].

y xa—l(l_z)b—l
Lemma 1.3. Suppose’(z) = h(zx) = —Bapy —0<z<1La>00>0, B(a,b) =

fol ta=1(1 — )" dt. If a > 1 andb > 1, thenr(z) = % is nondecreasing im on [0, 1].
Proof. See Gupta and Gupta [7], p. ¥ .

Remark 1.1. If f®(z) > 0 on [a,d], then from Lemma 1|1, we obtaip(z) = f”(x) and
¢(x) = f"(x + g(x)). This will be needed later.
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Lemma 1.4. Supposeg™” is continuous ora, b]. Then we have the identity:

fal 270, / 1) / (t = a)(b— t)f"(t)dt.

Proof. See Remark 6 of Dragomir|[4], p. 1&.

2. NEw RESuULTS

In this section, we present some new inequalities of Fejér-type which complement those
given in Dragomir and Gomn_[2]. We assume, without loss of generality, that the interval of
integration is[0, 1]. A simple linear transformation will easily extend all results given to the
interval of integratiorja, b].

In Dragomir and Gommi |2], the following results are given.

Theorem 2.1. (Theorem 2.1 of Dragomir and Gomml [2]Det f : [a,b] — R be a twice
differentiable function oftta, b) and such thaff” is convex oria, b). Then

a a b
%f,,( ;b)_(b_a)Q S f();f(b)_bia/af(x)dx

f"(a) + f"(b) 2
5d (b—a)*.
Theorem 2.2. (Theorem 2.2 of Dragomir and Gomml [2]Det f : [a,0] — R be a twice

differentiable function orja, b). If there exists a real numben such thatf”(x) > m for any
€ (a,b), then

<

i (“57) 00+ gt -y

b
< [0- - af@d

fla) + f(b) 5 1 5
T(b—a) —@m(b—a).

If there exists a real numbé¥! such thatf”(xz) < M for anyz € (a,b), then

—f(a)lzf(b)(b—a)?’—610M(b—a) l(b—x)(m—a)f(x)dw

<

—f(a”) (b—a)? +ﬁM(b—a>5.

We shall also obtain bounds fgff f(z) sd andf f(z)- (b—z)(x —a)dz under assump-
tions onf and one or more of its derivatlves which are dn‘ferent from those given in Theorem
[2.7 or[2.2 above. For other related works, see Dragomir and Géormm [3], and Minculete and
Corina-Mitrui [9].

Theorem 2.3. Let f©® be continuous. Suppogé(z) > 0 and f®)(z) > 00on[0, 1]. Then

(2.1) /f (1 —z)de < f(1> 810< ))
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4 STEVEN G. FROM

Proof. We apply Lemma 1]1 witt (z) = 32% — 223, 0 < < 1. Then by the 3-convexity of
f,
1 1
[ 1) et -0 = ¢ [ s ante)
0

2.2 < (1) +s 1f"<m+g<x>>-<g<x>>2h<x>dx)

whereh(z) = 6z(1 —z),0 <z < 1. Now, ¢"(z) = (2x+1 e > 0.0<z<1.So

/O 1" + g(x)) - (9(2))*h(x)da

" g°(x)h(z)
(2.3) /f v+ g(@))(1+ g'(2)) {1+g(>}daj
By Lemma. part (a)f"(z + g(x)) - (1 + ¢'(= )) is nondecreasing im, sinceg”(x) > 0,
f7 >0, andf® > 0. Also, glf),’z(“’g’) — W12 js nonincreasing in. By the Chebychev-
Gruss inequality,

F@h)]
T+ ¢(0) } !

<[ e+ g(2)) - (L+ g (@))da / EACLCPS

1+ ¢'(x)
o) ()

From (2.2)4(2.B), we obtain

[y (2) o ()

as desired, and the proof ¢f (2.1) in Theolenj 2.3 is compjete.

/ a4 (@) (14 g (@) [

In the next theorem, we obtain a lower bound as well as an upper bou[fgi for) - z(1 —
x)dx without the convexity off restriction.

