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1. I NTRODUCTION

In this paper we study the following type of the stochastic Navier-Stokes equation with re-
spect tou = (u1(t, x), u2(t, x)), t > 0, x ∈ R2:

∂u

∂t
− µ4u+ (u · ∇)u−

√
2µ∇u · Ḃ(t) +∇p = 0, t > 0, x ∈ R2,(1.1)

divu = 0, t > 0, x ∈ R2,(1.2)

u(0) = u0, x ∈ R2,(1.3)

wherep = p(t, x) denotes the pressure term,µ > 0 is a constant anḋB(t) = d
dt

(B1(t), B2(t))
the distributional derivative of the two-dimensional Brownian motionB(t) = (B1(t), B2(t)).
Furthermore,u0 is a deterministicV(R2)-valued function onR2 with compact support. Here
V(R2) is the set of functions defined as follows (see Section 2):

V(R2) = W1,2(R2; R2) ∩H(R2),

where

H(R2) = {u ∈ L2(R2; R2) |div u = 0}.

Equation (1.1)-(1.3) can be formally derived as the Euler-Lagrange equation satisfied by a crit-
ical point of a random energy functional defined on the space of volume preserving diffeo-
morphisms inR2 perturbed by Brownian motion (see [9]). In [9], the velocity defined as the
time derivative of the associated stationary point satisfies the stochastic Navier-Stokes equa-
tion (1.1)-(1.3) and as a corollary, it is shown that the expectation of the solution of (1.1)-(1.3)
satisfies the Reynolds equation.

On the other hand, [4] considers an energy functional different from that of [9], and shows
that the deterministic Navier-Stokes equation is related to its stationary point. In this paper, we
try to study the equation (1.1)-(1.3) not in the case of a two-dimensional torus but on the whole
spaceR2.

In comparison with the case of stochastic Navier-Stokes equations on a bounded domain, the
case of unbounded domains requires more efforts because of the lack of compactness.

In addition, our equation does not satisfy the coercivity condition which usually gives the
tightness. Let us explain briefly our strategy taken in this paper to construct the solution of
the equation (1.1)-(1.3). In this paper, we partly use the method which is studied in [2], [11]
and [14], that is, we construct the solution by taking the limit of the sequence of periodic
solutions. First, we consider a family of modified equations with2l-period (l ∈ N) in each
variable whose viscosity coefficient is slightly larger thanµ > 0, that is, 2+δ

2
µ, δ > 0, so

that the approximating equations satisfy the coercivity condition. We use a standard Galerkin
approximation and construct a solutionul,δn . Then, for suitable cutoff functionsχR ↑ 1R2, it can
be shown that the familyuR,l,δn = χRΠnu

l,δ
n , whereΠn represents the orthogonal projection onto

an n-dimensional linear subspace, is uniformly bounded in the spaceL2(Ω, L2(0, T ;V(R2))
with respect toR,l,n andδ. Finally, we take a limit ofuR,l,δn asδ → 0, n → ∞ andR → ∞
simultaneously and show that its limit satisfies the equation (1.1)-(1.3) in a weak sense.

So far, there are several known results about weak solutions of stochastic Navier-Stokes equa-
tions ([1], [2], [8], [11], [12], [13], [14], [15]). The papers [1] and [13] study the equation with
a trace class Wiener process and a spatially homogeneous initial distribution and the existence
of the spatially homogeneous weak solution in a weighted Sobolev space is proven. There
are also several results about the case of the two-dimensional torus ([3], [5], [10], [15]). Es-
pecially, [15] studies the case where the equation does not satisfy the coercivity condition in
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WEAK SOLUTIONS OF STOCHASTICNAVIER-STOKES EQUATIONS 3

a two-dimensional torus and [5] discusses the two-dimensional stochastic Euler equation in a
bounded domain and periodic case.

Furthermore, [14] shows that there exists a spatially homogeneous weak solution of the equa-
tions in Rn(n ≥ 2) with a spatially homogeneousH1-valued initial distribution independent
of the space-time white noise. In [11] and [12], the stochastic Navier-Stokes equations on
Rn(n ≥ 2) satisfying the coercivity condition are studied. However, no results are known in
the case where the equation does not satisfy the coercivity condition in unbounded domain in
Rn(n ≥ 2).

This paper is organized as follows: In Section 2, we introduce notations used in this paper
and our main result. Section 3 and Section 4 contain the proof of our main results.

2. NOTATIONS AND RESULTS

In this section we introduce several notations appearing later. SetT l = (−l, l)2, l ∈ N. We
denote by

C∞
per(l) = {u ∈ C∞(R2; R2) | u is 2l-periodic in(x1, x2) ∈ R2},

the family of smooth vector fieldsu having period2l in each variable(x1, x2) ∈ R2. We also
denote byC∞

per,σ(l) the subspace of divergence free vector fieldsu satisfying
∫
T l
udx = 0, that

is,

C∞
per,σ(l) = {u ∈ C∞

per(l) |
∫
T l

udx = 0, divu = 0 in T l}.

We also denote the following function spaces:

C∞
0 = {u ∈ C∞(R2; R2) | suppu is compact},

C∞
0 (Ω) = {u ∈ C∞

0 | suppu ⊂ Ω},

C∞
0,σ =

{
u ∈ C∞

0 |
∫

R2

udx = 0, divu = 0 in R2

}
.

We denote byH(l) the set of square integrable vector fieldsu on T l which are of divergence
zero and satisfy

∫
T l
udx = 0, that is,

H(l) =

{
u ∈ L2(T l; R2) |

∫
T l

udx = 0, divu = 0 in T l

}
.

Let 〈u, v〉l =
2∑
i=1

∫
T l

ui(x)vi(x)dx be its inner product and|u|l = 〈u, u〉
1
2
l its norm. In addition,

we set

V(l) = W1,2(T l; R2) ∩H(l),

with its inner product

〈〈u, v〉〉l =
2∑
j=1

〈 ∂u
∂xj

,
∂v

∂xj
〉l

and associated norm

||u||l = 〈〈u, u〉〉
1
2
l .
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Let us setZ2
0 = Z2\{0} andT2

l = R2/2lZ2. Let

Hper(l) =

{
u ∈ L2(T2

l ; R2) |
∫

T2
l

udx = 0, divu = 0 in R2

}
,

be the Hilbert space with inner product

〈u, v〉per(l) =
∑
k∈Z2

0

û(k)v̂(k)

and associated norm

|u|per(l) =
(∑
k∈Z2

0

|û(k)|2
) 1

2
, u, v ∈ Hper(l),

whereû(k) represents thek = (k1, k2)-th Fourier coefficient of the Fourier expansion ofu. In
addition, we set

Vper(l) = W1,2(T2
l ; R2) ∩Hper(l),

with inner product

〈〈u, v〉〉per(l) =
∑
k∈Z2

0

(
π

l
|k|)2û(k)v̂(k)

and associated norm

||u||per(l) = (
∑
k∈Z2

(
π

l
|k|)2|û(k)|2)

