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2 ABRAHAM A. UNGAR

1. INTRODUCTION

It was discovered in 1988 [34] that the Einstein velocity addition law encodes a grouplike
algebraic object that became known as a gyrocommutative gyrogroup. Furthermore, it was later
discovered that Einstein addition admits hyperbolic scalar multiplication, giving rise to the so
called gyrovector spaces. The latter turned out to form a nonassociative algebraic setting for
the Beltrami-Klein ball model of hyperbolic geometry just as vector spaces form an associative
algebraic setting for the standard model of Euclidean geometry [40]. The discovery of novel
analogies that relativistic mechanics and its underlying hyperbolic geometry share with classical
mechanics and its underlying Euclidean geometry has culminated in a series of four books
[40, 44, 48, 52]. Thus, a powerful way to study Einstein’s special theory of relativity and its
underlying hyperbolic geometry, in which analogies with classical results form useful tools,
emerged. Accordingly, mathematical analogies play an important role in this article.

Stanislaw Ulam (1909 – 1984) was interested in the mathematical structure of Einstein’s spe-
cial theory of relativity and its generalizations, as evidenced from [7]. His special predilection
towards the study of complex mathematical notions by analogy is well known from his 1986
paper “On the notion of analogy and complexity in some constructive mathematical schemata”
[32], and from his 1990 book on “Analogies between analogies” [33]. Ulam was, accord-
ingly, one of the mathematical heroes of a new generation of mathematicians, as Themistocles
M. Rassias testified in a recent interview [6].

Sharing with Ulam the special predilection towards the study of complex mathematical no-
tions by analogy, we dedicate this article to the memory of Stanislaw M. Ulam (1909 – 1984)
and his love to mathematical analogies on the occasion of his 100th Anniversary.

The aim of this article is to introduce and apply hyperbolic barycentric coordinates, which are
fully analogous to the Euclidean barycentric coordinates that were first conceived by Möbius in
1827 [25, p. 71].

As evidenced from [40, 44, 48], the hyperbolic geometry of Bolyai and Lobachevsky is be-
coming increasingly important owing to the role it plays in Einstein’s special theory of relativity.
A brief historical background of hyperbolic geometry is found, for instance, in [19, Chap. I].
The first part of this paper is an expository, setting the stage for the presentation of hyperbolic
barycentric coordinates and their applications in the second part.

Accordingly, we motivate and present the definition of gyrogroups and gyrovector spaces,
which generalize the notion of groups and vector spaces. It turns out that gyrogroups and gy-
rovector spaces lay a fruitful bridge between nonassociative algebra and hyperbolic geometry,
just as groups and vector spaces lay a fruitful bridge between associative algebra and Euclidean
geometry. Basically, gyrogroups and gyrovector spaces are groups and vector spaces in which
associativity and commutativity are replaced by gyroassociativity and gyrocommutativity. In-
deed, in this way we employ our analogies that hyperbolic geometry and relativistic mechanics
share with Euclidean geometry and classical mechanics. Remarkably, these analogies stem
from a single common mechanism represented by the prefix “gyro”. Indeed, in order to elabo-
rate the precise language we need for dealing with analytic hyperbolic geometry, which empha-
sizes analogies with classical notions, we extensively use the prefix “gyro”, giving rise to the
gyrolanguage that we use in this article.

In Sections 2 – 9 we set the stage for the introduction of barycentric coordinates into hyper-
bolic geometry, where they are called gyrobarycentric coordinates. We study here the hyper-
bolic geometry of Bolyai and Lobachevsky by its two ball models, (i) the Beltrami-Klein ball
model, regulated by the Einstein velocity addition law of special relativity extended to the ball
of any real inner product space, and (ii) the Poincaré ball model, regulated by a Möbius trans-
formation of the complex open disc extended to the ball of any real inner product space. The
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HYPERBOLIC BARYCENTRIC COORDINATES 3

Einstein velocity addition law was introduced by Einstein in 1905 [3], and its importance in spe-
cial relativity is well-known [47]. Möbius transformations, in turn, are important in geometry
as we see, for instance in [13, 14, 15, 16] and [35, 38, 39].

In Sections 2 – 5 we present Einstein addition as a binary operation in the ball of any real
inner product space, and uncover the gyrogroup and gyrovector space structures that it encodes
and, finally, link it to the Beltrami-Klein ball model of hyperbolic geometry by elementary
methods of differential geometry. Similarly, in Sections 6 – 8 we present Möbius addition as
a binary operation in the ball of any real inner product space, and uncover the gyrogroup and
gyrovector space structures that it encodes and, finally, link it to the Poincaré ball model of
hyperbolic geometry by elementary differential geometry methods. In Section 9 we show that
the algebraic structures that Einstein addition and Möbius addition encode are isomorphic.

In order to set the stage for the presentation of hyperbolic barycentric coordinates, in Section
10 we present the well known Euclidean barycentric coordinates. In full analogy we, then,
present the Einsteinian hyperbolic barycentric coordinates in Section 11. In Sections 12 and
13 we employ the Einsteinian hyperbolic barycentric coordinates for the study of hyperbolic
triangle altitudes and orthocenters. Finally, in Section 14 we determine the hyperbolic triangle
orthocenter in the Poincaré ball model of hyperbolic geometry by employing the isomorphism
between Einstein addition and Möbius addition studied in Section 9.

2. EINSTEIN ADDITION VS. VECTOR ADDITION

The Einstein addition ⊕ of relativistically admissible velocities is a binary operation in the
ball R3

c of the Euclidean 3-space R3,

(2.1) R3
c = {v∈R3 : ‖v‖ < c}

of all relativistically admissible velocities, where c is the speed of light in empty space. It takes
the form

(2.2) u⊕v =
1

1 + u·v
c2

{
u +

1

γu

v +
1

c2
γu

1 + γu

(u·v)u

}
u,v∈R3

c , where γu is the gamma factor

(2.3) γv =
1√

1− ‖v‖2
c2

in R3
c , and where · and ‖·‖ are the inner product and norm that the ball R3

c inherits from its space
R3. Einstein velocity addition is seemingly structureless since, counterintuitively, it is neither
commutative nor associative.

Einstein gyrations gyr[u,v]∈Aut(R3
c ,⊕), u,v∈R3

c , are defined in terms of Einstein addition
by the equation

(2.4) gyr[u,v]w = 	(u⊕v)⊕(u⊕(v⊕w))

for all u,v,w∈R3
c , and they turn out to be automorphisms of the Einstein groupoid (R3

c ,⊕), as
shown in [40]. We recall that a groupoid (S,⊕) is a non-empty set S with a binary operation
⊕, and that an automorphism of a groupoid (S,⊕) is a one-to-one map f of S onto itself that
respects the binary operation, that is, f(a⊕b) = f(a)⊕f(b) for all a, b ∈ S. The set of all
automorphisms of a groupoid (S,⊕) forms a group, denoted by Aut(S,⊕). To emphasize that
the gyrations of the Einstein groupoid (R3

c ,⊕) are automorphisms of the groupoid, Einstein
gyrations are also called gyroautomorphisms.
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4 ABRAHAM A. UNGAR

A gyration gyr[u,v], u,v ∈ R3
c , is trivial if gyr[u,v]w = w for all w ∈ R3

c . Thus, for
instance, the gyrations gyr[0,0], gyr[v,v] and gyr[v,	v] are trivial for all v∈R3

c .
Einstein gyrations, which possess their own rich structure, measure the extent to which Ein-

stein addition deviates from commutativity and associativity as we see from the gyrocommuta-
tive and gyroassociative laws in the following identities [40, 44, 48]:

u⊕v = gyr[u,v](v⊕u) Gyrocommutative Law
u⊕(v⊕w) = (u⊕v)⊕gyr[u,v]w Left Gyroassociative Law
(u⊕v)⊕w = u⊕(v⊕gyr[u,v]w) Right Gyroassociative Law
gyr[u,v] = gyr[u⊕v,v] Left Loop Property
gyr[u,v] = gyr[u,v⊕u] Right Loop Property
gyr[u,	gyr[u,v]v] = gyr[v,u] A Nested Gyration Identity

Einstein addition is thus regulated by its gyrations so that Einstein addition and its gyra-
tions are inextricably linked. Indeed, the Einstein groupoid (R3

c ,⊕) forms a grouplike algebraic
object called a gyrocommutative gyrogroup [36], which was discovered in 1988 [34] as the al-
gebraic grouplike object that Einstein addition encodes. Interestingly, Einstein gyrations are the
mathematical abstraction of the relativistic effect known as Thomas precession [48, Sec. 10.3].

Einstein addition (2.2) of relativistically admissible velocities was introduced by Einstein in
his 1905 paper [3] [4, p. 141]. The Euclidean three-vector algebra was not so widely known in
1905 and, consequently, was not used by Einstein. In [3], Einstein calculated the behavior of the
velocity components parallel and orthogonal to the relative velocity between inertial systems,
which is as close as one can get without vectors to the vectorial version (2.2).

In the Newtonian limit, c → ∞, the ball R3
c of all relativistically admissible velocities ex-

pands to the whole of its space R3, as we see from (2.1), and Einstein addition ⊕ in R3
c reduces

to ordinary vector addition + in R3, as we see from (2.2) and (2.3).
Suggestively, we extend Einstein addition of relativistically admissible velocities by abstrac-

tion in the following definition of Einstein addition in the ball of any real inner product space.

Definition 2.1 (Einstein Addition in the Ball). Let V = (V,+, ·) be a real inner product space
[23] and let Vs be the s-ball of V,

(2.5) Vs = {v∈V : ‖v‖ < s},
where s > 0 is an arbitrarily fixed constant. Einstein addition ⊕E is a binary operation in Vs

given by the equation

(2.6) u⊕Ev =
1

1 + u·v
s2

{
u +

1

γu

v +
1

s2

γu

1 + γu

(u·v)u

}
,

where γu is the gamma factor

(2.7) γu =
1√

1− ‖u‖2
s2

in Vs, and where · and ‖·‖ are the inner product and norm that the ball Vs inherits from its
space V.

We naturally use the abbreviation u	Ev = u⊕E(−v) for Einstein subtraction. Thus, for
instance, v	Ev = 0, 	Ev = 0	Ev = −v and, in particular,

(2.8) 	E(u⊕Ev) = 	Eu	Ev
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and

(2.9) 	Eu⊕E(u⊕Ev) = v

for all u,v in the ball, in full analogy with vector addition and subtraction. Identity (2.8) is
known as the automorphic inverse property, and Identity (2.9) is known as the left cancellation
law of Einstein addition. We may note that Einstein addition does not obey the immediate right
counterpart of the left cancellation law (2.9) since, in general,

(2.10) (u⊕Ev)	Ev 6= u.

However, this seemingly lack of a right cancellation law of Einstein addition is repaired in (3.7)
below, and in [44, Table 2.1, p. 33].

The gamma factor is related to Einstein addition by the identity

(2.11) γu⊕Ev = γuγv

(
1 +

u·v
s2

)
that historically provided the first link between Einstein’s special theory of relativity and the
hyperbolic geometry of Bolyai and Lobachevsky, as described in [47].