Theorem 2.4. Supposef® (z) is continuous ang® (x) > 0 on [0, 1]. Leth(z) = 6x(1 — ),
0<z <1,

(2.4) 6 — (152 + 6\/@) 7 and e= 192 _ 619 — % ~ 0.2022258
Letp(x) = (g(2))?h(z) = $UL=2L0E02 et

(2.5) Ry = /0 ) p(z)dz ~ 0.016312905 ,

and let

(2.6) Ry = / 1 p(z)dz ~ 0.03368710 .
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Then
@) / ) a -tz 1 (3) + 15 (BLELO) )
and
@) [ s - < 3 (3) (- Pk o) + R ),
wherec + g(c) ~ 0.54367748.
Proof. By Lemmd L1,

01 f@) - 2(1 — 2)de = % 01 f(@) - 62(1 — 2)da
@9) =y (%) v [ @@

Now

[ rwganwi = [ 1@

Simple calculations show(x) is nondecreasing oft), ¢] and nonincreasing oft, 1]. Since
f®(z) > 0, f"is nondecreasing o, c] and

[ e = [ e+ [ @

applying the Chebychev-Gruss inequality on the first integral,

> %/ch”(x)dx-/ d:v+/ 'z

(2.10) > / f"(x)dx - / p(z)dz + f"(c )/ p(z)dz
using f”(z) > f"(c) on|c, 1], by 3-convexity off,
_ Ba(f'(e) = f(0))

C

+ f”(C) . RQ .

By (2.9)-(2.10), we obtain

[ floy-at ez L () + L (BUO=LO) )

as desired. This proves (2.7). The proof[of [2.8) is very similar, except we start with, using
Lemmd 1.1 again,

/f 2(1 — 2)da < = ( () /f"x—i—g ()h(x)dm)

and use the Chebychev-Gruss |nequaI|tyf§rf” (z + g(2)) - g*(x)h(z)dz instead. We omit
the details heres

Next, we obtain bounds fof” f(t)dt which utilizes{“® Heretoforeq = 0 andb = 1,
but we shall present the result for gene{na[b] in this case. Another higher convexity condition
is assumed.
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Theorem 2.5. Supposef©®) () > 0 on[a, b] and is continuous ofu, b]. Then

(f();Lf ) /f

211) < I;) f" <a;b> L0 ;4“) [FD((b—a) (c+g(c) +a) R+ FO(b) - Ry
and
a b
(M) (b—a)— [ =1
> O (50) + B5EO0 - ae a) - 19 -
(2.12) —|—(b_a)5f(4)((b—a)c—|—a) Ry,

24
wherec, g(c), R, and R, were given in Theorefn 2.4.

Proof. By Lemmg 1.4, we obtain

(f( R > / 1) / (t = a)(b— )" (D)t

1

:2/ (b—a)*u(l —u) - f"((b— a)u+ a)du

" a)u+a) - u(l —u)du

(2.13) = uw(l — u)du, wheref*(u) = f"(b—a)u+a), 0 <u<1.

Since f®)(t ) > 0on [a, b, (f)®(u) > 0 0n[0,1]. Applying Thoeren} 2J4 to the integral in
(2.13), we obtain

/f u(l = w)du

1 1 1 1
< = ofx - . *\// *\// . )
<3 (3) + Ut Bt V) R
Writing the derivatives off* in terms of those off, we obtain [(2.1]1). The proof of (2.]12) is
very similar and is omitteca

Next, we give an upper bound ofdl f(z) - h(x)dx for certainh(z) with f(x) = %

nondecreasing in on [0,1]. By Lemma[ 1.B, this includes the special cagés) = 1 and
h(z) = 6z(1 — x).

Theorem 2.6. Supposef®(z) is continuous or0, 1], f”(z) > 0 and f®(z) > 0on [0, 1].
Suppose(z) is nondecreasing in on[0,1). Lety = fol x - h(z)dz. Then

(2.14) / Fla) - ha)de < F(w)+ 37(1) - 2.
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Proof. Apply Lemma[ 1.1 withh(z) = 62(1 — 2). Sincef” > 0 and f® > 0 on0,1], we
obtain

/f o)z < f(s /f”x+g ¢(2)h(z)dz.
By Lemmd 1.2 part (b)y(z) < p, SO
l/ 1 "
g [ 20 = 0+ 0
This completes the proof df (2.14) in Theorpm| A6.
Corollary 2.7. Under the conditions of Theordm P.6qif> 1 andb > 1, then

/Olf(g;) R R Lt
(2.15) < Bla.b)- <f (aib) + %f”(l) . (aibf) |

If a =b=2, then

1 1 1
If a =0 =1, then
! 1 1 "
(2.17) /0 flx)dx < f (5) + gf (1).