1
2 ,

for u, v ∈ Vper(l). Note that|u|per(l) = |u|l if u ∈ Hper(l) and||u||per(l) = ||u||l if u ∈ Vper(l).
Similarly, let us set

H(R2) =
{
u ∈ L2(R2; R2) | divu = 0 in R2

}
,

with its inner product and the norm denoted by〈·, ·〉 and| · |, respectively, and

V(R2) = W1,2(R2; R2) ∩H(R2),

with its inner product and the norm denoted by〈〈·, ·〉〉 and|| · ||, respectively. For an open set
Ω ⊂ R2, let us define

H(Ω) = {u ∈ H(R2) | suppu ⊂ Ω}, V(Ω) = {u ∈ V(R2) | suppu ⊂ Ω}.
In addition, define

HΩ = {u |
∫

Ω

|u(x)|2dx <∞}, VΩ = {u |
2∑
j=1

∫
Ω

|∂u(x)
∂xj

|2dx <∞},

HΩ = {u ∈ HΩ | div u = 0}, VΩ = {u ∈ VΩ | div u = 0}.
We denote byHloc, Vloc the set of vector-fields whose countable semi norms||u||0,R, ||u||1,R are
finite for allR ∈ N, respectively, that is,

Hloc = {u ∈ (C∞
0 )′| ||u||0,R <∞ for all R ∈ N},

Vloc = {u ∈ (C∞
0 )′| ||u||1,R <∞ for all R ∈ N},

where||u||0,R, ||u||1,R are defined as follows:

||u||0,R =

∫
BR

|u(x)|2dx, ||u||1,R =
2∑
i=1

∫
BR

|∂u(x)
∂xi

|2dx,
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whereBR is the open ball with radiusR ∈ N centered at the origin. In addition, let us set

Hloc = {u ∈ Hloc| div u(x) = 0, x ∈ R2},
Vloc = {u ∈ Vloc| div u(x) = 0, x ∈ R2}.

Furthermore, we denote byV
′
the topological dual space ofV(R2) and by(u, φ)−1 the pair of

u ∈ V
′

andφ ∈ V(R2). We denote byVloc
′ the spaceV

′
with topology given by countable

semi-norms

|u|V,R := sup{|(u, φ)−1| ; ||φ|| ≤ 1, φ ∈ C∞
0,σ, suppu ⊂ BR},

whereBR is the open ball with radiusR ∈ N at centered origin. Note that the divergence
appearing in each class is understood in the distributional sense. LetAu = −µP4u be the
Stokes operator with domain

D(A) = V(R2) ∩W2,2(R2; R2),

whereP represents the Leray projection. It is well known thatA is a non negative self adjoint
linear operator. Furthermore, letB be defined by

〈B(u, v), w〉 =

∫
R2

(u(x) · ∇)v(x) · w(x)dx, u, v, w ∈ C∞
0,σ,

andG : Vloc → LH.S(R2;Hloc) be defined by

Gu = −
√

2µ∇u,
where LH.S(R2;Hloc) denotes the space of Hilbert-Schmidt operators fromR2 to Hloc. Let us
denote byU = Wk0,2(R2; R2) ∩ H(R2), k0 > 2 the Sobolev space equipped with its norm

||u||k0 = |(1−4)
k0
2 u| 12 andU′ its dual space with norm|| · ||U′ . We denote byU′

loc the space
U′ with topology given by countable semi-norms:

||g||U′,R := sup
φ∈C∞0,σ ,suppφ⊂BR,||φ||k0

≤1

|g(φ)|,

for eachR ∈ N. By Sobolev’s embedding theorem, we see that

Wk0−1,2(D; R2) ⊂ Cb(D; R2) ⊂ L∞(D; R2),

for any bounded domainD in R2. This implies thatB can be uniquely extended to aU′-valued
bilinear operator onHloc ×Hloc. Indeed,

|
∫
BR

ui
∂uj
∂xi

φjdx| = |
∫
BR

ui
∂φj
∂xi

ujdx|

≤ |ui|L2(BR)|
∂φj
∂xi

|L∞(BR)|uj|L2(BR)

≤ |ui|L2(BR)||φj||k0 |uj|L2(BR), u ∈ C∞0 , φ ∈ U, j = 1, 2,

holds. This implies thatB is aU′-valued bilinear operator onHloc × Hloc. In our equation,
the noise is finite-dimensional and thus its covariance is trivially of finite trace, so the square
root is Hilbert-Schmidt. The abstract stochastic evolution equation associated with (1.1)-(1.3)
is defined as follows:{

du(t) + [Au(t) +B(u(t), u(t))]dt+Gu(t) · dB(t) = 0, t > 0,
u(0) = u0.

(2.1)

Definition 2.1. We say{u(t), B(t)}t≥0 is a weak solution of (2.1) if

(1) u(t) is an adapted process on a probability space(Ω,F , P, {Ft}t≥0).
(2) u ∈ L2(0, T ;Vloc) ∩ L∞(0, T ;Hloc), a.s.
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(3) {B(t),Ft}t≥0 is a two-dimensional Brownian motion.
(4) For a.e.t ∈ [0, T ] and everyφ ∈ C∞

0,σ, P -a.s., the following equality

〈u(t), φ〉 − 〈u0, φ〉+

∫ t

0

〈u(s), Aφ〉ds

=

∫ t

0

〈B(u(s), φ), u(s)〉ds−
∫ t

0

(Gφ)∗u(s) · dB(s),

holds.

Remark 2.1. The term containing∇p drops out in the weak form of the solution since
∫
∇p ·

φdx = −
∫
p divφdx = 0 holds.

Remark 2.2. We can regard the second condition of the Definition 2.1 as

u ∈
⋂
R∈N

L2(0, T ;VBR
) ∩ L∞(0, T ;HBR

), a.s.

Now we can formulate our main result in this paper.

Theorem 2.1. Let u0 ∈ V(R2) has compact support. Then, there exists a weak solution of
(2.1).

3. PROOF OF THEOREM 2.1

We will separate the proof into four steps.

step 1.We denote byAl,δ the Stokes operator with viscosity2+δ
2
µ, that is,

Al,δu = −2 + δ

2
µP4u,

with domain

D(Al,δ) = Vper(l) ∩W2,2(T2
l ; R2).