The gamma factor possesses useful identities as, for instance,

(2.12) γ2⊗a = 2γ2
a − 1

[48, Eq. 6.304] and

(2.13) γ2⊗a(2⊗a) = 2γ2
aa

[48, Eq. 6.301], where 2⊗a = a⊕a, and where ⊕ represents one of Einstein addition, ⊕ = ⊕E ,
and Möbius addition, ⊕ = ⊕M . Möbius addition will be studied in Sec. 6, and its relationship
with Einstein addition will be studied in Sec. 9.

When the vectors u and v in the ball Vs of V are parallel in V, u‖v, the Einstein gyration
gyr[u,v] is trivial, and Einstein addition ⊕E reduces to the binary operation between parallel
velocities,

(2.14) u⊕Ev =
u + v

1 + u·v
s2

, u‖v

which is both commutative and associative. In general, however, owing to the presence of non-
trivial gyrations, Einstein addition is neither commutative nor associative. The non-associativity
of general Einstein velocity addition (2.2) is hardly known in the literature [46]. Among out-
standing exceptions is [31].

In the Newtonian limit of large s, s→∞, the ball Vs expands to the whole of its space V, and
Einstein addition, ⊕E , reduces to common vector addition, +, in V, as we see from (2.5) – (2.7).

3. FROM EINSTEIN VELOCITY ADDITION TO GYROGROUPS

Taking the key features of the Einstein groupoid (Vs,⊕E) as axioms, and guided by analogies
with groups, we are led to the following formal gyrogroup definition.

Definition 3.1 (Gyrogroups). A groupoid (G,⊕) is a gyrogroup if its binary operation satisfies
the following axioms. In G there is at least one element, 0, called a left identity, satisfying

(G1) 0⊕a = a
for all a∈G. There is an element 0∈G satisfying axiom (G1) such that for each a∈G there is
an element 	a∈G, called a left inverse of a, satisfying

(G2) 	a⊕a = 0 .
Moreover, for any a, b, c∈G there exists a unique element gyr[a, b]c∈G such that the binary

operation obeys the left gyroassociative law
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6 ABRAHAM A. UNGAR

(G3) a⊕(b⊕c) = (a⊕b)⊕gyr[a, b]c .
The map gyr[a, b] : G → G given by c 7→ gyr[a, b]c is an automorphism of the groupoid

(G,⊕), that is,
(G4) gyr[a, b]∈Aut(G,⊕) ,
and the automorphism gyr[a, b] of G is called the gyroautomorphism, or the gyration, of

G generated by a, b ∈ G. The operator gyr : G × G → Aut(G,⊕) is called the gyrator of
G. Finally, the gyroautomorphism gyr[a, b] generated by any a, b ∈G possesses the left loop
property

(G5) gyr[a, b] = gyr[a⊕b, b] .
The gyrogroup axioms (G1) – (G5) in Definition 3.1 are classified into three classes:
(1) The first pair of axioms, (G1) and (G2), is a reminiscent of the group axioms.
(2) The last pair of axioms, (G4) and (G5), presents the gyrator axioms.
(3) The middle axiom, (G3), is a hybrid axiom linking the two pairs of axioms in (1) and

(2).
As in group theory, we use the notation a	b = a⊕(	b) for gyrogroup theory as well.
In full analogy with groups, gyrogroups are classified into non-gyrocommutative and gyro-

commutative gyrogroups.

Definition 3.2 (Gyrocommutative Gyrogroups). A gyrogroup (G,⊕) is gyrocommutative if its
binary operation obeys the gyrocommutative law

(G6) a⊕ b = gyr[a, b](b⊕ a)
for all a, b∈G.

Clearly, a (commutative) group is a degenerate (gyrocommutative) gyrogroup whose gyroau-
tomorphisms are all trivial. The algebraic structure of gyrogroups is, accordingly, richer than
that of groups. Thus, without losing the flavor of the group structure we have generalized
it into the gyrogroup structure to suit the needs of Einstein addition in the ball. Fortunately,
the gyrogroup structure is by no means restricted to Einstein addition in the ball. Rather, it
abounds in group theory as demonstrated, for instance, in [10] and [11], where finite and in-
finite gyrogroups, both gyrocommutative and non-gyrocommutative, are studied. Some initial
gyrogroup theorems, some of which are analogous to group theorems, are presented in [44,
Chap. 2] and [48, Chap. 2].

In order to capture analogies with groups, we introduce into the abstract gyrogroup (G,⊕)
a second binary operation � called a cooperation, or coaddition, which shares useful duality
symmetries with its gyrogroup operation ⊕ [40, 44].

Definition 3.3 (The Gyrogroup Cooperation (Coaddition)). Let (G,⊕) be a gyrogroup. The
gyrogroup cooperation (or, coaddition) � is a second binary operation in G related to the
gyrogroup operation (or, addition) ⊕ by the equation

(3.1) a� b = a⊕gyr[a,	b]b
for all a, b∈G.

Naturally, we use the notation a� b = a� (	b) where 	b = −b, so that

(3.2) a� b = a	gyr[a, b]b

The gyrogroup cooperation is commutative if and only if the gyrogroup operation is gyrocom-
mutative [44, Theorem 3.4]. Hence, in particular, Einstein coaddition � is commutative since
Einstein addition ⊕ is gyrocommutative. The commutativity of Einstein coaddition proves use-
ful in the hyperbolic parallelogram (gyroparallelogram) law of relativistic velocities, presented
in [48, Sec. 10.8], and illustrated in Figs. 7.3 –7.5 of Sec. 7.
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The gyrogroup cooperation� is expressed in (3.1) in terms of the gyrogroup operation⊕ and
the gyrator gyr. It can be shown that, similarly, the gyrogroup operation ⊕ can be expressed in
terms of the gyrogroup cooperation � and the gyrator gyr by the identity [44, Theorem 2.10],

(3.3) a⊕b = a� gyr[a, b]b

for all a, b in a gyrogroup (G,⊕). Identities (3.1) and (3.3) exhibit one of the duality symmetries
that the gyrogroup operation and cooperation share.

Gyrogroup theorems are introduced in [40, 44, 48]. In particular, it is found that any gy-
rogroup possesses a unique identity (left and right) and each element of any gyrogroup pos-
sesses a unique inverse (left and right). Similarly, the left gyroassociative law (G3) and the left
loop property (G5) have the following right counterparts:

(3.4) (a⊕b)⊕c = a⊕(b⊕gyr[b, a]c)

and

(3.5) gyr[a, b] = gyr[a, b⊕a]
respectively.

Furthermore, any gyrogroup obeys the left cancellation law,

(3.6) 	a⊕(a⊕b) = b

and the two right cancellation laws,

(3.7) (b⊕a)� a = b

and

(3.8) (b� a)	a = b

Like Identities (3.1) and (3.3), Identities (3.7) and (3.8) present a duality symmetry between
the gyrogroup operation ⊕ and cooperation �.

Applying the left cancellation law (3.6) to the left gyroassociative law (G3) of a gyrogroup
we obtain the gyrator identity

(3.9) gyr[a, b]x = 	(a⊕b)⊕{a⊕(b⊕x)}
It demonstrates that the gyrations of a gyrogroup are uniquely determined by the gyrogroup
operation.

Furthermore, it is clear from (the gyrocommutative law and) the gyroassociative law that
gyrations measure the extent to which the gyrogroup operation deviates from (both commuta-
tivity and) associativity. A (commutative) group is accordingly a (gyrocommutative) gyrogroup
whose gyrations are trivial. Hence, the gyrogroup structure is richer than the group structure
and, in particular, the algebra of Einstein velocity addition is richer than that of Newtonian
velocity addition.

4. EINSTEIN GYROVECTOR SPACES

The rich structure of Einstein addition is not limited to its gyrocommutative gyrogroup struc-
ture. Einstein addition admits scalar multiplication, giving rise to Einstein gyrovector spaces.
The latter, in turn, form the setting for the Beltrami-Klein ball model of hyperbolic geometry
just as vector spaces form the setting for the standard model of Euclidean geometry, as shown
in [48].
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Definition 4.1. An Einstein gyrovector space (Vs,⊕E ,⊗E) is an Einstein gyrogroup (Vs,⊕E)
with scalar multiplication ⊗E given by the equation

(4.1) r⊗Ev = s

(
1 + ‖v‖

s

)r
−
(
1− ‖v‖

s

)r
(
1 + ‖v‖

s

)r
+
(
1− ‖v‖

s

)r v

‖v‖ = s tanh

(
r tanh−1 ‖v‖

s

)
v

‖v‖ ,

where r is any real number, r ∈ R, v ∈ Vs, v 6= 0, and r⊗E0 = 0, with which we use the
notation v⊗Er = r⊗Ev.

Einstein gyrovector spaces are studied in [48, Sec. 6.18]. Einstein scalar multiplication does
not distribute with Einstein addition, but it possesses other properties of vector spaces. For any
positive integer n, and for all real numbers r, r1 , r2∈R and v∈Vs, we have

n⊗v = v⊕ . . .⊕v n terms

(r1 + r2)⊗v = r1⊗v⊕r2⊗v Scalar Distributive Law

(r1r2)⊗v = r1⊗(r2⊗v) Scalar Associative Law

in any Einstein gyrovector space (Vs,⊕,⊗).
Any Einstein gyrovector space (Vs,⊕,⊗) inherits an inner product and a norm from its vector

space V. These turn out to be invariant under gyrations, that is,

gyr[a,b]u·gyr[a,b]v = u·v,
‖gyr[a,b]v‖ = ‖v‖,(4.2)

for all a,b,u,v∈Vs.
Unlike vector spaces, Einstein gyrovector spaces (Vs,⊕,⊗) do not possess the distributive

law since, in general,

(4.3) r⊗(u⊕v) 6= r⊗u⊕r⊗v

for r ∈ R and u,v ∈ Vs. One might suppose that there is a price to pay in mathematical
regularity when replacing ordinary vector addition with Einstein addition, but this is not the
case as demonstrated in [40, 44, 48] and in this article, and as noted by S. Walter in [56].

5. LINKING EINSTEIN ADDITION TO HYPERBOLIC GEOMETRY

In this section we present the link between Einstein addition and the Beltrami-Klein ball
model of hyperbolic geometry.

