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1. INTRODUCTION

The functional integral equations of various types play a very important role in numerous
mathematical research areas. An interesting feature of functional integral equations is its role
in the study of many problems of functional differential Equations see for instahcéel[2], [3] and
[13]-[18].

In the functional equation case, there are many articles that discusses the existence of integrable
solutions. For example, in[17] and [19] the authors discuss the existence of integrable solutions
for functional equations of type

o) = 9(0) + £t [ Kt 9)a(6(9)ds)
and
02(t)
o) = ka6 () + ot [ K9 s, (0a(s))d)

In the functional inclusions case, there are many authors discusses the existence of some type
of solutions see for instancel [1], [11], 112] and [14].
In [5] and [6] the author discuss the existence of solutions of the functional integral inclusion

o(t)
x(t) € q(t) +/0 k(t,s)F (s, xz(n(s)))ds.

He also proved (se&l[7]) the existence of solutions of the functional integral inclusion

o(t) o(t)
x(t) € p(t) —{—/0 ki(t,s)F(s,x(0(s)))ds —{—/0 ko(t, s)G(s,x(n(s)))ds.

In [13] the authors discuss the existence of integrable solution for nonlinear functional integral
inclusion of type

z(t) € p(t) + F(t, 17 f(t, z((1))))-
In the present paper, we investigate the existence of integrable solutions for the functional inte-
gral inclusion

o1(t)
x(t) € F(t,/o ki(t,s)fi(s,x(61(s)))ds)

oa(t)
(1.1) + G(t,/o ka(t, s)g1(s, x(02(s)))ds), t € [0,1] =1

and some properties of the set of solutions, whére/ x R — P(R) andG : I x R — P(R)
are multivalued functions ankh, k., fi, g1, 01, 62, 01,09 are functions satisfying special
hypotheses.

As an example we take the following functional inclusion

z(t) € F(t, I°fi(t,2(01()))) + G(t, IP g1 (t, 2(62(1)))),

and as an application we give the existence of solutions for the following nonlocal differential
inclusion

2'(t) € F(t, D7x(60,(t))) + G(t, D’z(h5(1)))

n

x(0) + Zx(tz) =c
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2. PRELIMINARIES

In this section, we present some definitions, notations and theorems which will be used in
this paper (see [8],[10], [16], [22] and [23]).
Let L'(I) = L'(I,R) be the Banach space of all Lebesgue integrable functiah on
Let P.,(Y") be the family of nonempty compact subsets of
Let P, .,(Y) be the family of nonempty closed and convex subsets.of
Let P.;;,q4(Y") be the family of nonempty closed and bounded subse}s of
Let ., ..(Y') be the family of nonempty compact and convex subsets.of
Let (X, d) be a metric space and 1dtC X, = € X and d(z, A) = inf{d(a,z); a € A}.

Definition 2.1. [4,[16] Forany A, B € P,;,4(X), the Hausdorff distance is defined by

Hy(A, B) = max {Sup d(a, B), supd(b, A)} .

acA beB

Now we give the definitions of Carathéodory-Lipschitz multivalued maps and single-valued
maps.

Definition 2.2. [4,[16] A multivalued mapping’ : I xR — P.;;,4(R) is Carathéodory-Lipschitz
if the following conditions hold

(a) there existg. > 0 such that

foreacht € I and allz,y € R,
(b) t — F(t,z) is measurable for alf € R.

Definition 2.3. [4, [16] A single-valued mapping : / x R — R is Carathéodory-Lipschitz if
the following conditions hold

(a) there existg. > 0 such that

[f(t,x) = f(t,y)] < Lz -yl

foreacht € [ and allz, y € R,
(b) t — f(t,z)is measurable for alt € R.

Let £ be a Banach Space.

Definition 2.4. [8] A continuous nondecreasing functien: R, — R, wherey(0) = 0 is
called D—function.

Definition 2.5. [8] A multivalued function@ : £ — P, .,(E) is said to be nonlinear
D—contraction if there is & —function such that

Hq(Q(x), Q(y)) < ¥(d(z,y))
forallz, y € E, wherey(r) < r.