Note thatAl,δ is a strictly positive definite self-adjoint operator and has a compact resolvent.
Let 0 < λ

(l,δ)
1 ≤ λ

(l,δ)
2 ≤ . . . be the eigenvalues ofAl,δ ande(l)1 , e

(l)
2 , . . . the associated normal-

ized eigenfunctions. Let us prepare a complete filtered probability space(Ω,F ,P; {Ft}t≥0) on
which a two-dimensionalFt-Brownian motionB = {B(t)}t≥0 is defined. Then, let us consider
the following finite-dimensional stochastic differential equation:

{
dul,δn (t) + [Al,δu

l,δ
n (t) + ΠnB(ul,δn (t), ul,δn (t))]dt+ ΠnGu

l,δ(t) · dB(t) = 0, t > 0,

ul,δ(0) = Πnu
(l)
0 ,

(3.1)

whereu(l)
0 is the Fourier expansion ofu0 in Hper(l), that is,u(l)

0 =
∑

k û0(k)e
(l)
k , whereû0(k)

denotes thek-th Fourier coefficient andΠn is the orthogonal projection onto the linear subspace
spanned by(e(l)k )|k|≤n. By standard arguments (see also Lemma 4.1), we see that there exists a
unique solutionul,δn for eachl, δ andn.

Let 0 ≤ χR ≤ 1, R > 0 be aC∞0 (R)-function which is equal to 1 inBR, 0 outsideB2R and
satisfies|χ′R(x)| ≤ c for some uniform constantc > 0. Let ul,δ,Rn = χRu

l,δ
n . Now let us obtain

an a priori estimate ofEP{||ul,δ,Rn (t)||2}. Let {Km}m≥1 be an increasing sequence of compact
sets inR2 such that

K1 ⊂ K2 ⊂ · · · ↑ R2,
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and assume thatKm ⊂ Ki
m+1, whereKi

m+1 denotes the interior ofKm+1. For eachKm, choose
two bounded open setsΩKm, Ω′Km

such thatKm ⊂ ΩKm ⊂ Ω̄Km ⊂ Ω′Km
⊂ Ki

m+1 holds.
For eachR ∈ N and compact setK, let us choosel = l(R,K) ∈ N such that(−l, l)2 ⊃
ΩK ∪B4R ∪ suppu0 holds. Then, for suchl(R,K),

||ul,δ,2Rn (t)||2 =||χ2Ru
l,δ
n (t)||2(3.2)

=|χ2Ru
l,δ
n (t)|2 +

2∑
j=1

| ∂
∂xj

χ2Ru
l,δ
n (t)|2

≤C
(
|ul,δn (t)|2l + ||ul,δn (t)||2l

)
,

holds for some constantC > 0, sinceχR and ∂χR

∂xj
, R > 0 are bounded functions. On the other

hand, sinceul,δn is a solution of (3.1), we obtain the following uniform estimate:

EP{||ul,δn (t)||2l } ≤ ||u(l)
0 ||2l ,(3.3)

(see Lemma 4.2). By Parseval’s formula,

||u(l)
0 ||2l = ||u0||2l .(3.4)

As a result, for anyR ∈ N and compact setK ⊂ R2, we have

EP
{
||ul(R,K),δ,2R

n (t)||2
}
≤ ||u0||2,

which means that

sup
n,R∈N,δ>0,K⊂R2 compact

EP
{
||ul(R,K),δ,2R

n (t)||2
}
<∞.(3.5)

Furthermore, note that the following estimate holds (See (4.10) in Lemma 4.3):

sup
n≥1,δ>0

EP{ sup
t∈[0,T ]

|ul,δn (t)|2H(l)} ≤ C||u(l)
0 ||2l .(3.6)

Thus, using|χ2Ru
l,δ
n (t)|2 ≤ |ul,δn (t)|2

H(l)
and (3.4), we see

sup
n,R∈N,δ>0,K⊂R2 compact

EP

{
sup
t∈[0,T ]

|ul(R,K),δ,2R
n (t)|2

}
<∞.(3.7)

step 2.The following lemma is essential for tightness for a family of probability laws related
to our problems. Set

WT = C([0, T ];U′
loc) ∩ L2(0, T ;Hloc) ∩ L2

w(0, T ;V(R2)) ∩ C([0, T ];Hσ),

whereL2
w(0, T ;V(R2)) is the spaceL2(0, T ;V(R2)) equipped with its weak topology andHσ

represents theHloc endowed with its weak topology. Letτ be the corresponding supremum
norm onWT andB be its topologicalσ-field.

Furthermore, for the canonical processX(t) = X(t, w) = w(t), w ∈ WT , we setBt :=
σ(X(s), s ≤ t) and by standard argument we can assume that(Bt)t≥0 satisfies the usual con-
dition, that is, it is right-continuous and contains allP-null set. Then, the following Lemma
holds.

Lemma 3.1. (See Lemma 2.7 in[12]). A setK ⊂ WT is τ -relatively compact if

1. sup
u∈K

∫ T

0

||u(t)||2dt <∞,

2. sup
u∈K

sup
t,s∈[0,T ],|t−s|<δ

||u(t)− u(s)||U′ → 0, δ → 0,
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3. sup
u∈K

sup
t∈[0,T ]

|u(t)|2 <∞,

hold.

Later we will use the above Lemma. Let us setδ = δk ≡ 1
k

andn = k, k ∈ N. For
each compact setK ⊂ R2, let us chooseR = Rk, l = lk andδ = δk such that(−lk, lk) ⊃
B4Rk

∪K ∪ suppu0, k = 1, 2, · · · and (3.5) and (3.7) hold for anyR = Rk, l = lk andδ = δk.
Let us setP k the probability law ofuδk

k on WT . We denote byD the family of functionsΨ
defined onH(R2) whose form are of

Ψ(u) = ψ(〈u, φ1〉, · · · , 〈u, φn〉),
for somen ∈ N, whereψ ∈ C2

0(Rn) and for allφi ∈ C∞
σ,0, i = 1, · · · , n. Let us define a linear

operatorLk onD, k = 1, 2, · · · , as

LkΨ(u) =
1

2

n∑
i,j=1

∂2ψ

∂αi∂αj
(〈u, φ1〉, · · · , 〈u, φn〉)

{
(−ΠkGu)

∗φi) · ((−ΠkGu)
∗φj)

∗}
+

n∑
i=1

∂ψ

∂αi
(〈u, φ1〉, · · · , 〈u, φn〉)

{
2 + δk

2
µ〈u,4φi〉+ 〈Πk(u · ∇)Πkφi, u〉

}
,

for Ψ ∈ D. In these settings, we formulate the martingale problem associated to our equations.

Definition 3.1. We say that a probability measureP defined on(WT ,B) is a solution of
(Lk,D)-martingale problem starting atu ∈ H(R2) if

(1) P (x(0) = u) = 1,
(2) Ψ(x)(t)−Ψ(x)(0)−

∫ t
0
LkΨ(x)(s)ds, t ∈ [0, T ],

is aBt-local martingale underP .

Note thatP k is a solution of(Lk,D)-martingale problem starting atΠku0. We shall prove
the following lemmas:

Lemma 3.2. The family of probability measures(P k)k=1,2,... is relatively compact inWT .