The Einstein distance function, d(u,v), in an Einstein gyrovector space (Vs,⊕,⊗) is given
by the equation

(5.1) d(u,v) = ‖u	v‖,
u,v∈Vs, where ⊕ = ⊕E is Einstein addition, given by (2.6), so that 	 is Einstein subtraction.
We call it a gyrodistance function in order to emphasize the analogies it shares with its Euclidean
counterpart, the distance function ‖u − v‖ in V. Among these analogies is the gyrotriangle
inequality according to which

(5.2) ‖u⊕v‖ ≤ ‖u‖⊕‖v‖
for all u,v ∈Vs. For this and other analogies that distance and gyrodistance functions share,
see [44, 48, 52].
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In a two dimensional Einstein gyrovector space (R2
s,⊕,⊗) the squared gyrodistance between

a point x∈R2
s and an infinitesimally nearby point x + dx∈R2

s, x = (x1, x2), dx = (dx1, dx2),
is given by the equation [48, Sec. 7.5], [44, Sec. 7.5]

(5.3) ds2 = ‖x	(x + dx)‖2 = Edx2
1 + 2Fdx1dx2 +Gdx2

2 + · · · ,
where, if we use the notation r2 = x2

1 + x2
2, we have

E = s2 s2 − x2
2

(s2 − r2)2
,

F = s2 x1x2

(s2 − r2)2
,

G = s2 s2 − x2
1

(s2 − r2)2
.

(5.4)

The triple (g11, g12, g22) := (E,F,G) along with g21 = g12 is known in differential geometry
as the metric tensor gij [21]. It turns out to be the metric tensor of the Beltrami-Klein disc model
of hyperbolic geometry [24, p. 220]. Hence, ds2 in (5.3) – (5.4) is the Riemannian line element
of the Beltrami-Klein disc model of hyperbolic geometry, linked to Einstein velocity addition
(2.2) and to Einstein gyrodistance function (5.1) [45].

The Gaussian curvature K of an Einstein gyrovector plane with the triple (E,F,G) of (5.3) –
(5.4) turns out to be [24, p. 149], [48, Sec. 7.5], [44, Sec. 7.5],

(5.5) K = − 1

s2
.

The link between Einstein gyrovector spaces and the Beltrami-Klein ball model of hyperbolic
geometry, already noted by Fock [9, p. 39], has thus been established in (5.1) – (5.4) in two
dimensions. The extension of the link to higher dimensions is presented in [40, Sec. 9, Chap. 3],
[48, Sec. 7.5], [44, Sec. 7.5] and [45]. For a brief account of the history of linking Einstein’s
velocity addition law with hyperbolic geometry, see [29, p. 943].

In full analogy with Euclidean geometry, the graph of the parametric expression

(5.6) A⊕(	A⊕B)⊗t
in an Einstein gyrovector space (Rn

s ,⊕,⊗), for the parameter t∈R, where A,B∈Rn
s , describes

a geodesic line in the Beltrami-Klein ball model of hyperbolic geometry. It is a chord of the ball
as shown in Fig. 5.1 for the disc. The geodesic (5.6) is the unique geodesic passing through the
points A and B. It passes through the point A at “time” t = 0 and, owing to the left cancellation
law, (3.6), it passes through the point B at “time” t = 1. Hence, the geodesic segment that joins
the points A and B in Fig. 5.1 is obtained from (5.6) with 0 ≤ t ≤ 1.

6. MÖBIUS ADDITION AND MÖBIUS GYROGROUPS

Definition 6.1 (Möbius Addition in the Ball). Let V = (V,+, ·) be a real inner product space
[23], and let Vs be the s-ball of V,

(6.1) Vs = {Vs∈V : ‖v‖ < s},
where s > 0 is an arbitrarily fixed constant. Möbius addition ⊕M is a binary operation in Vs

given by the equation

(6.2) u⊕Mv =

(
1 + 2

s2
u·v + 1

s2
‖v‖2)u +

(
1− 1

s2
‖u‖2)v

1 + 2
s2

u·v + 1
s4
‖u‖2‖v‖2 ,

where · and ‖·‖ are the inner product and norm that the ball Vs inherits from its space V.
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A

B

m
A,B

P

d(A,P )⊕d(P,B) = d(A,B)

A⊕(⊖A⊕B)⊗t

−∞ ≤ t ≤ ∞

m
A,B

= A⊕(⊖A⊕B)⊗1
2

d(A,B) = ‖A⊖B‖

d(A,mA,B ) = d(B,mA,B )

Figure 5.1. The Einstein gyrolineA⊕(⊖A⊕B)⊗t, t ∈ R, in an Einstein gyrovector space
(Vs,⊕,⊗) is a geodesic line in the Beltrami-Klein ball model of hyperbolic geometry, fully
analogous to the straight lineA+(−A+B)t, t ∈ R, in Euclidean geometry. The pointsA and
B correspond tot = 0 andt = 1, respectively. The pointP is a generic point on the gyroline
through the pointsA andB lying between these points. The Einstein sum,⊕, of the Einstein
distance (gyrodistance) fromA to P and fromP to B equals the Einstein distance fromA to
B. The pointmA,B is the hyperbolic midpoint (gyromidpoint) of the pointsA andB.

Without loss of generality, one may select s = 1 in Definition 6.1. We, however, prefer to
keep s as a free positive parameter in order to exhibit the result that in the limit as s → ∞, the
ball Vs expands to the whole of its real inner product space V, and Möbius addition,⊕M , reduces
to vector addition, +, in V. Like Einstein groupoids (Vs,⊕E), Möbius groupoids (Vs,⊕M) are
gyrocommutative gyrogroups. Interestingly, the right hand side of (6.2) is known as a Möbius
translation [28, p. 129]. Owing to the analogies it shares with vector addition we, however, call
it Möbius addition. The evolution from Möbius to gyrogroups is unfolded in [49].

7. MÖBIUS GYROVECTOR SPACES

Definition 7.1 (Möbius Scalar Multiplication). A Möbius gyrovector space (Vs,⊕M ,⊗M) is a
Möbius gyrogroup (Vs,⊕M) with scalar multiplication ⊗M given by the equation

(7.1) r⊗Mv = s

(
1 + ‖v‖

s

)r
−
(
1− ‖v‖

s

)r
(
1 + ‖v‖

s

)r
+
(
1− ‖v‖

s

)r v

‖v‖ = s tanh

(
r tanh−1 ‖v‖

s

)
v

‖v‖ ,

where r∈R, v∈Vs, v 6= 0; and r⊗M0 = 0.

Interestingly, Einstein and Möbius scalar multiplication, ⊗E and ⊗M , are identical. Möbius
gyrovector spaces are studied in [48, Sec. 6.14].
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Any two points A,B∈Rn of the Euclidean n-space Rn, n∈N, form the vector −A+B. The
algebraic value of this vector is−A+B, its length is ‖−A+B‖, and for n = 2, 3 is represented
graphically by a straight arrow from A to B, as shown in Fig. 7.1 for n = 2. Two vectors are
equivalent if they have the same algebraic value, so that vectors are equivalence classes. Two
equivalent vectors, −A+B and −A′ +B′ in R2 are shown in Fig. 7.1.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A

B

A′

B′

−A + B = −A′ + B′

d(A,B) = ‖ −A + B‖

◮

◮

Figure 7.1. PointsP of the Euclidean space
Rn are given by their orthogonal Cartesian co-
ordinatesP = (x1, . . . , xn), x2

1 + . . .+x2
n <

∞. The vector from pointA to pointB in the
Euclidean spaceRn has the algebraic value
−A+B and length‖−A+B‖, and is repre-
sented graphically by a straight arrow fromA
to B. Two vectors are equivalent if they have
the same algebraic value. Vectors are, thus,
equivalence classes. Equivalent vectors have
equal lengths and, moreover, they are paral-
lel. Vectors add according to the parallelogram
rule. Any pointA∈Rn is identified with the
vector−O + A, whereO is the arbitrarily se-
lected origin ofRn. The Euclidity ofRn is
determined by the Euclidean metric in which
the distance between any two pointsA, B∈Rn

is d(A,B) = ‖ − A + B‖. Like vectors, also
gyrovectors are equivalence classes, shown in
Fig. 7.2

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A

B

A′

B′

⊖A⊕B = ⊖A′⊕B′

d(A,B) = ‖⊖A⊕B‖

◮

◮

Figure 7.2. PointsP of the Möbius gyrovec-
tor space(Rn

s ,⊕,⊗) are given by their orthog-
onal Cartesian coordinatesP = (x1, . . . , xn),
x2

1 + . . . + x2
n < s2. The gyrovector from

point A to point B in the Möbius gyrovec-
tor space(Rn

s ,⊕,⊗) has the algebraic value
⊖A⊕B and gyrolength‖⊖A⊕B‖, and is rep-
resented graphically by a curved arrow fromA
to B. Two gyrovectors are equivalent if they
have the same algebraic value. Gyrovectors
are, thus, equivalence classes. Equivalent gy-
rovectors have equal gyrolengths. Gyrovectors
add according to the gyroparallelogram rule,
shown in Figs. 7.4 – 7.5. Any pointA∈Rn

s is
identified with the gyrovector⊖O⊕A, where
O is the arbitrarily selected origin ofRn

s . The
hyperbolicity ofRn

s is determined by the hy-
perbolic metric, gyrometric, in which the gy-
rodistance between any two pointsA, B∈Rn

s

is d(A, B) = ‖⊖A⊕B‖.

Similarly, any two points A,B ∈ G of a gyrovector space (G,⊕,⊗) form the gyrovector
	A⊕B. The algebraic value of this gyrovector is 	A⊕B, its gyrolength is ‖	A⊕B‖, and for
G = Rn

s , n = 2, 3, is represented graphically by a curved arrow from A to B, as shown in
Fig. 7.2 for the Möbius gyrovector plane (R2

s,⊕,⊗).
In full analogy with vectors, gyrovectors are equivalence classes, defined in [48, Def. 5.4,

p. 133], and illustrated in Fig. 7.2, where two equivalent gyrovectors, 	A⊕B and 	A′⊕B′ in
a Möbius gyrovector plane (R2

s,⊕,⊗) are shown.
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The vector −A′ + B′ is obtained in Fig. 7.1 from the vector −A+ B by a vector translation
of the latter by some t∈R2 according to the equations

A′ = t + A,

B′ = t +B.
(7.2)

It follows from (7.2) that−A′+B′ = −A+B so that the two vectors−A′+B′ and−A+B are
equivalent. Owing to their equivalence, these two vectors are parallel and have equal lengths.

In full analogy, the gyrovector 	A′⊕B′ is obtained in Fig. 7.2 from the gyrovector 	A⊕B
by a gyrovector translation of the latter by some t∈R2

s according to the equations

A′ = gyr[A, t](t⊕A),

B′ = gyr[A, t](t⊕B),
(7.3)

as we see from the gyrovector translation definition [48, Def. 5.6, p. 135]. Hence, by [48,
Def. 5.6 and Theorem 5.7, p. 135], we have 	A′⊕B′ = 	A⊕B so that the two gyrovectors
	A′⊕B′ and 	A⊕B are equivalent. Owing to their equivalence, these two gyrovectors have
equal gyrolengths.