Proof. The results is immediate from Theor2.6 and Le 1.3, $jneea%. 1

Next, we consider new inequalities of Hermite-Hadamard type for functions having certain
orders of higher convexity. For these functions, one or more derivativé&ofdo not change
sign on[a, b], the interval of integration. These include the very important absolutely monotonic
and completely montonic classes of functions as given in Widder [13].

Lemma 2.8. Define functiong A, () }5o_1, {gm ()} 1, {pm(2)}50_,, and{w,,(z)}>*_, on

1
[0, 1] recursively, as follows: lek;(x) = 1, pi1(z) = 1, g1(x) = L(om©dt

_ 1-z —
a2 @) =

z + g1(z) = 1%, Form > 2, determine, in the order given:

(2.18) pm(x) = (gm—l(x))Q : hm—l(x) )
219 b (o) = Pm®)
(2.19) €9 Tt

[t = 2)h(t)dt B
(2.20) gm(z) = f; o (0 , 0<z<1, gn(l)=0.
(2.21) Wi (2) = Win—1 (@ + gim(2)) -
Then

@) gm(z) = 5-(1—2), m=1
0) hp(z)=(2m —1)- (1 —x)*™ 2 m> 1.

(
(©) pm(x) = cp - hin(z), m > 1, wWherec,, = W, m > 2,andc¢; = 1.
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(d) U}m(l‘) = apT + bm’ Whereal = %’ bl = %1 m41 = (ggi;) Ay bm+1 =1- Am+1,
m > 1. Thus,w,,(0) = b, w(1) =1,m > 1
Proof. To prove (a), note thatit*(t) = (c+ 1) - (1 — ) for somec > 0,0 < t < 1, then

it =) dt 1
[Thetydt  c+2

This clearly holds for*(t) = hi(t) with ¢ = 0 andg*(z) = ¢1(z) = 5=. Similarly, simple
calculations shows this is true far(t) = h,,(t) with ¢ = 2m — 2, m = 2,3,..., by letting
g*(x) be replaced by, (x), m > 1 and using a simple induction argument. Thygs(x) is
proportional tol — x for all m > 1. This proves (a), sinccei—2 = ﬁ forc =2m — 2.

'mpmwﬂnnMemmm@%:@Wﬂﬂfmmﬂ@::G#IQ%I—M%WJ@LmE
2. Form = 2, h,,_1(x) = 1, sop,,(x) is proportional to(1 — z)%. Form = 3, p,,(z) is
proportional to(1 — z)? - (1 — x)®> = (1 — z)*. By induction onm, p,,(z) is proportional to
(1 —x)*™=2, Sinceh,,(z) is just a normalized version ¢f,,(z), the conditionfo1 P (2)dx = 1
givesh,,(z) = (2m — 1)(1 — z)*™2, m > 1. This proves (b).

To prove (c), from[(2.18) and part (b), we obtain

Pu(x) = (gn-1(2))hmr (@)

g (z) =

(1—z), 0<x<1.

- (G 0-9) - (@n -3 ey

_ (2m — 3) 2m—2
= m-(l—x) )

Since part (b) gives,, () = (2m — 1)(1 — z)?*™~2, we obtain
P () 2m — 3
—c, = > 2.
(@) " m—1)em 1) =2
The result follows and the proof of part (c) is complete.

To prove (d), the result is clearly true for = 1, sincew, (z) = ”Tx = a1x + b;. Now

Wi (T) = W1 (T + gm(T)), m > 2

2m — )z + 1
2m '

(2.22) = Wn_1 ((

Sincew, (z) = ”T‘T is linear inz, simple induction shows that,,(z) is linear inz, m > 2.
Thus, there exist constants,, b,, such thatv,,(z) = a,,x + by, m > 1. Now (2.22) requires

2m — 1 1
am® + by, = Q1 <( mn )z + ) + by—q
2m

for all z in [0, 1]. This requires

2m — 1 -
(2.23) %:(Zm)%”,%:gg+%y

Sincea; + b; = 1, the use of[(2.23) and induction em shows that.,,, + b,, = 1, m > 2. Thus,
bm =1 — a,,, m > 1. Replacingn by m + 1 in (2.23) completes the proof of part (c).