Suppose that Lemma 3.2 is proven, we denote byP̄ its limit. We define a linear operatorL
onD as

LΨ(u) =
1

2

n∑
i,j=1

∂2ψ

∂αi∂αj
(〈u, φ1〉, · · · , 〈u, φn〉)

{
(−Gu)∗φi) · ((−Gu)∗φj)∗

}
+

n∑
i=1

∂ψ

∂αi
(〈u, φ1〉, · · · , 〈u, φn〉) {µ〈u,4φi〉+ 〈(u · ∇)φi, u〉} .

We shall prove following lemma.

Lemma 3.3. The probability measurēP is a solution of(L,D)-martingale problem starting at
u0.

The following Lemma is used for tightness criterion of the set of probability law of(uδk
k ).

Lemma 3.4. Let (Xn) be a sequence of continuousV′-valued random variables on(Ω,F , P )
satisfying the following conditions:

1. sup
n≥1

EP{
∫ T

0

||Xn(t)||2dt} <∞.

2. For anyε, ε′ > 0, there existsδ > 0 such that for any stopping times(Tn)n≥1,
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0 ≤ Tn ≤ T, sup
n≥1

sup
t∈[0,δ)

P (||Xn(Tn + t)−Xn(Tn)||U′ > ε′) < ε holds.

3. sup
n≥1

EP{ sup
t∈[0,T ]

|Xn(t)|2} <∞.

LetPn be the law ofXn onWT . Then,(Pn)n≥1 is tight inWT .

Proof. The assertion is proven by similar methods of Lemma 3.12 in [15] hence we omit the
proof.

We shall prove Lemma 3.2:

Proof. By (3.5) and (3.7), we see that(ulk,δk,Rk

k ) satisfies the conditions1 and3 of Lemma 3.4.
Let us set

ul,δn (t) =Πnu
(l)
0 −

∫ t

0

Aδu
l,δ
n (s)ds

−
∫ t

0

ΠnB(ul,δn (s), ul,δn (s))ds−
∫ t

0

ΠnGu
l,δ
n (s) dBs

=J l,n0 + Jn,l,δ1 (t) + Jn,l,δ2 (t) + Jn,l,δ3 (t).

Let (Tk)k≥1, 0 ≤ Tk ≤ T be a sequence of stopping times. Then,

sup
k≥1

EP
{
||χRk

Jk,δk,lk
1 (t+ Tk)− χRk

Jk,δk,lk
1 (Tk)||U′

}
< C1t

1
2 ,(3.8)

sup
k≥1

EP
{
||χRk

Jk,δk,lk
2 (t+ Tk)− χRk

Jk,δk,lk
2 (Tk)||U′

}
< C2t,(3.9)

sup
k≥1

EP
{
||χRk

Jk,δk,lk
3 (t+ Tk)− χRk

Jk,δk,lk
3 (Tk)||U′

}
< C3t

1
2 ,(3.10)

hold for some constantCi, i = 1, 2, 3 independent ofk. Indeed, by noting that(−lk, lk) ⊃
B4Rk

∪ suppu0, k = 1, 2, · · · holds, we obtain

||χRk
Jk,δk,lk

1 (t+ Tk)− χRk
Jk,δk,lk

1 (Tk)||U′

≤2 + δk
2

µc1

∫ t+Tk

Tk

||ulk,δk,2Rk

k (s)||ds ≤ 2 + δk
2

µc1(

∫ T

0

||ulk,δk,2Rk

k (s)||2ds)
1
2 t

1
2 .

Thus, by (3.5), we obtain (3.8). As forJk,δk,lk
2 , we have

||χRk
Jk,δk,lk

2 (t+ Tk)− χRk
Jk,δk,lk

2 (Tk)||U′

≤
∫ t+Tk

Tk

||χRk
(ulk,δk

k (s) · ∇)ulk,δk

k (s)||U′ds ≤ c2

∫ t+Tk

Tk

|ulk,δk,2Rk

k (s)|2H(lk)ds

≤c2

(
sup
t∈[0,T ]

|ulk,δk,2Rk

k (t)|2H(lk)

)
t = c2

(
sup
t∈[0,T ]

|ulk,δk,2Rk

k (t)|2
)
t.

Thus, by (3.7), we obtain (3.9). ConcerningJk,δk,lk
3 , we see that

E||χRk
Jk,δk,lk

3 (t+ Tk)− χRk
Jk,δk,lk

3 (Tk)||U′

≤c3E

{(∫ t+Tk

Tk

||∇ulk,δk,2Rk

k (s)||2LH.S(R2;V′(lk))ds

) 1
2

}
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≤c3E

{(∫ t+Tk

Tk

|ulk,δk,2Rk

k (s)|2H(lk)ds

) 1
2

}

≤c3

(
E

{
sup
t∈[0,T ]

|ulk,δk,2Rk

k (s)|2H(lk)

}) 1
2

t
1
2 ≤ c3

(
E

{
sup
t∈[0,T ]

|ulk,δk,2Rk

k (s)|2
}) 1

2

t
1
2 .

We obtain (3.10) from (3.7). From the estimates (3.8) - (3.10) and Chebyshev’s inequality, we
obtain that(uδk

k )k≥1 satisfies the condition2 of Lemma 3.4. Thus, the conclusion follows from
Lemma 3.4.

We shall prove Lemma 3.3.

Proof. The assertion is shown similarly to Theorem 2.10 in [12] or Lemma 3.5 in [15]. By
Lemma 3.2, there exists a convergent subsequence, which is denoted by(k) again, such that
limk→ P

k = P̄ weakly inWT . From this, it follows that the condition 1 of Definition 3.1 holds
for P̄ . As for the condition 2, sinceP k is a solution of(Lk,D)-martingale problem starting at
Πku0,

EPk

{(
Ψ(x)(t)−Ψ(x)(s)−

∫ t

s

LkΨ(x)(u)du

)
Θ(x)

}
= 0,(3.11)

holds for any0 ≤ s < t ≤ T and anyBs-measurable bounded continuous functionΘ. Let
xk → x in WT . Then, we have

sup
k≥1

{(
sup
t∈[0,T ]

(
|xk(t)|2 + |x(t)|2

))
+

∫ T

0

(
|xk(t)|2 + |x(t)|2

)
dt

}
<∞.(3.12)

In addition,

lim
k→∞

(
||xk − x||L2(0,T ;HBR

) + sup
t∈[0,T ]

|〈xk(t)− x(t), φ〉|

)
= 0,(3.13)

for anyφ ∈ Cσ,0 andR > 0. Set

Gk(t, x) ≡ Ψ(x)(t)−Ψ(x)(0)−
∫ t

0

LkΨ(x)(u)du

= f1(t, x) + fk2 (t, x) + fk3 (t, x) + fk4 (t, x),

where

f1(t, x) = ψ(〈x(t), φ〉n1 )− ψ(〈x(s), φ〉n1 ),

fk2 (t, x) = −
n∑

i,j=1

1

2

∫ t

s

∂2ψ

∂αi∂αj
(〈x(u), φ〉n1 )