Thus, gyrovectors are equivalence classes just like vectors. To extend the analogies between
gyrovectors and vectors, we must introduce Euclidean parallelograms into hyperbolic geome-
try. Indeed, in what seemingly sounds like a contradiction in terms we have introduced in [48,
Def. 6.41] the Euclidean parallelogram into hyperbolic geometry where the parallel postulate
is denied. In the same way that a Euclidean parallelogram is a Euclidean quadrilateral whose
diagonals intersect each other at their midpoints, a hyperbolic parallelogram, called a gyroparal-
lelogram, is defined to be a gyroquadrilateral whose gyrodiagonals intersect each other at their
gyromidpoints. The resulting gyroparallelogram, shown in Fig. 7.3, shares remarkable analo-
gies with its Euclidean counterpart, giving rise to the gyroparallelogram gyrovector addition
law, shown in Figs. 7.4 and 7.5, which is fully analogous to the common parallelogram vector
addition law in Euclidean geometry.

We find in [48, Sec. 8.14], and illustrate in Figs. 7.4 and 7.5, that gyrovectors add according
to the gyroparallelogram rule just like vectors, which add according to the parallelogram rule.

In the years 1908 – 1914, the period which experienced a dramatic flowering of creativity
in the special theory of relativity, the Croatian physicist and mathematician Vladimir Varičak
(1865 – 1942), professor and rector of Zagreb University, showed that this theory has a natural
interpretation in hyperbolic geometry [53]. However, much to his chagrin, he had to admit in
1924 [54, p. 80] that the adaption of vector algebra for use in hyperbolic geometry was just
not feasible, as Scott Walter notes in [55, p. 121]. Vladimir Varičak’s hyperbolic geometry
program, cited by Pauli [27, p. 74], is described by Walter in [55, p. 112–115].

Following Varičak’s 1924 realization that, unlike Euclidean geometry, the hyperbolic geome-
try of Bolyai and Lobachevsky does not admit vectors, explorers of hyperbolic geometry could
not treat the geometry vectorially till the appearance of [40, 44, 48]. Owing to the analogies
that Euclidean vectors share with gyrovectors, illustrated in Figs. 7.1 and 7.2, gyrovectors be-
came the vectors of hyperbolic geometry enabling us to develop a gyrovector space approach to
hyperbolic geometry [52] that is fully analogous to the common vector space approach to Eu-
clidean geometry. Moreover, it was found in [41, 42] and [50] that the Bloch vector of quantum
information and computation is, in fact, a gyrovector rather than a vector.

8. LINKING MÖBIUS ADDITION TO HYPERBOLIC GEOMETRY

In this section we present the link between Möbius addition and the Poincaré ball model of
hyperbolic geometry.
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− A ⊕  B

− 
A

 ⊕
 C

− A ⊕  D
z

→

→

→α 1

α
2

β 2

β
1

δ
1

δ 2

γ
1

γ
2

A

B

C

D

α1 = δ1

α2 = δ2

β1 = γ1

β2 = γ2

Figure 7.3. The Möbius Gyroparallelogram. Seemingly, a hyperbolic parallelogram sounds
like a contradiction in terms. A M̈obius gyroparallelogram in a M̈obius gyrovector space is a
gyroquadrilateral the two gyrodiagonals of which intersect at their gyromidpoints.

The Möbius distance function, d(u,v) in a Möbius gyrovector space (Vs,⊕,⊗) is given by
the equation

(8.1) d(u,v) = ‖u	v‖,

u,v∈Vs, where ⊕ = ⊕M is Möbius addition, given by (6.2), so that 	 is Möbius subtraction.
We call it a gyrodistance function in order to emphasize the analogies it shares with its Euclidean
counterpart, the distance function ‖u − v‖ in V. Among these analogies is the gyrotriangle
inequality according to which

(8.2) ‖u⊕v‖ ≤ ‖u‖⊕‖v‖

for all u,v ∈Vs. For this and other analogies that distance and gyrodistance functions share,
see [44, 48, 52].

In a two dimensional Möbius gyrovector space (R2
s,⊕,⊗) the squared gyrodistance between

a point x∈R2
s and an infinitesimally nearby point x + dx∈R2

s, x = (x1, x2), dx = (dx1, dx2),
is given by the equation [48, Sec. 7.3], [44, Sec. 7.3]

(8.3) ds2 = ‖x	(x + dx)‖2 = Edx2
1 + 2Fdx1dx2 +Gdx2

2 + · · · ,
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A

B

C

D◮

◮

◮

The Gyroparallelogram Law

(⊖A⊕B) ⊞ (⊖A⊕C) = ⊖A⊕D

b ⊞ c = d

b = ⊖A⊕B

c = ⊖A⊕C

d = ⊖A⊕D
b

c
d

Figure 7.4. The gyroparallelogram law and
the Möbius gyroparallelogramABDC in
Fig. 7.3 give rise to the commutative gyropar-
allelogram addition law of gyrovectors, shown
here as a first example. Remarkably, the gy-
roparallelogram addition coincides with the
Möbius gyrogroup coaddition⊞, as verified
in Theorem 6.43, p. 180 of [48].

A

B

C

D◮

◮

◮

The Gyroparallelogram Law

(⊖B⊕A) ⊞ (⊖B⊕D) = ⊖B⊕C

a ⊞ d = c

a = ⊖B⊕A

c = ⊖B⊕C

d = ⊖B⊕D

a

c
d

Figure 7.5. The gyroparallelogram law and
the Möbius gyroparallelogramABDC in
Figs. 7.3 – 7.4 give rise to the additional com-
mutative gyroparallelogram addition of gy-
rovectors, which is shown here as a second ex-
ample. Remarkably, as in Fig. 7.4, the gyropar-
allelogram addition coincides with the M̈obius
gyrogroup coaddition⊞.

where, if we use the notation r2 = x2
1 + x2

2, we have

E =
s4

(s2 − r2)2
,

F = 0,

G =
s2

(s2 − r2)2
.

(8.4)

The triple (g11, g12, g22) := (E,F,G) along with g21 = g12 is known in differential geometry
as the metric tensor gij [21]. It turns out to be the metric tensor of the Poincaré disc model of
hyperbolic geometry [24, p. 226]. Hence, ds2 in (8.3) – (8.4) is the Riemannian line element
of the Poincaré disc model of hyperbolic geometry, linked to Möbius addition (6.2) and to the
Möbius gyrodistance function (8.1) [45].

The Gaussian curvature K of a Möbius gyrovector plane with the triple (E,F,G) of (8.3) –
(8.4) turns out to be [24, p. 149], [48, Sec. 7.5], [44, Sec. 7.5],

(8.5) K = − 4

s2
.

The link between Möbius gyrovector spaces and the Poincaré ball model of hyperbolic ge-
ometry has thus been established in (8.1) – (8.4) in two dimensions. The extension of the link
to higher dimensions is presented in [48, Sec. 7.3], [44, Sec. 7.3] and [45].

In full analogy with Euclidean geometry, the graph of the parametric expression

(8.6) A⊕(	A⊕B)⊗t
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A

B

m
A,B

P

d(A,P )⊕d(P,B) = d(A,B)

A⊕(⊖A⊕B)⊗t

−∞ ≤ t ≤ ∞

m
A,B

= A⊕(⊖A⊕B)⊗1
2

d(A,B) = ‖A⊖B‖

d(A,mA,B ) = d(B,mA,B )

Figure 8.1. The Möbius gyrolineA⊕(⊖A⊕B)⊗t, t ∈ R, in a Möbius gyrovector space
(Vs,⊕,⊗) is a geodesic line in the Poincaré ball model of hyperbolic geometry, fully analogous
to the straight lineA + (−A + B)t, t ∈ R, in Euclidean geometry. The pointsA and B
correspond tot = 0 andt = 1, respectively. The pointP is a generic point on the gyroline
through the pointsA andB lying between these points. The Möbius sum,⊕, of the Möbius
distance (gyrodistance) fromA to P and fromP to B equals the M̈obius distance fromA to B.
The pointmA,B is the hyperbolic midpoint (gyromidpoint) of the pointsA andB.

in a Möbius gyrovector space (Rn
s ,⊕,⊗), for the parameter t∈R, where A,B∈Rn

s , describes
a geodesic line in the Poincaré ball model of hyperbolic geometry. It is a circular arch in the
ball that intersects the boundary of the ball orthogonally, as shown in Fig. 8.1 for the disc. The
geodesic (8.6) is the unique geodesic passing through the points A and B. It passes through the
point A at “time” t = 0 and, owing to the left cancellation law, (3.6), it passes through the point
B at “time” t = 1. Hence, the geodesic segment that joins the points A and B in Fig. 8.1 is
obtained from (8.6) with 0 ≤ t ≤ 1.

9. EINSTEIN AND MÖBIUS GYROVECTOR SPACES ARE ISOMORPHIC

Isomorphisms between gyrovector spaces are studied in [48, Sec. 6.21]. In particular, it is
shown there that the isomorphism between Einstein and Möbius Gyrovector Spaces is given by
each of the two identities

1
2
⊗E(u⊕Ev) = 1

2
⊗Mu⊕M

1
2
⊗Mv

2⊗M(u⊕Mv) = 2⊗Eu⊕E2⊗Ev
(9.1)

for all u,v∈Vs.
The operations⊗E and⊗M , which represent scalar gyromultiplication in Einstein and Möbius

gyrovector spaces respectively, are identical to each other, ⊗E = ⊗M =: ⊗. Hence, Identities
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(9.1) can be written equivalently as

u⊕Ev = 2⊗(1
2
⊗u⊕M

1
2
⊗v),

u⊕Mv = 1
2
⊗(2⊗u⊕E2⊗v)

(9.2)

for all u,v∈Vs. The isomorphism in (9.2) is not trivial owing to the result that scalar gyromul-
tiplication, ⊗, is non-distributive, that is, it does not distribute with gyroaddition, ⊕.

Möbius addition in the ball is obtained from Möbius transformation of the complex open unit
disc of a complex plane, as demonstrated in [20, 37, 43, 49]. The related connection between
Möbius transformation of the disc and Lorentz transformation of Einstein’s special theory of
relativity was recognized by H. Liebmann in 1905 [26, pp. 122–123]. The isomorphism (9.2)
thus generalizes this well-known connection.

10. EUCLIDEAN BARYCENTRIC COORDINATES

In order to set the stage for the study of hyperbolic barycentric coordinates that we naturally
call gyrobarycentric coordinates, we present in this section the Euclidean barycentric coordi-
nates [30, pp. 7,12] that were introduced by Möbius [8] in 1827.

A barycenter in astronomy is the point between two objects where they balance each other.
It is the center of gravity where two or more celestial bodies orbit each other. In 1827 Möbius
published a book whose title, Der Barycentrische Calcul, translates as The Barycentric Calcu-
lus. The word barycentric means center of gravity, but the book is entirely geometrical and,
hence, called by Jeremy Gray [12], Möbius’s Geometrical Mechanics. The 1827 Möbius book
is best remembered for introducing a new system of coordinates, the barycentric coordinates.
The historical contribution of Möbius’ barycentric coordinates to vector analysis is described in
[2, pp. 48–50].

The Möbius idea, for a triangle as an illustrative example, is to attach masses, ma, mb, mc,
respectively, to three non-collinear points, a, b, c, in the Euclidean plane R2, and consider their
center of mass, or momentum, CM , called barycenter, given by the equation

(10.1) CM =
maa +mbb +mcc

ma +mb +mc

.