Now we are ready to present some results of Hermite-Hadamard type for fung¢iiohs
possessing certain types of higher order convexity. We do not refjtiiré&e convex, however.
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Theorem 2.9.Let f(z) be a real-valued function o0, 1]. Let fU)(x) denote thg'*® derivative
of f(z),j =1,2,3,... Let{an}>_,, {bn}_, and{c,}_, be the sequences given in parts
(c) and (d) of Lemmpa 2.8. L€t = c,,

m+1

Ay = CoC3 -+ Cpy1 = HcL, m=23,....

Let

o

—1 ]
= 3 (5) G800,
1
If fG(z) >0, fO)(x)>0,..., f&+(x) >0, andf*+V is continuous or0, 1], for some
integerk > 1, then

(a) fo z)dr < f (3 )+Ak+Bk,land
(b) fo )de > [ (3)+ 30520 (3) di D (i) + (3)" F29(0) - dy, wherey; = g,(0) =

2] , 7 > 1, and where any |mpossible sum above is defined to be zero.

N | —

<.
Il

By =

N | —

k
) (FED(1) = fE=D(p)), k=1,2,3,....

SNES

Before proving Theorein 2.9 above, let’s write out the upper bound in part (a) and the lower
bound in part (b) for the first several valueskof

Fork = 1, we obtaind; = 12, and

(2.24 [ i< i (3) 55 (-7 (3))

which is just Theorem 4.2 in Froml[5]. Also,

(2.25) / f(x)def(%)+2—tlf”(0)-
Fork =2,¢3 = 2, dy = 555 and
n (DY LY ey e (2
2o [awwss(g) g (§) v (00— ()
and
d (1YL e
@27 [ ez 5 (3) 5 (3) + oo,
Fork =3,c4 = 252, ds = 16128 and
! 1 1., (5 1
/Of(”’)d”“" = f(§>+ﬂf (é) 1280f ( >
L ey e (1L
(2.28) 10550 (f (1) — £ (16>>.
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Also,
| @i = f(;)+ f”( )+%f<4> (é)
1 6
(2.29) +129024f( )(0).

In inequalities[(2.24){(2.29) above, larger value$ ofually improve the bounds, but this is
not always the case.

Proof. Refer to Lemma 2|8 for definitions &f,(x), g,(x), pm(x) andw,,(z) used in the proof
below. Then Lemma 1.1 gives, f*) > 0,

(2.30) / e < 1 (%) -5/ ' un(@)) - o)
(2.31) _ ¥ (%) + %CQ /0 e+ by) - hy(x)de.

Now f” is nondecreasing off), 1] andhy(x) = 3(1 — z)? is nonincreasing ofv, 1]. Applying
the Chebychev-Gruss inequality,

< f(%) —l—%Cg/Ulf"(aﬂ—l—bl)dx-/ol ho(2)da
)bl

which is the result of part (a) fdr = 1, sincea; = 1/2 andc, = 1/12. Note thatf0 x)dxr =

1,m=1,2,3,.... Now, if k = 2, (2.31) is valid also, sincg® > 0 andf® > 0. Thus from
Lemme{IlL, we obtain

(2.32) /0 1 f(z)de < f (%) + %CZ /0 1 F"(wy (2))ho(z)da .

A key observation that is repeatedly used in the rest of the proof is that the second integral
(on the right side of2)) has the same form as the mteﬁrgﬂ(ag JdH (x) in Lemm
exceptf”(w;(x)) replacesf(x andf0 ho(t)dt replacesH (x) in Lemm . So we may get

an upper bound on it as well. Upon domg thls we will obtain another integral bound which can
be bounded by Lemnja 1.1, etc. We can continue this iterative bounding procedure indefinitely.
However, we shall use the Chebychev-Gruss inequality to ‘terminate’ this procedure for each
value ofk. We obtain, using various parts of Lemmal2.8