Remark 2.1. A simple example oD —function isy : R, — R, defined by
W(r) = kr, k>0,
and a simple example of nonlineBx—contraction is a contraction multivalued function.

Also, we give the auxiliary theorems that we need in the sequel.
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Theorem 2.1.[4,[16] Let(/, 3(I)) be a measurable spac&, C & an interval,(Y, d) a Polish
space (i.e., complete and separable), and

F:IxX—P,Y)

be a Carathéodory-Lipschitz.
Then F' admits a Carathéodory-Lipschitz selectigh: I x X — Y (Where the Lipschitz
constant off is less or equal then the Lipschitz constanfoy.

Theorem 2.2.[20] Let (T, T, ) be a complete finite measure spakebe a separable Banach
space andZ be a complete, separable, metric space. Let

F:TxZ— P(Y)

be a closed, convex (Possibly empty-)valued correspondence such that

(i) F(.,.)is measurable with respect to the-algebrar ® B(Z),
(i) foreacht € T, F(t,.) is lower semicontinuous.

Then there exists a Carathéodory-type selectionffoiMoreover this selection is jointly mea-
surable.

Later, we also shall use the theorems cited below,
For an arbitrary functiom € L! let us put

t
(Kx)(t) = / ki(t,s)x(s)ds, t € Ry, i =1,2.
0
The operatords; defined in such a way is the well known linear \Volterra integral operators.

Theorem 2.3. [21,[24] If the Volterra integral operatords; transform the spacé! into itself
then they are continuous.

Theorem 2.4.[8] Let X be a closed, convex and bounded subset of a Banach #pacd let
S, T:X — P, .(F) be two multivalued functions such that

e (a) S is a nonlinearD—contraction,
e (b) T'is compact and closed,
e (C)Sxr+TxcC Xforall z € X.

Then the operator inclusion € Sx + Tz has a solution and the set of all solutions is compact
in E.
Theorem 2.5.[10] (Kolmogorov compactness criterion) L@tC LP(I,R), 1 < p < oo, if

e (i) Qis bounded in.?(I,R),
e (i) x;, — z ash — 0, uniformly with respect ta € (2,

then( is relatively compact irL?(/,R), where

t+h
zp(t) = %/t x(s)ds.

Theorem 2.6.[9](nonlinear alternative of Leray-Schauder type) o
LetU be an open subset of convex gein a Banach spac&’. Assumé € U and letH : U —
D be a compact and continuous operator, then either

e (al) H has a fixed point i/, or

e (a2) there existy € (0,1) andx € 9U such thatr = yHz.
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3. THE MAIN RESULTS
In this section, we state and prove our main results.

Theorem 3.1. Assume that the following conditions hold
e (C1) the functionds<;, K, mapL! into itself,
e (C2) the mitivalued functiod' : I x ® — P,, .,(R) is Carathéodory-C-Lipschitz,
e (C3) the multivalued functio&r : I x R — P, .,(R) is measurable with respect to the
oc—algebrar ® B(R) and for eacht € I, G(t, .) is lower semicontinuous,
e (C4) there exists a function; € L' (I, R, ) andbe > 0 such that

|G(t, z)|| = sup{|v], v € G} < ag(t) + bgl|x|, ae, t €1

forall z € R.
¢ (C5) the functionf; is measurable in the first variable anrg—Lipschitz in the second
variable.
e (C6) the functiory, is carathéodory and there exigf, € L'(I,R,) andb,, > 0 such
that
lgs (8, 2)]| < ag, () + by, |2, ace, t e
forall z € R.

e (C7)oy, 02 : I — I are continuous functions angh, 6, : (0,1) — (0,1) are
absolutely continuous and there exists a constaits M, > 0 such that
01(t) > My, 05(t) > Mo, a.e.t € (0,1).

e (C8) suppose that there exists a real number 0 such that

Jo 1E G J7 k() fi(s, 0)ds) [ ,dt + llac ]| + bl Kol llag | + bobe | Kal 55 _,

1 — Cer1| K| ’
My

CCl |K1|
My
Then, problel has integrable solutions and the set of solutions is compactink).