Following Hocking and Young [18, pp. 195 – 200], a set of h+ 1 vectors {a0, a1, . . . , ah} in
Rn is pointwise independent if the h vectors −a0 + ak, k = 1, . . . , h, are linearly independent.

Definition 10.1 (Euclidean Barycentric Coordinates). Let A={a0, a1, . . . , ah} be a pointwise
independent set of h+ 1 vectors in Rn. Then, the real numbers m0,m1, . . . ,mh normalized by
the condition

(10.2)
h∑
k=0

mk = 1

are the barycentric coordinates of a vector a∈Rn with respect to the set A if

(10.3) a =

∑h
k=0mkak∑h
k=0mk

.

When the normalization condition (10.2) is relaxed,

(10.4)
h∑
k=0

mk 6= 0

the barycentric coordinates become the so called homogeneous barycentric coordinates. They
are homogeneous in the sense that the homogeneous barycentric coordinates (m0,m1, . . . ,mh)
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of a in (10.3) are equivalent to the homogeneous barycentric coordinates (λm0, λm1, . . . , λmh)
for any λ 6= 0. Since in homogeneous barycentric coordinates only ratios of coordinates are
relevant, the homogeneous barycentric coordinates (m0,m1, . . . ,mh) are also written as (m0 :
m1 : · · · :mh).

It is easy to see from (10.3) that the barycentric coordinates are independent of the choice of
the origin of their vector space, that is,

(10.5) − x + a =

∑h
k=0mk(−x + ak)∑h

k=0mk

for all x∈Rn.
It follows from (10.5) that the vector a is covariant with respect to translations of Rn since

the vector a and the vectors ak, k = 0, 1, . . . , h, of its generating set A vary together under
translations.

Let R∈SO(n) be an element of the group SO(n) of all rotations of the space Rn about its
origin. Since R is linear, it follows from (10.3) that

(10.6) Ra =

∑h
k=0mkRak∑h
k=0mk

for all R∈SO(n). It follows from (10.6) that the vector a is covariant with respect to rotations
of Rn since the vector a and the vectors ak, k = 0, 1, . . . , h, of its generating setA vary together
under rotations.

It is owing to the transformation rules of a in (10.5) and (10.6) that a of (10.3) is qualified
for the title of vector.

The group of all translations and all rotations of Rn forms the group of rigid motions of Rn,
which is the group of all direct isometries of Rn (that is, isometries preserving orientation) for
the Euclidean distance function d(a,b) = ‖−a+b‖. Hence, the vector a in (10.3) is said to be
covariant since the vector a and the vectors of its generating set A vary together in Rn under the
rigid motions of Rn. The motion group of a Euclidean geometry, which is a semidirect product
of an orthogonal group and the group of translations, is studied, for instance, in [1], as Ellers
mentions in an article dedicated to the memory of Friedrich Bachmann [5].

The set of all points in Rn for which the barycentric coordinates with respect to A are all
positive form an open convex subset of Rn, called the open h-simplex with the h + 1 ver-
tices a0, a1, . . . , ah. Following Hocking and Young [18, p. 199], the h-simplex with vertices
a0, a1, . . . , ah may be denoted by the symbol 〈a0, a1, . . . , ah〉. If the positive number mk is
viewed as the mass of a massive object situated at the point ak, 0 ≤ k ≤ h, the point a in (10.3)
turns out to be the center of mass of the h + 1 masses mk, 0 ≤ k ≤ h. If, furthermore, all
the masses are equal, the center of mass turns out to be the centroid of the h-simplex. Three
illustrative examples follow [48, Sec. 11.12].

Example 10.1. The 2-simplex 〈u,v〉 in R3 is the Euclidean segment uv with endpoints u and
v and midpoint

(10.7) muv =
u + v

2
.

The barycentric coordinates of the endpoints u and v of the segment uv with respect to A =
{u,v} are, respectively, (1, 0) and (0, 1). As we see from (10.7), the barycentric coordinates of
the midpoint muv of the segment with respect to A are (1/2, 1/2).
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Example 10.2. The 3-simplex 〈u,v,w〉 in R3 is the Euclidean triangle uvw with vertices u, v
and w and centroid

(10.8) Cuvw =
u + v + w

3
.

The barycentric coordinates of the vertices u, v and w of triangle uvw with respect to A =
{u,v,w} are, respectively, (1, 0, 0), (0, 1, 0) and (0, 0, 1). As we see from (10.8), the barycen-
tric coordinates of the centroid with respect to A are (1/3, 1/3, 1/3).

Example 10.3. The 4-simplex 〈u,v,w,p〉 in R3 is a Euclidean tetrahedron uvwp with vertices
u, v, w and p, and centroid at the point

(10.9) Cuvwp =
u + v + w + p

4

of the tetrahedron. The barycentric coordinates of the vertices u, v, w and p of the tetrahedron
with respect to the set A = {u,v,w,p} are, respectively, (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and
(0, 0, 0, 1). As we see from (10.9), the barycentric coordinates of the centroid of the tetrahedron
with respect to A are (1/4, 1/4, 1/4, 1/4).

11. EINSTEINIAN GYROBARYCENTRIC COORDINATES

Definition 11.1 (Einsteinian Gyrobarycentric Coordinates). Let

(11.1) Rn
s = {v∈Rn : ‖v‖ < s}

be the s-ball of the Euclidean n-space, and let the set A = {a0, a1, . . . , ah} of points in the
Einstein gyrovector space Rn

s = (Rn
s ,⊕,⊗) be a pointwise independent set of h + 1 vectors in

Rn. Then, the real numbers m0,m1, . . . ,mh normalized by the condition

(11.2)
h∑
k=0

mk = 1

are the gyrobarycentric coordinates of a gyrovector a∈Rn
s with respect to A if

(11.3) a =

∑h
k=0mkγak

ak∑h
k=0mkγak

.

When the normalization condition (11.2) is relaxed,

(11.4)
h∑
k=0

mk 6= 0

the gyrobarycentric coordinates become the so called homogeneous gyrobarycentric coordi-
nates. They are homogeneous in the sense that the homogeneous gyrobarycentric coordinates
(m0,m1, . . . ,mh) of a in (11.3) are equivalent to the homogeneous gyrobarycentric coordi-
nates (λm0, λm1, . . . , λmh) for any λ 6= 0. Since in homogeneous gyrobarycentric coor-
dinates only ratios of coordinates are relevant, the homogeneous gyrobarycentric coordinates
(m0,m1, . . . ,mh) are also written as (m0 :m1 : · · · :mh).

Interestingly, in full analogy with (10.5), which follows from (10.3), it follows from (11.3)
that

(11.5) 	x⊕a =

∑h
k=0mkγ	x⊕ak

(	x⊕ak)∑h
k=0mkγ	x⊕ak
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for all x, ak ∈ Rn
s in the Einstein gyrovector space Rn

s = (Rn
s ,⊕,⊗), as we see from [48,

Eq. (11.112), p. 473]. Noting that
∑

in (11.5) denotes ordinary vector addition, the interplay
between ordinary vector addition, +, and Einstein addition, ⊕, in (11.5) is remarkable.

It follows from (11.5) that the vector a is covariant with respect to left gyrotranslations of
Rn
s since the vector a and the vectors ak, k = 0, 1, . . . , h, of its generating set A vary together

under left gyrotranslations.
Let R ∈ SO(n) be an element of the group SO(n) of all rotations of the ball Rn

s about its
origin. Since R is linear, and since by (2.3) we have γak

= γRak
, it follows from (11.3) that

(11.6) Ra =

∑h
k=0mkγRak

Rak∑h
k=0mkγRak

for all R∈SO(n). It follows from (11.6) that the vector a is covariant with respect to rotations
of Rn

s about its origin since the vector a and the vectors ak, k = 0, 1, . . . , h, of its generating
set A vary together in Rn

s under rotations of Rn
s .

It is owing to the transformation rules of a in (11.5) and (11.6) that a of (11.3) is qualified
for the title of gyrovector.

The group of all left gyrotranslations and all rotations of Rn
s forms the group of hyperbolic

rigid motions of Rn
s , which is the group of all direct isometries of Rn

s (that is, isometries pre-
serving orientation) for the hyperbolic distance, or gyrodistance, function d(a,b) = ‖	a⊕b‖.
Hence, the hyperbolic vector, gyrovector, a in (11.3) is said to be hyperbolically covariant, or
gyrocovariant, since the hyperbolic vector a and the hyperbolic vectors of its generating set
A vary together in Rn

s under the hyperbolic rigid motions of Rn
s . The motion group of a non

Euclidean geometry is studied, for instance, in [1], as Ellers mentions in [5].
Three illustrative examples 11.1 – 11.3, which are respectively analogous to examples 10.1 –

10.3, follow.

Example 11.1. The 2-simplex 〈u,v〉 in the Einstein 3-gyrovector space R3
s = (R3

s,⊕,⊗) is the
hyperbolic segment, gyrosegment, uv with endpoints u and v and gyromidpoint, Figs. 5.1 and
11.1,

(11.7) muv =
γuu + γvv

γu + γv

.

The gyrobarycentric coordinates of the endpoints u and v of the gyrosegment uv with respect
to A = {u,v} are, respectively, (1, 0) and (0, 1). As we see from (11.7), the gyrobarycentric
coordinates of the gyromidpoint muv of the gyrosegment with respect to A are (1/2, 1/2).

It can be shown [40, 44, 48] that, in full analogy with vector space midpoints, the gyrovector
space gyromidpoint muv in (11.7) can be written as

muv =
γuu + γvv

γu + γv

= 1
2
⊗(u� v)

= u⊕(	u⊕v)⊗1
2

= v⊕(	v⊕u)⊗1
2

(11.8)

in any Einstein gyrovector space (Vs,⊕,⊗).

Example 11.2. The 3-simplex 〈u,v,w〉 in R3
s is the hyperbolic triangle, gyrotriangle, uvw

with vertices u, v and w and gyrocentroid at the point

(11.9) Cuvw =
γuu + γvv + γww

γu + γv + γw
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of the gyrotriangle. The gyrobarycentric coordinates of the vertices u, v and w of gyrotrian-
gle uvw with respect to A = {u,v,w} are, respectively, (1, 0, 0), (0, 1, 0) and (0, 0, 1). As
we see from (11.9), the gyrobarycentric coordinates of the gyrocentroid with respect to A are
(1/3, 1/3, 1/3).

u

v

w

Cuvw

muv

muw

mvw

muv = γuu+γvv
γu+γv

muw = γuu+γww
γu+γw

mvw = γvv+γww
γv+γw

Cuvw = γuu+γvv+γww
γu+γv+γw

Figure 11.1. The gyromidpoints of the three sides of a gyrotriangleuvw in the Einstein
gyrovector plane(R2

s,⊕E,⊗E) are shown along with its gyromedians and gyrocentroid. Interest-
ingly, Einsteinian gyromidpoints and gyrocentroids have interpretation in relativistic mechanics,
fully analogous to the interpretation of Euclidean midpoints and centroids in classical mechanics
that one encounters in the vector space approach to Euclidean geometry [17]; see Example 11.2.