<7 () + 5 (i) / FOua) - pa(o)ic)

AJMAA Vol. 14, No. 1, Art. 10, pp. 1-17, 2017 AJMAA
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From the Chebychev-Gruss inequality, and singéu,) = b,,

- <o) (s s [

= 1(5) + 5o (F00+ 5ea = 1O - 190

2 2 2 as

= 1 (3) e+ (3) (e S - 5000

@39 = s (3)aaron+ (3) @ (L) uom - e,

2 2 as

which is part (a) of Theorem 2.9 fdr = 2. Similarly, for k = 3, if f® >0, f® > 0 and
£ >0, we obtain

/ e < f (%) +5ealf"(02) + (%) (%) 1bs)
+(d) () 1) .
— f (%) T %dlf”<bg> + (%)2@ - f9 (bs)

L s (1)3 (fO(1) = fO(bs)),

as 2

which is part (a) of Theorein 2.9 fdr = 3. A simple induction argument completes the proof
of part (a) of Theorern 2]9.
The proof of part (b) is very similar, so we merely indicate the parts of the proof of (b) that

are different. Since we want a lower bound ﬁalrf(x)da: instead,x replacesw,,(x) in the
derivative f(?*(-) at each stage. For examplekif= 2, we obtain, from Lemm.l

/Olf(x)d:)s > f (%) + %@/01 1 (@) () dz
()¢ (3 mmin)
f (%) + %CQ (f”(ua) + %f(”"(o)) 7

v

v

sincef® >
N 1., 1N
=/ (§> + §d1(f (H2)) + (§> d2 f*7(0)
which is part (b) of Theorein 2.9

Corollary 2.10. Suppose that for some integet> 1, f®(t) > 0, f®)(¢t) > 0,..., fE+D(¢t) >
0, a <t < band @+ (¢t) is continuous ina, b]. Let{a,}, {bm}, {cm} and {u;} be the

AJMAA Vol. 14, No. 1, Art. 10, pp. 1-17, 2017 AJMAA
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sequences given Theorem|2.9. Let

. Jil <%>] djf(2j)<bj+1) -(b— a)2j+1 )
B, = 2k <1> ((b— a)%) ) (f(2k—1)(b) _ f(2k—1)<a +(b—a)by)).

Then
(a)

and

(b)
/f Dt > (b—a)f (“*b)+2( ) &5 FO (p1y4) - (b — @)

+ (l)k P a) - dy, - (b—a)™ .

Proof. Apply Theore 0 to the functiofi*(z) = f(a+(b—a)x),0 < x < 1. Usefab f®)dt =
(b—a) [, f*(z)da and the fact that

(f*)‘”(a:) =(b—a) fPa+Ob-az), 0<z<1, j=1,273...
This result is immediateg

Remark 2.1. Bounds forff f(z)dx can be obtained for functions which are either absolutely
monotonic on completely monotonic ¢m b] as defined by Widdef [13] using theorems above
since the higher convexity conditions requiring that the derivatives of odd order to be of one
sign only are met by functions of the absolutely monotonic or completely monotonic classes.
For completely monotonic functions, we must reverse the bounds, since THeofem 2.9 holds for
—f(z), not f(x), in this case.

Remark 2.2. If f+1(z) > 0,0 <z < 1, and for allj > 1 in Theoren] 2.9, then the bounds

of Theoren| 2.9 hold for alk. In most cases as mentioned earlier, both the upper and lower
bounds given there improve &sncreases, but this is not always the case. Itis an open problem
to give sufficient conditions for which these bounds are guaranteed to impréveagases.

Finally, we consider inequalities of integrals infinite intervals. Note that Leinnja 1.1 holds
for b = oo as well, provided all integrals given in the bottom in the lemma exist.

Remark 2.3. Alternative bounds can be given fgif f(t)dt if we replacef(t) by f(a+b—1).

Then for eactk, the inequality signs will be reversed in Theorer 2.9 and Cordllary 2.10, since
if all odd order derivatives of order 3 or higher ¢ft) are nonnegative, then all odd order
derivatives of order 3 or higher gf{a+b—t) are nonpositive. Then, Theor¢m[2.9 and Corollary
would then be applicable to the functierf(a + b — x). It is unclear which choice of the
integrand function should be used, in advance.