(
(−ΠkGx(u))

∗φi · ((−ΠkGx(u))
∗φj)

∗
)
du,

fk3 (t, x) = −2 + δk
2

n∑
i=1

∫ t

s

∂ψ

∂αi
(〈x(u), φ〉n1 )µ〈x(u),4φi〉du,

fk4 (t, x) = −
n∑
i=1

∫ t

s

∂ψ

∂αi
(〈x(u), φ〉n1 )〈Πk(x(u) · ∇)Πkφi, x(u)〉du,

and〈x(u), φ〉n1 = (〈x(u), φ1〉, · · · , 〈x(u), φn〉). Then{Gk(t, xk)}k≥1 is equicontinuous int. In-
deed,φ is a smooth function with a compact support and by (3.13),f1(t, xk) is equicontinuous.
From

(−Gxk(u))∗φi · ((−Gxk(u))∗φj)∗ ≤ Cφ|xk(u)|2,
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|〈Πk(xk(u) · ∇)φi, xk(u)〉| ≤ Cφ|xk(u)|2,

for someCφ > 0, it follows that|fk2 (t, xk)− fk2 (s, xk)|, |fk3 (t, xk)− fk3 (s, xk)| and|fk4 (t, xk)−
fk4 (s, xk)| are bounded from above by

Cφ,ψ sup
k≥1

(
sup
u∈[0,T ]

|xk(u)|2
)

(t− s),

for some constantCφ,ψ > 0. The equicontinuity of{Gk(xk, t)}k≥1 is shown by (3.12). Set

G(t, x) ≡ Ψ(x)(t)−Ψ(x)(0)−
∫ t

0

LΨ(x)(u)du,

= f1(t, x) + f2(t, x) + f3(t, x) + f4(t, x),

where

f2(t, x) = −
n∑

i,j=1

1

2

∫ t

s

∂2ψ

∂αi∂αj
(〈x(u), φ〉n1 )

(
(−Gx(u))∗φi · ((−Gx(u))∗φj)∗

)
du,

f3(t, x) = −
n∑
i=1

∫ t

s

∂ψ

∂αi
(〈x(u), φ〉n1 )µ〈x(u),4φi〉du,

f4(t, x) = −
n∑
i=1

∫ t

s

∂ψ

∂αi
(〈x(u), φ〉n1 )〈(x(u) · ∇)φi, x(u)〉du.

We will show that

lim
k→∞

Gk(t, xk) = G(t, x),(3.14)

for eacht. Sinceψ has a compact support and by (3.13), we havelimk→∞ |f1(xk, t)−f1(x, t)| =
0. Concerningfk2 , |fk2 (t, xk)− f2(t, x)| can be rewritten as∣∣∣ n∑

i,j=1

1

2

∫ t

0

∂2ψ

∂αi∂αj
(〈xk(u), φ〉n1 )

(−ΠkGxk(u))
∗φi ·

((
(−ΠkGxk(u))

∗φj
)∗ − ((−Gx(u))∗φj)∗

)
du

+
1

2

∫ t

0

(
∂2ψ

∂αi∂αj
(〈xk(u), φ〉n1 )− ∂2ψ

∂αi∂αj
(〈x(u), φ〉n1 )

)
(
(−Gx(u))∗φi · ((−Gx(u))∗φj)∗

)
du

+
1

2

∫ t

0

∂2ψ

∂αi∂αj
(〈xk(u), φ〉n1 )

(
(−ΠkGxk(u))

∗φi − (−Gx(u))∗φi
)
((−Gx(u))∗φj)∗du

∣∣∣,
which is bounded from above by

n∑
i,j=1

∣∣∣1
2

∫ t

0

∂2ψ

∂αi∂αj
(〈xk(u), φ〉n1 )

(−ΠkGxk(u))
∗φi ·

((
(−ΠkGxk(u))

∗φj
)∗ − ((−Gx(u))∗φj)∗)du∣∣∣

+
n∑

i,j=1

∣∣∣1
2

∫ t

0

(
∂2ψ

∂αi∂αj
(〈xk(u), φ〉n1 )− ∂2ψ

∂αi∂αj
(〈x(u), φ〉n1 )

)
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(
(−Gx(u))∗φi · ((−Gx(u))∗φj)∗

)
du
∣∣∣+ n∑

i,j=1

∣∣∣1
2

∫ t

0

∂2ψ

∂αi∂αj
(〈xk(u), φ〉n1 )(

(−ΠkGxk(u))
∗φi − (−Gx(u))∗φi

)
((−Gx(u))∗φj)∗du

∣∣∣
= I + II + III.(3.15)

Then,

I ≤Cφ,ψ(
n∑

i,j=1

∫ t

0

∣∣∣(((−ΠkGxk(u))
∗φj)

∗ − ((−Gxk(u))∗φj)∗
)
(−ΠkGxk(u))

∗φi

∣∣∣du
+

n∑
i,j=1

∫ t

0

∣∣∣(−ΠkGxk(u))
∗φi ·

(
((−Gxk(u))∗φj)∗ − ((−Gx(u))∗φj)∗

)∣∣∣du.
The right hand side is bounded from above by

Cφ,ψ sup
l≥1

||xl||L2(0,T ;H(R2))

(
||xk − x||L2(0,T ;HBR

) +
2∑
j=1

|∂jφ− ∂jΠkφ|2
)
,

for a large enoughR > 0, whereCφ,ψ > 0 is some constant. Similarly, we have

III ≤Cφ,ψ||x||L2(0,T ;H(R2))

(
||xk − x||L2(0,T ;HBR

) +
2∑
j=1

|∂jφ− ∂jΠkφ|2
)
,

for a largeR > 0. On the other hand,

II ≤Cφ,ψ
n∑

i,j=1

∫ T

0

∣∣∣∣ ∂2ψ

∂αi∂αj
(〈xk(u), φ〉n1 )− ∂2ψ

∂αi∂αj
(〈x(u), φ〉n1 )

∣∣∣∣ du( sup
u∈[0,T ]

|x(u)|2
)
,

for some constantCφ,ψ > 0. Here ∂2ψ
∂xi∂xj

, i, j = 1, · · · , n are bounded continuous. By (3.12)

and (3.13), it follows thatI, II andIII converge to0 ask → ∞, hence,limk→∞ |fk2 (t, xk) −
f2(t, x)| = 0. We will checkfk3 . Indeed,

|fk3 (t, xk)− f3(t, x)|

=
∣∣∣−δkµ n∑

i=1

∫ t

0

∂ψ

∂αi
(〈xk(u), φ〉n1 )〈xk(u),4φi〉du

+ µ

n∑
i=1

∫ t

0

∂ψ

∂αi
(〈x(u), φ〉n1 )〈x(u),4φi〉 −

∂ψ

∂αi
(〈xk(u), φ〉n1 )〈xk(u),4φi〉du

∣∣∣.
The right hand side is bounded from above by

δkCψ,φ sup
k≥1

(
||xk||L2(0,T ;H(R2))