The gyrotriangle uvw of this example along with its side gyromidpoints and gyrocentroid is
shown in Fig. 11.1. The gyrotriangle gyrocentroid is the point of concurrency of the gyrotriangle
gyromedians, in full analogy with its Euclidean counterpart.

Example 11.3. The 4-simplex 〈u,v,w,p〉 in R3
s is a hyperbolic tetrahedron, gyrotetrahedron,

uvwp with vertices u, v, w and p, and gyrocentroid at the point

(11.10) Cuvwp =
γuu + γvv + γww + γpp

γu + γv + γw + γp

of the gyrotetrahedron. The gyrobarycentric coordinates of the vertices u, v, w and p of the gy-
rotetrahedron with respect to the set A = {u,v,w,p} are, respectively, (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0) and (0, 0, 0, 1). As we see from (11.10), the gyrobarycentric coordinates of the gyro-
centroid of the gyrotetrahedron with respect to A are (1/4, 1/4, 1/4, 1/4).
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A1

A2

A3

a12

a 1
3 a23

P3

π/2
h

a12 = ⊖A1⊕A2,

a13 = ⊖A1⊕A3,

a23 = ⊖A2⊕A3,

h = ⊖A3⊕P3,

a12 = ‖a12‖
a13 = ‖a13‖
a23 = ‖a23‖
h = ‖h‖

p1 = ⊖A1⊕P3,

p2 = ⊖A2⊕P3,

p1 = ‖p1‖
p2 = ‖p2‖

Figure 12.1. Orthogonal projection, P3, of a point, A3, onto a gyrosegment, A1A2, in an
Einstein gyrovector space (Vs ,⊕,⊗). The gyrosegment A3P3 is the gyroaltitude of gyrotriangle
A1A2A3 dropped from vertex A3 to side A1A2. Ambigiously, both the gyrovector h and its
gyrolength h are called a gyroaltitude of the gyrotriangle. The gyrobarycentric coordinates of
the point P3 with respect to the set of points {A1, A2, A3} are determined in Sec. 12.

12. GYROTRIANGLE GYROALTITUDES

Let A1A2A3 be a gyrotriangle with vertices A1, A2, and A3, in an Einstein gyrovector space
(Vs,⊕,⊗), and let the point P3 be the orthogonal projection of vertex A3 onto its opposite side,
A1A2 (or its extension), as shown in Fig. 12.1 and in Figs. 12.2 – 12.3 for Vs = R2

s. Further-
more, let (m1,m2) be the gyrobarycentric coordinates of P3 with respect to the set {A1, A2}
in the Einstein gyrovector space, as presented in Def. 11.1. Then, P3 is given in terms of its
gyrobarycentric coordinates (m1,m2) with respect to the set {A1, A2} by the equation

(12.1) P3 =
m1γA1

A1 +m2γA2
A2

m1γA1
+m2γA2

,

where the gyrobarycentric coordinates m1 and m2 of P3 are to be determined in (12.16) below
in terms of the side gyrolengths of gyrotriangle A1A2A3.

Furthermore, by the gyrocovariance of P3 in (12.1), which follows from (11.5), we have

(12.2) 	X⊕P3 =
m1γ	X⊕A1

(	X⊕A1) +m2γ	X⊕A2
(	X⊕A2)

m1γ	X⊕A1
+m2γ	X⊕A2

so that, in particular, for X = A1 and for X = A2 in (12.2) we have, respectively,

	A1⊕P3 =
m2γ	A1⊕A2

(	A1⊕A2)

m1 +m2γ	A1⊕A2

,

	A2⊕P3 =
m1γ	A1⊕A2

(	A2⊕A1)

m1γ	A1⊕A2
+m2

.

(12.3)
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Along with the notation in Fig. 12.1 we use the notation

a12 = 	A1⊕A2, a12 = ‖a12‖, γ21 = γ12 = γa12
,

a13 = 	A1⊕A3, a13 = ‖a13‖, γ31 = γ13 = γa13
,

a23 = 	A2⊕A3, a23 = ‖a23‖, γ32 = γ23 = γa23

(12.4)

and
p1 = 	A1⊕P3, p1 = ‖p1‖,
p2 = 	A2⊕P3, p2 = ‖p2‖(12.5)

and

(12.6) h = 	A3⊕P3, h = ‖h‖.
The Einstein-Pythagoras Identity says that if the gyrolength of the two legs and hypotenuse

of a right-gyroangled gyrotriangle in an Einstein gyrovector space are a, b and c, respectively,
then [48, Eq. (12.61), p. 553]

(12.7) γa γb = γc .

Following the notation in Fig. 12.1 and in (12.4) – (12.6), the application of the Einstein-
Pythagoras Identity, (12.7), to the two right gyrotriangles A1P3A3 and P3A2A3 in Fig. 12.1
gives rise, respectively, to the equations

γp1γh = γ13,

γp2γh = γ23.
(12.8)

By [48, Eq. (11.148) of Theorem 11.6, p. 481], it follows from (12.1) that

(12.9) γ	X⊕P3
=
m1γ	X⊕A1

+m2γ	X⊕A2

m0

for any X∈Vs, where m0 > 0 is given by the equation

(12.10) m2
0 = (m1 +m2)

2 + 2m1m2(γ12 − 1).

In its relativistic mechanical interpretation, m0 of (12.10) is the resultant invariant mass of the
invariant masses m1 and m2 [51]. The relativistic invariant mass resultant m0 depends on the
speed of m1 and m2 relative to each other, as we see from the presence of the gamma factor γ12

in (12.10). When this relative speed vanishes, we have γ12 = 1 so that (12.10) reduces in this
case to its classical counterpart, m0 = m1 +m2.

For X = A1 and for X = A2, respectively, (12.9) with the notation in (12.5) gives the
equations

γp1 =
m1 +m2γ12

m0

,

γp2 =
m1γ12 +m2

m0

(12.11)

and Einstein-Pythagoras Identities (12.8) give

(12.12)
m0γp1
γ13

=
m0γp2
γ23

.

Eliminating m0γp1 and m0γp2 between (12.11) and (12.12), we have

(12.13)
m1 +m2γ12

γ13

=
m1γ12 +m2

γ23

.
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Equation (12.13) and the gyrobarycentric coordinates normalization condition, m1 + m2 = 1,
form a system of two equations for the two unknowns m1 and m2, which can be written as the
matrix equation

(12.14)

(
1 1

1
γ13
− γ12

γ23

γ12

γ13
− 1

γ23

)(
m1

m2

)
=

(
1

0

)
.

The 2×2 matrix M in (12.14) is invertible, having the determinant

(12.15) det(M) =
γ13 + γ23

γ13γ23

(γ12 − 1) > 0,

implying

m1 =
γ12γ23 − γ13

(γ13 + γ23)(γ12 − 1)
,

m2 =
γ12γ13 − γ23

(γ13 + γ23)(γ12 − 1)
,

m1 +m2 = 1,

(12.16)

thus determining the gyrobarycentric coordinates (m1,m2) of P3 with respect to the set {A1, A2}
in (12.1).

By (12.9) with X = A3 and the notation in (12.4) and (12.6) we have

(12.17) γh = γ	A3⊕P3
=
m1γ13 +m2γ23

m0

,

where m1 and m2 are given by (12.16) and mo is given by (12.10).
We use the notation h2 = h·h = ‖h‖2 = h2, so that γ2

h = γ2
h. With this notation, it follows

from (2.7) that

(12.18) h2 = s2γ
2
h − 1

γ2
h

.

It follows from (12.18) and from (12.17), (12.16) and (12.10) that

γ2
h =

2γ12γ13γ23 − γ2
13 − γ2

23

γ2
12 − 1

,

γ2
hh

2 = s2(γ2
h − 1) = s2 1 + 2γ12γ13γ23 − γ2

12 − γ2
13 − γ2

23

γ2
12 − 1

,

h2 =
γ2

hh
2

γ2
h

= s2 1 + 2γ12γ13γ23 − γ2
12 − γ2

13 − γ2
23

2γ12γ13γ23 − γ2
13 − γ2

23

,

(12.19)

where h is the gyrotriangle gyroaltitude drawn from vertex A3, h = 	A3⊕P3, as shown in
Fig. 12.1.

Substituting the gyrobarycentric coordinates m1 and m2 from (12.16) into (12.1) we have

(12.20) P3 =
(γ12γ23 − γ13)γA1

A1 + (γ12γ13 − γ23)γA2
A2

(γ12γ23 − γ13)γA1
+ (γ12γ13 − γ23)γA2

=:
N312

D312

,

where N312 and D312 are the numerator and the denominator, respectively, of the right-hand
side of (12.20). The index notation in (12.20) will prove useful when index permutations are
needed.
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In (12.20) we obtain a homogeneous gyrobarycentric coordinate representation of the orthog-
onal projection P3 of vertex A3 onto its opposite side A1A2 (or its extension) of gyrotriangle
A1A2A3 of Fig. 12.1 with respect to the set {A1, A2}.

A1

A2

A3

H

P1

P2

P3

Figure 12.2. The gyroaltitudes, and the gy-
roorthocenterH , of a gyrotriangleA1A2A3 in
an Einstein gyrovector space. Case I: The gy-
roorthocenterH lies inside the acute gyrotrian-
gle. The homogeneous gyrobarycentric coor-
dinates(m1 : m2 : m3) of the gyrobarycenter
H relative to the set{A1, A2, A3} of the gy-
rotriangle vertices, given by Theorem 13.1, are
all positive.

H

A1

A2

A3

P1

P2

P3

Figure 12.3. The gyroaltitudes, and the gy-
roorthocenterH , of a gyrotriangleA1A2A3 in
an Einstein gyrovector space. Case II: The gy-
roorthocenterH lies outside the obtuse gyrotri-
angle. One of the homogeneous gyrobarycen-
tric coordinates(m1 : m2 : m3) of the gyro-
barycenterH relative to the set{A1, A2, A3}
of the gyrotriangle vertices, given by Theorem
13.1, is positive and the other two are negative.

Formalizing the result in (12.20) and previous related results, we have the following theorem.