Proof. SinceF(t,.) is C-Lipchitz, therva € F(t, [ (%) ki(t,s)fi(s,x(01(s)))ds),

Co | K o1(t)
la] < A} — |2+ 1F (R, /O ku(t, ) f1(s,0)ds)) |, t € 1

indeed, we have

o1(t) o1(t)
IF(t, / it )£ (s, 2(01(5)))ds) || 11, = Ha(F(t, / it ) f1 (s, 2(61()))ds), 0)

< 1.

a1(t) ai1(t)
< Hd(F(t,/O ki(t, s)fl(s,x(ﬁl)(s))ds),F(t,/o ki(t,s)fi(s,0)ds))
o1(t)
FHA (P2, /0 k(. 5) f1(s, 0)ds), 0)
a1(t) ai(t)
< Hy(F(t, /0 k(. 8) fi(s, 2(61(s)))ds), F (&, /0 Fa(t, 8) f1(s, 0)ds))
o1(t)
P [ A0

Cc K o1()
< SNl 4 1P [ k) s, 0l Vi€ 1
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hence for any: € F(t, [T ky(t, ) fi(s, 2(61(s)))ds),

1|K1| Ul(t)
|CL’ < TH || + ||F( ] k1<t75)f1(870)d8>”Hd‘

Let B, be the open ball of centérand radius:, (i.e..B, = {z € L*; |lz[, <r}).
Now, we defined : B, — P(L'(I,R)) as follows

o1(t)
Ax = {u € L'(I); u(t) = f(t,/o ki(t,s)fi(s,x(61(s)))ds)}

where f is Carathéodory-C-Lipschitz selection Bf andB : B, — P(L'(I,R)) by

oa(t)
Bx = {ve L'(I); v(t) = g(t/0 ka(t, s)g1(s, x(02(s)))ds) }

whereg is Carathéodory selection 6f.
Hence the problem (1) is equivalent to the operator inclusion

z(t) € (Az)(t) + (Bx)(t).
First we prove thatl has convex, compact values and is a contraction.
Step 1. Letusy, uz € Az, x € B,, then there arg,, f; € F' such that

o1(t)
us(t) = fult, / ity ) (s, 2(61(5)))ds)
and

o1(t)
us(t) = falt, / it ) (s, 2(0(5)))ds)

and let\ € [0, 1],
Aug(t) + (1 — Nus(t) =

o1(t) o1(t)
)\fQ(t,/O (2, s)fl(s,x(el(s)))ds)+(1—)x)fg(t,/O k(1 5) f1 (5, (01 (5)))ds),

sinceF has convex values, then

o1(t) o1(t)
Aalt, / it ) f1 (5, 2(6:(5)))ds) + (1 N) fa(t, / it ) f1 (s, 2(61(s)))ds) €

o1(t)
F(t, / it ) f1 (s, 2(61(s)))ds),

thereforehu, + (1 — M)us € Az, henceAx is convex for each € B, .
Step 2. Let u,, be a sequence iAz, = € B,, then there exists a sequengesuch that

o1(t)
unlt) = filt, / it )1 (s, 2(01(5))) ds)

sincef’ has compact values then there exists a subsequence dengted/bigh is convergent
to f € F' (we takeu(t t, [y o1(9) ki(t, s)fi(s,x(01(s)))ds)), this implies thatAz is compact
for eachr € B,.

Step 3.letz, y € B,, anduy € Az, then

o1(t)
us(t) = folt, / it ) f1 (5 2(6:(5)))ds)
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for somef, € F, since

o1(t) o1(t)
H(F(t,/o ki (t, s)fl(s?x<91(s)>)ds)>F(t>/0 ki(t,s)fi(s,y(01(s)))ds))