Theorem 2.11. Supposef %+ (z) > 0 on [0,), 7 = 1,2,3,... and all derivatives are
continuous orj0, co). Supposd = [~ f(z)e “dx exists. Then
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(@) If
(2.34) lim (/ |fE (4 n+1)]-e ’”dm) =0,
n—oo 0
and
(2.35) limsup | f®) (n 4 1)|"/" < 2,
then
s gmedo(5) 6
1., 1
= F)+ 517+ FOB) + SO+
If
(2.36) lim ( / h | F2 D (z)] - e_””dx) =0
n—oo 0
and
(2.37) lim sup \f(zn(1)|1/" <2,
then
(b) .
I>f@1 Z( ) L F2(1)
Thus,

e 3

holds for alln > 1, if f?)(z) > 0,5 =1,2,3,... hold also.

Proof. The ideas needed are very similar to those given in the proofs of Lémina 2.8 and The-
orem[2.9. Lethi(z) = e ®, pi(z) = e ®. Thengi(z) = 1. The functionh(z) = e™*

is a fixed point of the operatof : h — g*h. Thus, by induction onmn, L(h,,(z)) =
(gm—1(2))*hpm-1(z) = e*, m = 2,3,.... Proceeding as in the proof of Theor¢m|2.9, we

obtain
IS fWsg [ et
0

< S+ [r@+d [0 Dea)

1

= f()+ %f”(2) +7 /OOO fO (2 +2)e da

< 145+ (196 + 5 [0y o)

= i+ (3) 0o () [ rowa
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By induction onn, we see that

)+ Zl(> FEG+1)

J

n+1 0o
(2.38) + { (%) /0 fED (g 4+ 1)e—xdx} .

The expression in brackets ¢f (2]38) converges and approaches the upper baligtvéorin

part (a), by théim sup condition. The expression in braces [of (2.38) converges to zero by the
limit condition. These follow easily by the root test of analysis and properties of convergent
series. This completes the proof of part ().

The proof of part (b) is very similar, and is omitted except we mention:that1 replaces
r = j+1in f)(z) at each stage.

Example 2.1. We present a numerical example to illustrate Thedrem|2.11¢ kef0,1). Let
f(z) = e*, x > 0. An application of Theorem 2.]L11 gives that the upper and lower bounds
given in Theorerp 2.11 parts (a) and (b) are valid;%° < 2, which occurs when < 0.9012,
approximately. We give a small table of upper and lower boundg for various values of,

using Theorern 2.11.

c 1 Upper bound forl Lower bound for/
0.10 1.111111 1.111312 1.110724
0.30 1.4286 1.4376 1.4135
0.50  2.0000 2.0767 1.8843
0.70  3.3333 3.9748 2.6672
0.85 6.6667 15.1137 3.6629

The upper bound deteriorates as— 0.90~ and more and more terms must be summed to
guarantee an upper bound fdr For ¢ < 0.70, four or five terms only need to be summed to
compute rapidly converging bounds.

Remark 2.4. If f is absolutely monotonic of), co), thenfU)(z) > 0,z > 0,5 = 1,2,3....
In this casef is convex, in particular, of), co) and the lower bound given by

1)+ i (%)J sl
j=1

improves on the Jensen’s inequality lower bound valug(af. Also, upper and lower bounds

for I can be obtained for any pattern of sign changegil{x) asj changes, so long as, givén
fU)(z) is of one sign only for all: > 0. For absolutely monotonic sequences, the sign pattern
of fW)(z)is+,+, -+, +, . ... For completely monotonic functions, this sign patterrf6f(x) is
+,—,+,—,+,—,.... The bounds of Theorem 2.9 are reversed in this case. Theorems for any
pattern of constant signs gavaries can be obtained. The bounds favould have the form

)

whered,; is some real number ifi, j + 1], j = 1,2, 3, .. .. We omit the details here.
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3. APPLICATIONS

The logarithmic mean of two positive real numberandb is given by

a—>b
3.1 L(a,b) = <b.
Gy 0 = tog@) —1og®) "
See Rao and Dey [10] and the references contained therein. There are various integral repre-
sentations of.(a, b). Some of these are

! dx
—1 _

(3.2) Lia,b)™ = /0 ar +b(1 — )
and

1
(3.3) L(a,b) = / boa'~dx .