Theorem 12.1. Let A1A2A3 be a gyrotriangle in an Einstein gyrovector space (Vs,⊕,⊗), and
let Pk, k = 1, 2, 3, be the orthogonal projection of vertex Ak onto its opposite side, as shown in
Figs. 12.2 – 12.3. Then

P1 =
(γ13γ23 − γ12)γA2

A2 + (γ12γ23 − γ13)γA3
A3

(γ13γ23 − γ12)γA2
+ (γ12γ23 − γ13)γA3

=
N123

D123

,

P2 =
(γ13γ23 − γ12)γA1

A1 + (γ12γ13 − γ23)γA3
A3

(γ13γ23 − γ12)γA1
+ (γ12γ13 − γ23)γA3

=
N231

D231

,

P3 =
(γ12γ23 − γ13)γA1

A1 + (γ12γ13 − γ23)γA2
A2

(γ12γ23 − γ13)γA1
+ (γ12γ13 − γ23)γA2

=
N312

D312

(12.21)

and

	A1⊕P1 =
(γ13γ23 − γ12)γ12(	A1⊕A2) + (γ12γ23 − γ13)γ13(	A1⊕A3)

(γ13γ23 − γ12)γ12 + (γ12γ23 − γ13)γ13

,

	A2⊕P2 =
(γ13γ23 − γ12)γ12(	A2⊕A1) + (γ12γ13 − γ23)γ23(	A2⊕A3)

(γ13γ23 − γ12)γ12 + (γ12γ13 − γ23)γ23

,

	A3⊕P3 =
(γ12γ23 − γ13)γ13(	A3⊕A1 + (γ12γ13 − γ23)γ23(	A3⊕A2)

(γ12γ23 − γ13)γ13 + (γ12γ13 − γ23)γ23

.

(12.22)
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Furthermore, the squares of the gyrotriangle gyroaltitudes are

‖	A1⊕P1‖2 = s2 1 + 2γ12γ13γ23 − γ2
12 − γ2

13 − γ2
23

2γ12γ13γ23 − γ2
12 − γ2

13

,

‖	A2⊕P2‖2 = s2 1 + 2γ12γ13γ23 − γ2
12 − γ2

13 − γ2
23

2γ12γ13γ23 − γ2
12 − γ2

23

,

‖	A3⊕P3‖2 = s2 1 + 2γ12γ13γ23 − γ2
12 − γ2

13 − γ2
23

2γ12γ13γ23 − γ2
13 − γ2

23

,

(12.23)

their relativistically corrected versions are

γ2
	A1⊕P1

‖	A1⊕P1‖2 = s2 1 + 2γ12γ13γ23 − γ2
12 − γ2

13 − γ2
23

γ2
23 − 1

,

γ2
	A2⊕P2

‖	A2⊕P2‖2 = s2 1 + 2γ12γ13γ23 − γ2
12 − γ2

13 − γ2
23

γ2
13 − 1

,

γ2
	A3⊕P3

‖	A3⊕P3‖2 = s2 1 + 2γ12γ13γ23 − γ2
12 − γ2

13 − γ2
23

γ2
12 − 1

,

(12.24)

and the gyrotriangle constant, SA1A2A3 , is given by each of the following three equations,

γ2
	A2⊕A3

‖	A2⊕A3‖2γ2
	A1⊕P1

‖	A1⊕P1‖2 = S2
A1A2A3 ,

γ2
	A1⊕A3

‖	A1⊕A3‖2γ2
	A2⊕P2

‖	A2⊕P2‖2 = S2
A1A2A3 ,

γ2
	A1⊕A2

‖	A1⊕A2‖2γ2
	A3⊕P3

‖	A3⊕P3‖2 = S2
A1A2A3 ,

(12.25)

where we define

(12.26) S2
A1A2A3 := s4(1 + 2γ12γ13γ23 − γ2

12 − γ2
13 − γ2

23).

Proof. Note that the three equations in each of the five groups in (12.21) – (12.25) follow from
each other by an index cyclic permutation since, consistent with the notation in (12.4), we have
γ21 = γ12, etc., where γ21 = γ‖	A2⊕A1‖.

Proof of (12.21): The third equation in (12.21) is a copy of (12.20), which has already been
proved. The second equation in (12.21) is obtained from the third by the a cyclic permutation of
the gyrotriangle vertices in Fig. 12.1 that corresponds to the index cyclic permutation (1, 2, 3)→
(3, 1, 2). The first equation in (12.21) is obtained from the third by the a cyclic permutation of
the gyrotriangle vertices in Fig. 12.1 that corresponds to the index cyclic permutation (1, 2, 3)→
(2, 3, 1).

Proof of (12.22): Each of the three equations in (12.22) follows from a corresponding equation
in (12.21) and from Identity [48, Eq. (11.112), p. 473], and the notation in (12.4).

Proof of (12.23): The third equation in (12.23) is identical with the third equation in (12.19)
with h = 	A3⊕P3, which has already been proved. The second equation in (12.23) is obtained
from the third by the cyclic permutation (1, 2, 3)→ (3, 1, 2), and the first equation in (12.23) is
obtained from the third by the cyclic permutation (1, 2, 3)→ (2, 3, 1) of indices.

Proof of (12.24): The third equation in (12.24) follows from the second equation in (12.19)
with h = 	A3⊕P3, which has already been proved. The second equation in (12.24) is obtained
from the third by the cyclic permutation (1, 2, 3)→ (3, 1, 2), and the first equation in (12.24) is
obtained from the third by the cyclic permutation (1, 2, 3)→ (2, 3, 1) of indices.
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Proof of (12.25): The first equation in (12.25) follows from the first equation in (12.24), noting
that by (12.18),

(12.27) s2(γ2
23 − 1) = s2(γ2

	A2⊕A3
− 1) = γ2

	A2⊕A3
‖	A2⊕A3‖2.

The second and third equations in (12.25) follow from the second and third equations in (12.24)
in a similar manner.

13. EINSTEIN GYROTRIANGLE GYROORTHOCENTER

Figs. 12.2 – 12.3 indicate that the three gyroaltitudes of a gyrotriangle are concurrent. To
prove analytically that this is indeed the case, we calculate the point of concurrency H which,
in gyrolanguage, we naturally call the gyrotriangle gyroorthocenter. Since gyrolines in Einstein
gyrovector spaces are segments of Euclidean straight lines in Euclidean geometry, we can use
linear algebra in order to uncover homogeneous gyrobarycentric coordinates for the point of
concurrency H , if it exists, with respect to the set of the gyrotriangle vertices.

Indeed, by methods of linear algebra one may find that the gyroorthocenter H of any gy-
rotriangle A1A2A3 in an Einstein gyrovector space (Vs,⊕,⊗), shown in Figs. 12.2 – 12.3 for
Vs = R2

s, exists in V (but not necessarily in the ball Vs ⊂ V), and is given by the gyrotriangle
gyroorthocenter equation

(13.1) H =
C12C13γA1

A1 + C12C23γA2
A2 + C13C23γA3

A3

C12C13γA1
+ C12C23γA2

+ C13C23γA3

∈V,

where

C12 = γ13γ23 − γ12,

C13 = γ12γ23 − γ13,

C23 = γ12γ13 − γ23,

(13.2)

and where we use the notation in (12.4). Here, V is the space of the ball Vs. When H∈V does
not lie in Vs, the gyrotriangle A1A2A3 does not have a gyroorthocenter, as shown in Fig. 13.1.

A1

A2

A3

H

P1

P2

P3

Figure 13.1. A gyrotriangle A1A2A3 that
does not possess a gyroorthocenter H in an
Einstein gyrovector plane (Vs,⊕,⊗). The
point H ∈ V lies outside the ball Vs ⊂ V and,
hence, according to Theorem 13.1, f2 < 0.

A1

A2

A3

H
P1

P2

P3

Figure 13.2. A gyrotriangle A1A2A3 that
does not possess a gyroorthocenter H in an
Einstein gyrovector plane (R2

s,⊕,⊗). The
point H ∈ V lies on the boundary of the ball
Vs ⊂ V. Hence, by Theorem 13.1, f2 = 0.
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Equations (13.1) – (13.2) present homogeneous gyrobarycentric coordinates for the point H
with respect to the set {A1, A2, A3} of the gyrotriangle vertices, as defined in Def. 11.1. For-
malizing the result in (13.1) – (13.2), we have the following theorem.

Theorem 13.1. Let H be the gyroorthocenter of a gyrotriangle A1A2A3 in an Einstein gy-
rovector space (Vs,⊕,⊗), Figs. 12.2 – 12.3, and let V be the space of the ball Vs ⊂ V. Then,
the homogeneous gyrobarycentric coordinates (m1 : m2 : m3) for H with respect to the set
{A1, A2, A3} of the gyrotriangle vertices are given by the equations

m1 = C12C13,

m2 = C12C23,

m3 = C13C23,

(13.3)

where Cij , i, j = 1, 2, 3, i < j, are given by (13.2). Accordingly, the gyrobarycentric coor-
dinate representation of the gyroorthocenter H of a gyrotriangle A1A2A3 with respect to the
gyrotriangle vertices in an Einstein gyrovector space is given by the gyroorthocenter equation

(13.4) H =
m1γA1

A1 +m2γA2
A2 +m3γA3

A3

m1γA1
+m2γA2

+m3γA3

∈V,

where the homogeneous gyrobarycentric coordinates m1, m2, and m3 are given by (13.3). If
m1,m2,m3 > 0 then H∈Vs ⊂ V.

The gyrotriangle A1A2A3 possesses a gyroorthocenter H , that is, H lies in the ball Vs, if
and only if

(13.5) f2 > 0,

where f2 is a gyrotriangle constant, given by the equation

(13.6) f2 = γ2
12γ

2
13 + γ2

12γ
2
23 + γ2

13γ
2
23 + 3γ2

12γ
2
13γ

2
23 − 2γ12γ13γ23(γ

2
12 + γ2

13 + γ2
23).

Furthermore, H lies on the boundary of the ball Vs if and only if

(13.7) f2 = 0.

Proof. The point H is the concurrency point of the three Euclidean straight lines that pass,
respectively, through the pairs of points (A1, P1), (A2, P2) and (A3, P3), as shown in Figs. 12.2
– 12.3, where A1,A2 and A3 are the gyrotriangle vertices, and where P1,P2 and P3 are the
corresponding orthogonal projections given by (12.21). The representation of H as a linear
combination of the points A1, A2, A3∈V in (13.4) is found by employing common methods of
linear algebra.

The point H of V lies in the ball, H∈Vs ⊂ V, if and only if

(13.8)
H2

s2
< 1,

where H2 = H·H = ‖H‖2 is given by the inner product of H by itself.
Let the numerator and the denominator of H/s in (13.4) be, respectively,

N = m1γA1

A1

s
+m2γA2

A2

s
+m3γA3

A3

s
,

D = m1γA1
+m2γA2

+m3γA3
,

(13.9)

so that

(13.10)
H2

s2
=
N2

D2
,

where N2 = N ·N = ‖N‖2.
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In calculating N2 of (13.9) – (13.10), one encounters the inner products (γAi
Ai)·(γAj

Aj),
i, j = 1, 2, 3. These inner products can be manipulated in the way shown in (13.11) and (13.13)
below.

By (12.18), we have

(13.11) γAi

Ai
s
·γAi

Ai
s

= γ2
Ai

‖Ai‖2
s2

= γ2
Ai
− 1,

i = 1, 2, 3.
By (2.11), we have

(13.12) γij := γ	Ai⊕Aj
= γAi

γAj

(
1− AiAj

s2

)
,

implying

(13.13) γAi

Ai
s
·γAj

Aj
s

= γAi
γAj
− γij,

i, j = 1, 2, 3, i < j.
The square D2 of D in (13.10) is clearly a function of γ12, γ13, γ23, and of γA1

, γA2
, γA3

, as
one can see from (13.9) and (13.2) – (13.3). Similarly, the square N2 of N in (13.10) can also
be written as a function of γ12, γ13, γ23, and of γA1

, γA2
, γA3

, if we use identities (13.11) and
(13.13).