CCl|K1|
[z = yll1,

we obtain that, there exists

o1(t) o1(t)
wlt) = £(t, / it ) fi (s, y(6:()))ds) € F(t, / ity ) f1(s,y(62(s)))ds)

such that

Ce|K
[ 1500 [ b, 5 20005~ wiojar < Oy, ),
Thus the multi-valued operatéf defined by
U = St 51 ta ey ntswor e

where (t) = {w| [y 1fa(t, [; ka(t s) fi(s, 2(61(5)))ds) — w(t)|dt < “4F [z =y},
has nonempty values and is measurableugdme a measurable selection 0@t (which exists
by Kuratowski-Ryll-Nardzewski selection theorem),

thenus(t) € F(t, [T ki (t, 5) f1(s,y(01(s)))ds) (us € Ay) and

' Cei|K
| st~ ws(olae < 4y
0

hence, we obtain
OCl |K1|

From this and the analogous inequality obtalned by interchanging the rolearafy we get
that

|ug — usl[; <

LBl —
for all z,y € B,, This shows that! is a multl-valued contraction sinc—%f% <1.

Now, we show thai3 is compact, lef2 be bounded set i!(7), lety € ©, and letv € By,
then

Hd(Axv Ay)

oa(t)
o(t) = gt / Ealt, )91 (5. y(62(5)))ds)

this implies that

0(6)] < aalt +ba\/ kalt, )01 (5,(65(5)) s
<o)+ b0l [ R, ) + by Os(5) s
< ac(t) + bl Kallag | + bl Fel [ y(6a())lds

therefore

Y
Joll < Nl + bl ol | + bty Kol 21
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henceB) is bounded inL!(7), it remains to show that, — v in L*(I) ash — 0 uniformly
with respect ta € B(2, we have the following

th—le—/ lop(t) — v(t)|dt = /|—/ (t)ds|dt
< [ [t [ kst st

(t)
—lt, / kalt, m)gn (n, y(B () ) dsdt

Now g € L'(I) and the functioni — 72" ky(t, 5)g1 (s, y(62(s)))ds is in L' (), then (cf. [23])

1

t+h oa(s) o2(t)
E/t |g<57/0 k2(87T).gl(T?y(eQ(T)))dT)_g(t?/O k2(t777)91(7779(92(77)))6177)’615 — 0

ash — 0, therefore we deduce th&X is relatively compact.
Now, letz,, — = in L'(I), andv, € Bz, such that,, — v in L*(I).
We havev,, € Bz, implies that

o2(t)
0nlt) = gu(t, / Ealt, )91 (5, 2a(6a(s)))ds)

whereg,(.,.) € G(.,.) sinceg, andg, are continuous in the second variable and from the
compactness of values 6f and by the Lebesgue dominated convergence theorem we have

O'Q(t)
fim 0a(®) =gt [l a(t 55,02 (5))d)
n—+oo 0 n—-+oo

this implies that

oa(t)
u(t) = g(t,/o ka(t, s)g1(s, 2(02(s)))ds) € (Bx)(t)

whereg is limit of g,,, henceB is closed.
Finally lety € Az + Bz, x € B,, then

Ce K o1(t)
y(t)] < — 1|| 1+ [|F(2, /0 ki(t,s)f1(s,0)ds)] m,
ba| K bab,, | K M
+lac|| + ba|Kalllag, || + babg, | Ka| i

< CClKl

Ul(t) r
r+ IIF(ZB/ Fi(t, ) fi(s,0)ds) |, + llacl| + b [ Ko llag, || + babg, | Ka| 7 <7
0

[yl <7

this implies thatdz + Bx C B, for all z € B,, this all conditions of Theorein 3.3. are satisfied
then, problel has integrable solutions and the set of solutions is com@ga¢f Jn

Example 3.1. Let the following functional inclusion
1
x(t) € F(t,[o‘éx(t)) +G(t, I°x(t)), t € I = [0,1]

where
F:IxS— Py,R),

AJMAA Vol. 22(2025), No. 2, Art. 2, 13 pp. AIMAA


https://ajmaa.org

ON THE EXISTENCE OFSOLUTIONS FORFUNCTIONAL INTEGRAL INCLUSIONS 9

= [-1,1], F(t,z) = (t* + z*)S henceF is 2—Lipschitz in the second variable we have
(F( ) F(t,y)) < 2(]|z — y||)) and is measurable in the first variable. For