)
+ µ

n∑
i=1

∣∣∣∫ t

0

∂ψ

∂αi
(〈x(u), φ〉n1 )〈x(u)− xk(u),4φi〉

+

(
∂ψ

∂αi
(〈x(u), φ〉n1 )− ∂ψ

∂αi
(〈xk(u), φ〉n1 )

)
〈xk(u),4φi〉du

∣∣∣.
For a largeR > 0, this is bounded from above by

δkCψ,φ sup
k≥1

||xk||L2(0,T ;H(R2)) + Cψ,φ||x− xk||L2(0,T ;HBR
)
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+ T
1
2Cφ

n∑
i=1

(∫ t

0

∣∣∣∣ ∂ψ∂αi (〈x(u), φ〉n1 )− ∂ψ

∂αi
(〈xk(u), φ〉n1 )

∣∣∣∣2 du
) 1

2

sup
k≥1

||xk||L2(0,T ;H(R2)).

(3.16)

Here ∂ψ
∂xi

is bounded continuous andδk → 0. From (3.12) and (3.13), we obtain that|fk3 (t, xk)−
f3(t, x)| → 0 ask →∞. As for fk4 ,∣∣∣ n∑

i=1

∫ t

0

∂ψ

∂αi
(〈xk(u), φ〉n1 )〈Πk(xk(u) · ∇)φi, xk(u)〉

− ∂ψ

∂αi
(〈x(u), φ〉n1 )〈(x(u) · ∇)φi, x(u)〉du

∣∣∣
is equal to∣∣∣ n∑

i=1

∫ t

0

∂ψ

∂αi
(〈xk(u), φ〉n1 )

(
〈Πk(xk(u) · ∇)Πkφi, xk(u)〉 − 〈Πk(xk(u) · ∇)φi, xk(u)〉

)
+
∂ψ

∂αi
(〈xk(u), φ〉n1 ) (〈Πk(xk(u) · ∇)φi, xk(u)〉 − 〈(x(u) · ∇)φi, x(u)〉)

+

(
∂ψ

∂αi
(〈xk(u), φ〉n1 )− ∂ψ

∂αi
(〈x(u), φ〉n1 )

)
〈(x(u) · ∇)φi, x(u)〉du

∣∣∣.
And this is bounded from above by

n∑
i=1

∣∣∣∣∫ t

0

∂ψ

∂αi
(〈xk(u), φ〉n1 )〈Πk(xk(u) · ∇)(Πkφi − φi), xk(u)〉du

∣∣∣∣
+

n∑
i=1

∣∣∣∣∫ t

0

∂ψ

∂αi
(〈xk(u), φ〉n1 )〈Πk((xk(u)− x(u)) · ∇)φi, xk(u)〉du

∣∣∣∣
+

n∑
i=1

∣∣∣∣∫ t

0

∂ψ

∂αi
(〈xk(u), φ〉n1 )〈((Πkx(u)− x(u)) · ∇)φi, xk(u)〉du

∣∣∣∣
+

n∑
i=1

∣∣∣∣∫ t

0

∂ψ

∂αi
(〈xk(u), φ〉n1 )〈((x(u) · ∇)φi, xk(u)− x(u)〉du

∣∣∣∣
+ Cφ

n∑
i=1

∫ t

0

∣∣∣∣ ∂ψ∂αi (〈xk(u), φ〉n1 )− ∂ψ

∂αi
(〈x(u), φ〉n1 )

∣∣∣∣ du
(

sup
u∈[0,T ]

|x(u)|2
)

=I + II + III + IV + V.

Note thatlimk→∞Πkφ(u) = φ(u) for all u. Sinceφ is aC∞-vector fields with compact support
and from (3.12), it is easy to seelimk→∞ I = 0. By proceeding similarly tofk3 , we have
limk→∞ V = 0 by (3.12) and (3.13). It is easy to check thatlimk→∞ IV = 0. In addition, we
have

II ≤ Cφ,ψ sup
k≥1

(
sup
u∈[0,T ]

|xk(u)|2
)
||xk − x||L2(0,T ;HBR

),

Thus,limk→∞ II = 0 follows from (3.12) and (3.13). Similarly, we have

III ≤ Cφ,ψ

(∫ T

0

|Πkx(u)− x(u)|2HBR
du

) 1
2

sup
l≥1

sup
u∈[0,T ]

|xl(u)|2.
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We know thatlimk→∞ |Πkx(u) − x(u)|H(BR) = 0, a.e-u. From this and (3.12), we have
limk→∞ II = 0. Thuslimk→∞ |fk4 (t, xk) − f4(t, x)| = 0. As a result, we obtain (3.14). From
equicontinuity, the convergence in (3.14) also holds uniformly int:

lim
k→∞

sup
t∈[0,T ]

|Gk(t, xk)−G(t, x)| = 0.(3.17)

LetK ⊂ WT be a compact set. Then, we obtain

lim
k→∞

sup
t∈[0,T ],x∈K

|Gk(t, x)−G(t, x)| = 0.(3.18)

By Prohorov’s theorem for the relative compactness of(P k)k≥1 in WT , for eachη > 0,

lim
k→∞

P k

(
sup
t∈[0,T ]

|Gk(t)−G(t)| > η

)
= 0.(3.19)

ForM > 0, let us setτM = inf{t > 0; |G(t)| > M}. Setη = 1. Let us defineτ k = inf{t >
0; |Gk(t)−G(t)| > η} andτM,k = min{τM , τ k}. Thenlimk→∞ P

k(τ k < T ) = 0 follows from
(3.19). In addition, we see the following uniform boundedness:

sup
k≥1

sup
t∈[0,T ]

|Gk(t ∧ τM,k)| ≤M + η.(3.20)

Let τM be left-continuous,P̄ -a.s., that is,P̄ (τM = τM−) = 1. The functionx 7→ G(t ∧
τM(x), x) is continuous on the set ofτM(x) = τM−(x). Indeed, this follows from (3.17). From
(3.18), (3.20) andτM,k → τM , we obtain

0 = lim
k→∞

EPk {(Gk(t ∧ τM,k)−Gk(s ∧ τM,k)) Θ}

= EP̄ {(G(t ∧ τM)−G(s ∧ τM)) Θ} .(3.21)

This shows that

Ψ(x)(t)−Ψ(x)(0)−
∫ t

0

LΨ(x)(u)du,

is a local martingale under̄P . The proof is complete.