0
Letting f(x) = m in ) and applying Theore@.Q, we obtain the following bounds

for L(a,b)~!. Fork = 1, (2.24)+(2.2p) give, fou < b,

2 1 (a—b)? L2 b—a 2 \* 1
4 — <L < _ I
(3.4) a+b+12 b T (a,5) “a+b 12 a+b a?
Fork = 2, (2.26)2.2]7) give, for < b,

2 +i (b—a)? 3 (b—a)!
a+b 12(ia+%b)3 160 v°

2 b—a)® [ 1 1 b—a)? 1
(3.5) §a+b+( 80a) (@_ 5 13 4>+( 12a) NPT A
(3a+30) (Sa+30)
If we assume: < b and usef(z) = m instead, the bounds in Theor2.9 will reverse
sincefU)(x) < 0. for oddj > 3 instead. This choice of(x) instead leads to improved upper
bounds forL(a, b)~!, but worse lower bounds.
What if integral representatioh (3.3) is used instead in Theprem 2.9? Similar inequalities can
be obtained. Here, we present just a few examples.

< L(a,b)™"

Theorem 3.1. Suppos® < a < b. Lett = /ab be the geometric mean efandb. Then
(@)

(3.6) Lia,b) < (b—a) - b-t s
" ( P4 i) t)
and
(b)
2\ 1/3
(3.7) L(a,b)2<t3+(b;4a) ) =A,>t=ab.

Proof. Let f(z) = b%a'~" in Theoren) 2.9. Then (2.24)-(2]25) give

1
L(a,b) < \/%Jrﬁ(loga—logb) (t—1D).
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After some algebra, we obtain

b—t
(T) - (logb —log a)® +t(logb —loga) 4+ (a —b) > 0.

We may easily solve this quadratic féée= log b — log a to get

6( tuw_t)

b—t ’

from which [3.6) follows upon division by — a and inversion. This completes the proof of (a).
To prove (b), we use (2.24]—(2]25). We obtain

logh — loga >

1
L(a,b) > Vab + ﬂ(logb —loga)?.

After some algebra, we get

L(a,b))® — t(L(a,b))? — (b ;4“) > 0.

Lettingw = L(a,b),
(b—a)?
24

The derivative of(w) is ¢'(w) = 3w? — 2wt > 0, since0 < ¢ < w is well-known. Thus,[(3]8)
gives, using) < t < w,

(3.8) w? — tw? —

=g(w) >0.

343 (b—a)’ >
w t 7 >0.
Solving forw = L(a, b), we obtain the desired result. This completes the proof of parg(b).

Remark 3.1. Other bounds fol(a, b) have been discussed in the literature. For example, in
Jia and Cad [8], it is proven that

af + (ab)p/2+b”)1/p

L(a,b) < Hp(a,b):( 3

aq pa\ 14
(3.9) < Mq(a,b):(a; ) ,

if p>1/2,¢ > 2 and thatp = 1/2 andq = 1/3 are the best constants [n (8.9). Numerical
investigations have found that (B.9) is better than]|(3.4) (3.5) given In this paper, but the
bounds presented here use the arithmetic or geometric means only. For other bounds, see Wada
[12] and Furuichi and Yanadi[6]. In Jia and Cao [8], in their Remark 4, it is given that the best
lower bound forL(a, b) within the family H,(a,b) occurs ap — 0, namelyH,(a,b) =t =

Vab. Thus, Theorel, part (b) is an improved lower bound.¢n b) which uses only the
geometric mean.

The author is currently investigating inequalities for other types of means and hopefully this
will be reported on in the future.
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4. CONCLUDING REMARKS

Lemmd 1.1 is a very useful result as far as deriving many more inequalities of either Hermite-
Hadamard or Fejér type. These will be reported on in the future. It is especially useful for
deriving inequalities for functiong(z) having one or more derivatives of constant sign on
the interval of integratioria, b], since the functions; (z) and¢.(z) given in [1.2) and[(1]3)
have extrema at the endpoints in these higher convexity cases. In a forthcoming paper, more
applications to probability theory and approximation theory will be discussed.
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