G:IxR— P(R),

G(t,2) :{ [{0} ifx =0,

0, 1] otherwise,

defined by

G is{® B(R) measurable and lower semicontinuous in the second variable, now we can apply
the preceding theorem to this example,

to see this it is sufficient to take

(1) o1(t) = 0’2( ) = 01(t) —912(t) =1, My =M, =1,

(@) |Ky| = F(a+1 K| = INCESIE

(3) fi(t,x) = —x hencef; is measurable in the first variable a@dLipschitz in the second

variable,

(4) ag =1, bg = Const >0, a5 =0, by, =1,
and hence we can find> 0 such that the conditio@’8 is satisfied.
Now, we give another existence theorem for the prolilerh 1.1, the proof is based on fixed point
theorem of Leray Schauder.

Theorem 3.2. Assume that the following conditions hold
e (C1) the functions<;, K, mapsL! into itself,
e (C2) the mitivalued functiod#’ : I x R — P., .,(R) is measurable with respect to the
oc—algebrar ® B(R) and for eacht € T', F'(t, .) is lower semicontinuous,
e (C3) there exists a functiom- € L'(I,R,) andbr > 0 such that

|F(t, )]l = supf[v], v € F} < ap(t) + brlal, ae, te 1

forall z € R.

e (C4) the multivalued functiot : I x R — P,, .,(R) is measurable with respect to the
oc—algebrar ® B(R) and for eacht € T', G(t, .) is lower semicontinuous,

e (C5) there exists a function; € L'(I,R,) andbe > 0 such that

|G(t, z)|| = sup{|v], v € G} < ag(t) + bg|x|, a.e, t €1

forall z € R.
e (C6) the functionf, is carathéodory and there existg, € L'(I,R,) andb;, > 0 such
that
I fit, )| < ap(t)+ by x|, ae, tel
forall z € R.
e (C7) the functiory, is carathéodory and there exists, € L'(I,R,) andb,, > 0 such
that
191, 2)[| < ag, (t) + bg,|z], a.e, t €I
forall z € R.

e (C8) oy, 0o : I — I are continuous functions angh, 6, : (0,1) — (0,1) are
absolutely continuous and there exist constavts M, > 0 such that)’(¢); > M, and
0'(t)y > My Vit € (0,1).

¢ (C8) suppose that there exists a real number 0 such that

larll + br|Killlag | + llacl| + bl Kalllag || _

brbs | K| babg, | K2|
1= (—r—+ 35 )
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Then, problern I]1 has an integrable solution.

Proof. We have from the condition&'2) and (C4) there exist Carathéodory selections
functions f, ¢ of the multivalued mappings’, G respectively, hence the functional inclusion
[1.7 is transformed into the following functional equation

o1(t) o2(t)

x(t) = f(t, /O ki(t, s) fi(s), z(01(s))ds) + g(t, /0 ka(t, s)g1(s), 2(02(s))ds) (2)

now we define the following operator
H:L'I,R) — L*(I,R)
by
o1(t) o2(t)

(H0) = 1t [ bt )il al@(0)as) 490t [ alts)on(s,2(6a(s))ds)

Letx, — xin L'(I,R), then

o1(t) oa(t)
() (1) = f(. / it ) f1 (5, 2a(62(5)))ds) + g, / Falt, )91 (5, 2a(6a(s)))ds)

hence

o1(t)
lim (Hz,)(t) = lim [f(t,/o ki(t,s)fi(s, x,(01(5)))ds)

n—-+o0o n—-4oo

o1(t)
Tt / Ealt, )91 (5, 2a(6a(5)))ds)]

and by Lebesgue dominated theorem we get

o1(t)
lim (Ha,)(t) = /(. / kit ) (s, 2(61(s))ds)

n—-+oo

oa(t)
+9(t7/0 ka(t, s)g1(s, 2(02(s)))ds) = (Hx)(t)

thereforeH is continuous.
Now, we will show that is compact, lef2 be a bounded subset 6f (7, R) we will prove that
HQ is bounded inL! (I, R), to see this let € Q (i.e.,3R > 0, such thaf|z|| < R)

a1(t) aa(t)
(Hz) ()] < |/(t. / it )£ (s, (01 (5)))ds)] + lg(t, / Ealt, )91 (5, 2(6a(5)))ds)|
and from the conditiotiC'3) and(C5) — (C?) we get