By Lemma 3.3, we see that

Mφ(t, x) ≡ 〈x(t), φ〉 − 〈u0, φ〉

− µ

∫ t

0

〈x(s),∆φ〉ds−
∫ t

0

〈(x(s) · ∇)φ, x(s)〉ds,(3.22)

and

Mφ(t, x)2 −
∫ t

0

(−Gx(u))∗φ · ((−Gx(u))∗φ)∗du,

are local martingales. Namely,Mφ is a local martingale whose quadratic variation is given by

〈〈Mφ,Mφ〉〉(t) =

∫ t

0

(−Gx(u))∗φ · ((−Gx(u))∗φ)∗du.

By (3.5) and (3.7), we obtain

sup
k≥1

EPk

{
sup
t∈[0,T ]

|x(t)|2HBR

}
<∞,(3.23)
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sup
k≥1

EPk

{∫ T

0

||x(t)||2VBR
dt

}
<∞,(3.24)

for a largeR > 0. By lower semicontinuity of

x 7→ sup
t∈[0,T ]

|x(t)|2HBR
, x 7→

∫ T

0

||x(t)||2VBR
dt,

we obtain

EP̄

{
sup
t∈[0,T ]

|x(t)|2HBR
+

∫ T

0

||x(t)||2VBR
dt

}
<∞,(3.25)

from (3.23) and (3.24). From this, we have

EP̄

{∫ t

0

|(−Gx(u))∗φ · ((−Gx(u))∗φ)∗|du
}
<∞,

for eacht ≥ 0. Thus,M is a martingale. By applying the representation theorem of martingale
(see e.g. [7], Theorem 8.2), there exist a probability space(Ω′,F ′,P′) with a filtration{F ′

t}t≥0

and a two-dimensionalF ′′
t = Bt × F ′

t-Brownian motionB̃ defined on(Ω′′ = WT × Ω′,F ′′ =
B × F ′,P′′ = P̄ × P′) such that for anyφ ∈ C∞

σ,0 andt ∈ [0, T ], we have thatP′′-a.s.,

Mφ(t, x, ω′) =

∫ t

0

(−Gx(u, ω′))∗φ dB̃(u, x, ω′),(3.26)

whereMφ(t, x, ω′) = Mφ(t, x) andx(t, ω′) = x(t). SetX(t, x, ω′) = x(t, ω′). Then from
(3.22) and (3.26), for eachφ, with probability one,

〈X(t), φ〉 − 〈u0, φ〉 − µ

∫ t

0

〈X(s),∆φ〉ds

−
∫ t

0

〈(X(s) · ∇)φ,X(s)〉ds =

∫ t

0

(−GX(s))∗φ dB̃(s),(3.27)

holds. Namely,{X(t), B̃(t)}t≥0 on (Ω′′,F ′′, {F ′′
t }t≥0,P

′′) satisfies the properties 3 and 4 of
Definition 2.1. The properties 1 and 2 of Definition 2.1 are checked as follows. It is clear
that X(t) is anF ′′

t -adapted process. Furthermore, (3.25) impliesX ∈ L∞(0, T ;HBR
) ∩

L2(0, T ;VBR
), a.s. The proof of Theorem 2.1 is complete.

4. EXISTENCE OF WEAK SOLUTIONS OF (3.1)

In this section, we will give proofs about the a priori estimate (3.5) and Lemma 4.1 appearing
in Theorem 2.1. Although the following lemma is similar to [8], we give the proof here for the
reader’s convenience.

Lemma 4.1. There exists a unique solutionul,δn of (3.1).

Proof. We will take several steps to prove this lemma.

step 1.Let Πn be the orthogonal projection onto the linear subspace spanned by{e(l)j }|j|≤n
Let us setul,δn = Πnu

l,δ. Note thatul,δn can be rewritten as a Fourier expansion with respect
to {e(l)k }k∈Z2

0
, whereZ2

0 = Z2\{0}, that is,ul,δn =
∑

|k|≤n u
l,δ,k
n (s)e

(l)
k , whereul,δ,kn stands for

the Fourier coefficient:ul,δ,kn = 〈ul,δn (s), e
(l)
k 〉l. Let us setu(l),j

0 = 〈Πnu
(l)
0 , e

(l)
j 〉l, ul,δ,jn (t) =
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〈ul,δn (t), e
(l)
j 〉l. Now let us consider the following finite dimensional simultaneous stochastic

integral equations:

ul,δ,jn (t) = u
(l),j
0 +

∫ t

0

Fj(u
l,δ,1
n (s), · · · , ul,δ,nn (s))ds(4.1)

+

∫ t

0

σj(u
l,δ,1
n (s), · · · , ul,δ,nn (s))dB(s), j = 1, · · · , n,

where

Fj(u
1, · · · , un) = 〈−Aδe(l)j + ΠnB(

∑
|k|≤n

uke
(l)
k , e

(l)
j ),

∑
|k|≤n

uke
(l)
k 〉l

σj(u
1, · · · , un) = −(ΠnG

∑
|k|≤n

uke
(l)
k )∗e

(l)
j ,

that is,

u(t) = u0 +

∫ t

0

F (u(s))ds+

∫ t

0

σ(u(s))dB(s),

where

u(t) = (ul,δ,1n (t), · · · , ul,δ,nn (t)), u0 = (u
(l),1
0 , · · · , u(l),n

0 ),

F (u) = (F1(u), · · · , Fn(u))′, σ(u) = (σ1(u), · · · , σn(u))′.
Let us set

TR =

{
inf{t; |u(t)| ≤ R}, if {} is not empty,
∞, otherwise.

Then, we see that

E{|u(t ∧ TR)|2} ≤ |u0|2 + C

∫ t

0

E{|u(s ∧ TR)|2}ds,

holds for someC independent ofR. Thus, we obtainE{|u(t)|2} <∞. Furthermore,

|F (u)− F (v)| ≤ CR|u− v|, for every|u|, |v| ≤ R,

|σ(u)− σ(v)| ≤ C|u− v|,
holds for some constantC,CR > 0. Therefore, (4.1) has a unique strong solution for eachδ > 0
andn, l ∈ N.

Lemma 4.2. The following estimate holds:

EP
{
||ul,δn (t)||2l

}
≤ ||u(l)

0 ||2l .(4.2)

Proof. Here we use the same notations as introduced in the proof of Lemma 4.1. By applying
Itô’s formula to〈ul,δn (t), e

(l)
j 〉2l ,

〈ul,δn (t), e
(l)
j 〉2l − 〈ul,δn (t), e

(l)
j 〉2l(4.3)

= (2 + δ)µ

∫ t

0

〈ul,δn (s), e
(l)
j 〉l〈4ul,δn (s), e

(l)
j 〉lds

+ 2

∫ t

0

〈Πn(u
l,δ
n (s) · ∇ul,δn (s)), e

(l)
j 〉l〈ul,δn (s), e

(l)
j 〉lds+ martingale

+ 2µ

∫ t

0

〈e(l)j ,
∂ul,δn (s)

∂x1

〉2l + 〈e(l)j ,
∂ul,δn (s)

∂x2

〉2l ds,
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whereul,δn (s) ∈ C∞
per,σ(l) and we use the integration by parts in the last term. Let us multiply

(4.3) by(λ
(l)
j µ

−1)2,

〈〈ul,δn (t), e
(l)
j 〉〉2l − 〈〈ul,δn (t), e

(l)
j 〉〉2l(4.4)

= (2 + δ)µ

∫ t

0

〈〈ul,δn (s), e
(l)
j 〉〉l〈〈4ul,δn (s), e

(l)
j 〉〉lds

+ 2

∫ t

0

〈〈Πn(u
l,δ
n (s) · ∇ul,δn (s)), e

(l)
j 〉〉l〈〈ul,δn (s), e

(l)
j 〉〉lds+ martingale

+ 2µ

∫ t

0

〈〈e(l)j ,
∂ul,δn (s)

∂x1

〉〉2l + 〈〈e(l)j ,
∂ul,δn (s)

∂x2

〉〉2l ds,

holds. Since{(µλ(l)
j

−1
)

1
2 e

(l)
j }j∈Z2

0
is orthonormal system inVper(l), multiply (4.4) byµλ(l)

j

−1
,

then sum fromj = 1 to |n|, we have

||ul,δn (t)||2l − ||ul,δn (0)||2l(4.5)

≤ (2 + δ)µ

∫ t

0

〈〈ul,δn (s),4ul,δn (s)〉〉lds

+ 2

∫ t

0

〈〈Πn(u
l,δ
n (s) · ∇ul,δn (s)), ul,δn (s)〉〉lds+ martingale

+ 2µ

∫ t

0

||∂u
l,δ
n (s)

∂x1

||2l + ||∂u
l,δ
n (s)

∂x2

||2l ds,

Note that the integrand of the second term of (R.H.S.) is equal to〈〈(ul,δn (s) ·∇ul,δn (s)), ul,δn (s)〉〉l.
As for the first term of (R.H.S.), we have

〈〈ul,δn (s),4ul,δn (s)〉〉l = −||∂u
l,δ
n (s)

∂x1

||2l − ||
∂ul,δn (s)

∂x2

||2l ,

by using the integration by parts formula. On the other hand, we see

〈〈Πn(u
l,δ
n (s) · ∇ul,δn (s)), ul,δn (s)〉〉l = 0.(4.6)

Indeed, in the case of two dimensional torus, there exists a stream functionφ(s) satisfying
ul,δn (s) = ∇⊥φ(s). (4.6) is shown by using suchφ (see [6] Proposition 6.3). However, it does
not hold in the case of higher dimension in general. As a result,

EP
{∥∥ul,δn (t)

∥∥2

l

}
≤ ||u(l)

0 ||2l .(4.7)

The proof is complete.

Lemma 4.3. The following estimates hold:

sup
n,l

E

{
sup
t∈[0,T ]

|ul,δn (t)|2l + δµ

∫ T

0

||ul,δn ||2l

}
<∞.(4.8)

and

sup
n,l

E

{
sup
t∈[0,T ]

|ul,δn (t)|pl

}
<∞, for p ∈ [2,

2 + δ

2
].(4.9)

Furthermore, in particular ifp = 2, the following estimate holds:

sup
n≥1,δ>0

E

{
sup
t∈[0,T ]

|ul,δn (t)|2l

}
≤ C1||u(l)

0 ||2l ,(4.10)
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for C1 > 0 independent ofn andδ. In addition, letK ⊂ R2 be a compact set. For an integerl
andR > 0 satisfying(−l, l)2 ⊃ B4R ∪ ΩK ∪ suppu0. Then,

sup
n≥1,δ>0,R>0,l∈N

E

{
sup
t∈[0,T ]

|ul,δ,Rn (t)|2
}
≤ C2||u0||2,(4.11)

holds for some constantC2 > 0 independent ofn, δ, l andR.

Proof. By Itô’s formula applied to|ul,δn (t)|pl , p > 2, it is easy to see that

|ul,δn (t)|pl ≤ |Πnu
(l)
0 |

p
l

+ µp

(
−2 + δ

2
+ p− 1

)∫ t

0

|ul,δn (s)|p−2
l ||ul,δn (s)||2l ds

+ p

∫ t

0

|ul,δn (s)|p−2
l (ΠnGu

l,δ
n (s))∗ul,δn (s)dB(s),

Then,supnE
{
|ul,δn (t)|pl

}
<∞ holds ifE

{
|u(l)

0 |
p
l

}
<∞ and

−2 + δ

2
+ p− 1 ≤ 0, that is,p ∈ [0, 2 +

δ

2
].

Clearly, this condition ensures that

sup
n

E

∫ t

0

|ul,δn (s)|p−2
l ||ul,δn (s)||2l ds <∞,

holds. Note that the following trivial inequality holds:

|Gu|2LH.S(R2;Hper(l)) ≤ 2µ||u||2l + λ|u|2l , u ∈ Vper(l), λ > 0.

Then the stochastic term can be estimated as follows:

E

{
sup
s∈[0,t]

∣∣∣∣∫ s

0

p|ul,δn (s′)|p−2
l (ΠnGu

l,δ
n (s′))∗ul,δn (s′)dB(s′)

∣∣∣∣
}

≤CE

{(∫ t

0

p2|ul,δn (s′)|2p−4
l |(ΠnGu

l,δ
n (s′))∗|2LH.S

|ul,δn (s′)|2l ds′
) 1

2

}
,

where we have used the Burkholder’s inequality. The right hand is bounded from above by

CE

{(∫ t

0

p2|ul,δn (s′)|2p−2
l

(
2µ||ul,δn (s′)||2l + λ|u|2l

)
ds′
) 1

2

}

≤CE{(
∫ t

0

( sup
s∈[0,t]

|ul,δn (s)|pl )(2µp
2||ul,δn (s′)||2l |ul,δn (s′)|p−2

l

+ λp2( sup
σ∈[0,s′]

|ul,δn (σ)|pl )ds
′)

1
2}.

Furthermore, the right hand is bounded from above by

1

2
E

{
sup
s∈[0,t]

|ul,δn (s)|pl

}
+ C2µp2E

{∫ t

0

||ul,δn (s′)||2l |ul,δn (s′)|p−2
l ds′

}

+
C2

2
λp2

∫ t

0

E

{
sup
σ∈[0,s′]

|ul,δn (σ)|pl

}
ds′,
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As a result, by Gronwall’s lemma, (4.9) follows forp ∈ [2, 2 + δ
2
]. As for (4.10), it is easily

obtained by using (4.7) in Lemma 4.2. Finally, concerning (4.11), it is obtained by notingl is
chosen as(−l, l)2 contains both the support ofu0 andB4R. The proof is complete.
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