(Ha)(0)] < ar(t) + br / " 9l 9) b0, sl

) + b / (g (5) + by |£(62(5))] ]|
hence
X
()01 < ar @) + b3 o]+ b L2001+ a0 + ol ol + b,
therefore
R R
()0 < ol + brlKilllag ] + by 3 + gl + bl Kalllag | + by )
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this implies that7 (2 is bounded in.! (I, R).
Now we show thatHx), — (Hz) in L'(I,R) ash — 0 uniformly with respecttqHz) € ,
we have the following

1 1 t+h
(12 = )l = [ (o) = ()0l = [ [ o = ol

= [ [ ) - e
< [ e [ ke s oo

o1(t)
~f(t, /0 Fa(t, ) f1(s, 2(61(s)))ds) | drdt

; /% / 9(7, /OW) ka(r. 5)gn (s, 2(0(5)))ds)

Ug(t)
—lt, / kol )1 (5, (0a(5)))ds) [drt
0
sincef, fi, g, g1 € L*(I,R), then (cf. [21 3])

/ / / Fa(7, )15, 2(61(5))ds)

—f(t, / ki(t,s)fi(s,x(61(s)))ds)|drdt

/ /Hh /02 ’ ko (T, 8)01(s, (02(s)))ds)

- (t,/ ko(t, s)g1(s, x(02(s)))ds)|drdt — 0O
as "
h— 0
therefore we deduce thak() is relatively compact, that ig/ is a compact operator.
SetU = B, = {v € L'(I,R); ||z| < r}andD = X = LY(I,R). Then in the view of
assumptior{C'8) condition(a2) of Theoreni 2.6 does not hold, Theorem| 2.6 implies ftidtas
a fixed point, which is solution of the problémL.1, this completes the proof.

Example 3.2. As an application of theorem we take the following functional inclusion (we take
ki(t,s) = Sk, ka(t,s) = = andoy (1) = oa(t) = 1)

I'(B)
(3.1) w(t) € F(t, 1°fi(t, x(01(1)))) + G(t, 171 (t, 2(02(1))))
which is used to get the solutions of the following differential inclusion
(3.2) 2'(t) € F(t, D7z (0,(t)) + G(t, D°x(04(t)), t € [0, 1]

with nonlocal condition
0)+Zfﬁ(ti) =c, 0<t;<ty<..<um <1,
we have the following result

Theorem 3.3. Assume that the following conditions hold
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e (1)F is measurablé—Lipschitz,

e (2)G is measurable with respect to—-algebrar ® B(R) and for eacht € T', G(t,.) is
lower semicontinuous.,

e (3) there exist a functiong € L'(I,R ) andbg > 0 such that

|G(t, 2)|| = sup{[vl, v € G} < ag(t) + balz]), ae, t €1

e (4)0, 65 :(0,1) — (0,1) are absolutely continuous functions, and there exist
My, M, > 0such thaty|(t) > M, and@, > My,
e (5)3r > 0 such that

1 r
Jo 1F(s,0)|m,ds + |ac|i + ba oy
1—-——C
I'(8+1) M2

Then the problein 3.1 has integrable solutions and the set of solutions is comgact in

<T.

To get the solutions ¢f 3.2, we assume,

y(t) = 2/(t),
we get
2(t) = 2(0) + /O y(s)ds = 2(0) + I'y(t)
therefore
o()
#(0(t)) = 2(0) + / y(s)ds
hence

this implies that

£(0(1)) = 2(6(0)) + / y(s)ds

6(0)
and therefore
Dra(0(t)) = 170 (t)y(0(t))
hence the probler(8) is transformed into the functional inclusion problem
y(t) € F(t, I"70,()y(01(1) + G, I'°05(t)y (0a(1))),
which is discussed earlier in theorém]|3.1.
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