Surprisingly, the difference of squares, D2 − N2, which remains a function of γ12, γ13, γ23,
is independent of γA1

, γA2
, γA3

. Indeed, it turns out that

(13.14) D2 −N2 = f1f2,

where the two factors f1 and f2 are given by

f1 = 1 + 2γ12γ13γ23 − γ2
12 − γ2

13 − γ2
23 = S2

A1A2A3/s
4,

f2 = γ2
12γ

2
13 + γ2

12γ
2
23 + γ2

13γ
2
23 + 3γ2

12γ
2
13γ

2
23 − 2γ12γ13γ23(γ

2
12 + γ2

13 + γ2
23).

(13.15)

Mysteriously, the factor f1 turns out to be identical with the squared gyroarea constant
S2

A1A2A3
in (12.26), divided by s4.

It follows from (13.8), (13.10) and (13.14) that H ∈Vs if and only if f1f2 > 0. However,
it can be shown that the factor f1 is positive, f1 > 0, for any gyrotriangle A1A2A3 in Vs [52].
Hence, H ∈Vs if and only if f2 > 0, as desired. Furthermore, H lies on the boundary of Vs,
that is, ‖H‖2/s2 = 1, if and only if f2 = 0, as desired.

The factor f2 is a gyrotriangle constant, like f1, in the sense that it is gyrocovariant and
independent of gyrotriangle vertex permutations. It is a gyrotriangle constant that determines
whether a gyrotriangle possesses a gyroorthocenter.

According to Theorem 13.1, the factor f2 of the gyrotriangles in Figs. 12.2 – 12.3 is positive,
the factor f2 of the gyrotriangle in Fig. 13.1 is negative, and the factor f2 of the gyrotriangle in
Fig. 13.2 is zero.

Homogeneous gyrobarycentric coordinates of a gyrotriangle gyroorthocenter H with respect
to the set of the gyrotriangle vertices need not be positive. Thus, for instance, in Fig. 12.2 these
three homogeneous gyrobarycentric coordinates of H , given by (13.3), are all positive, while in
Fig. 12.3 only one of these is positive and the other two are negative.

The special case of the right gyroangled gyrotriangle gyroorthocenter equation (13.4) is in-
teresting and instructive. In this case gyrotriangle A1A2A3 in Theorem 13.1 and Fig. 12.2 is
right with, say, ∠A1A3A2 = π/2, so that the legs and hypotenuse of the gyrotriangle satisfy the

AJMAA, Vol. 6, No. 1, Art. 18, pp. 1-35, 2009 AJMAA

http://ajmaa.org


HYPERBOLIC BARYCENTRIC COORDINATES 29

Einstein-Pythagoras Identity (12.7). In the presence of the latter identity, in turn, the gyrotrian-
gle gyroorthocenter equation (13.4) reduces to

(13.16) H = A3

as expected.

α

β

γ

A

B

C

a

b

c

A0

B0

C0

H

h
a

hb

hc

a = ⊖B⊕C, a = ‖a‖
b = ⊖C⊕A, a = ‖a‖
c = ⊖A⊕B, a = ‖a‖

ha = ⊖A0⊕A, ha = ‖ha‖
hb = ⊖B0⊕B, hb = ‖hb‖
hc = ⊖C0⊕C, hc = ‖hc‖

Figure 14.1. A Möbius gyrotriangleABC in the Möbius gyrovector plane(R2
s,⊕,⊗) and its

gyroaltitudes are shown. The gyroaltitudehc of ABC is the gyrosegment drawn perpendicularly
from vertexC to its opposite sideAB. Ambigiously, also the gyrolengthhc = ‖hc‖ of the
gyroaltitudehc is known as a gyroaltitude of the gyrotriangleABC. The gyrolines containing
the gyrotriangle gyroaltitudes are concurrent at the pointH , called the gyroorthocenter of the
gyrotriangleABC. The position of the gyroorthocenterH relative to the gyrotriangle vertices
as calculated in Identity (14.15) of Theorem 14.1. is shown here.

14. MÖBIUS GYROTRIANGLE GYROORTHOCENTER

A Möbius gyrotriangle gyroorthocenter is shown in Fig. 14.1. A direct calculation of a point
of intersection of two gyrolines in a Möbius gyrovector space is a slightly complicated task. In
contrast, a direct calculation of a point of intersection of two gyrolines in an Einstein gyrovector
space is a simple task since gyrolines in this space coincide with Euclidean segments of straight
lines, so that methods of linear algebra can be employed. Hence, we make no attempt to cal-
culate directly the position of the Möbius gyrotriangle gyroorthocenter with respect to some
coordinates, while we did calculate the position of the Einstein gyrotriangle gyroorthocenter in
terms of homogeneous gyrobarycentric coordinates in Sec. 13. Rather than calculating the po-
sition of a Möbius gyrotriangle gyroorthocenter directly, we therefore calculate it by translating
the result from Einstein gyrovector spaces into corresponding Möbius gyrovector spaces.
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Accordingly, we wish in this section to translate each side of the Einstein gyrotriangle gy-
roorthocenter equation (13.4) from an Einstein gyrovector space into a corresponding Möbius
gyrovector space. To accomplish the task, let us rewrite (13.4) in a form that emphasizes the
governing Einstein gyrovector space by a subscript “e”, so that its translation into a correspond-
ing Möbius gyrovector space can be contrasted by emphasizing it by a subscript “m”. The
resulting Einstein gyroorthocenter equation (13.4) takes the form

(14.1) He =
m1,eγA1,e

A1,e +m2,eγA2,e
A2,e +m3,eγA3,e

A3,e

m1,eγA1,e
+m2,eγA2,e

+m3,eγA3,e

.

In (14.1), He is the gyroorthocenter of a gyrotriangle A1,eA2,eA3,e in an Einstein gyrovector
space (Vs,⊕E ,⊗E), represented by its homogeneous gyrobarycentric coordinates (m1,e : m2,e :
m3,e) with respect to the set of the gyrotriangle vertices {A1,e, A2,e, A3,e}.

According to (13.3), the homogeneous gyrobarycentric coordinates (m1,e : m2,e : m3,e) in
(14.1) are given by the equations

m1,e = C12,eC13,e,

m2,e = C12,eC23,e,

m3,e = C13,eC23,e,

(14.2)

where, by (13.2),

C12,e = γ13,eγ23,e − γ12,e,

C13,e = γ12,eγ23,e − γ13,e,

C23,e = γ12,eγ13,e − γ23,e,

(14.3)

and where, by (12.4),

(14.4) γij,e = γ	EAi,e⊕EAj,e
,

i, j = 1, 2, 3, and i < j.
By the isomorphism studied in Sec. 9 we have the relationships

(14.5) He = 2⊗MHm

and

(14.6) Ak,e = 2⊗MAk,m,

k = 1, 2, 3. It follows from (14.6) that

(14.7) γAk,e
= γ2⊗MAk,m

= 2γ2
Ak,m
− 1

by (2.12), and

(14.8) γAk,e
Ak,e = γ2⊗MAk,m

(2⊗MAk,m) = 2γ2
Ak,m

Ak,m

by (2.13), k = 1, 2, 3.
In (14.5) – (14.8) we have translated several terms of (14.1) from an Einstein gyrovector

space (Vs,⊕E ,⊗E) into its corresponding Möbius gyrovector space (Vs,⊕M ,⊗M). It remains to
translate the homogeneous gyrobarycentric coordinates (m1,e : m2,e : m3,e) as well.

For the translation of the homogeneous gyrobarycentric coordinates mk,e into mk,m, k =
1, 2, 3, we need the translation that we obtain in the following chain of equations, in which
equalities are numbered for subsequent derivation.
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γ12,e

(1)︷︸︸︷
:=== γ	EA1,e⊕EA2,e

(2)︷︸︸︷
=== γ	E (2⊗EA1,m)⊕E (2⊗EA2,m)

(3)︷︸︸︷
=== γ2⊗M (	MA1,m⊕MA2,m)

(4)︷︸︸︷
=== 2γ2

	MA1,m⊕MA2,m
− 1

(5)︷︸︸︷
===: 2γ2

12,m − 1.

(14.9)

Derivation of the numbered equalities in (14.9) follows.
(1) Notation that follows from (12.4) with ⊕ = ⊕E into which the subscript “e” is intro-

duced to emphasize that the equation under (1) is considered in an Einstein gyrovector
space.

(2) Follows from (1) by the isomorphism studied in Sec. 9.
(3) Follows from (2) and the isomorphism between ⊕E and ⊕M in (9.1).
(4) Follows from (3) and the identity γ2⊗a = 2γ2

a − 1 in (2.12).
(5) Notation that follows from (12.4) with ⊕ = ⊕M into which the subscript “m” is intro-

duced to emphasize that the equation under (5) is considered in a Möbius gyrovector
space.

It follows from (13.2) and (14.9) that

C12,e : = γ13,eγ23,e − γ12,e

= (2γ2
13,m − 1)(2γ2

23,m − 1)− (2γ2
12,m − 1)

=: C12,m,

(14.10)

etc., so that

C12,e = C12,m = (2γ2
13,m − 1)(2γ2

23,m − 1)− (2γ2
12,m − 1),

C13,e = C13,m = (2γ2
12,m − 1)(2γ2

23,m − 1)− (2γ2
13,m − 1),

C23,e = C23,m = (2γ2
12,m − 1)(2γ2

13,m − 1)− (2γ2
23,m − 1),

(14.11)

where, following the notation introduced in (14.9), we use the notation

(14.12) γij,m = γ	MAi,m⊕MAj,m
,

i, j = 1, 2, 3, and i < j.
Finally, by (14.2) and (14.11),

m1,e = C12,eC13,e = C12,mC13,m =: m1,m,

m2,e = C12,eC23,e = C12,mC23,m =: m2,m,

m3,e = C13,eC23,e = C13,mC23,m =: m3,m.

(14.13)

We are now in the position to rewrite the Einstein gyroorthocenter equation (14.1) by means
of corresponding terms that involve the subscript “m” rather than “e”. We thus substitute in
(14.1):

(1) He from (14.5);
(2) γAk,e

, k = 1, 2, 3, from (14.7); and
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(3) γAk,e
Ak,e, k = 1, 2, 3, from (14.8);

(4) mk,e, k = 1, 2, 3, from (14.13).
These substitutions result in the Möbius gyroorthocenter equation,

(14.14) 2⊗MHm =
2m1,mγ

2
A1,m

A1,m + 2m2,mγ
2
A2,m

A2,m + 2m3,mγ
2
A3,m

A3,m

2m1,mγ2
A1,m

+ 2m2,mγ2
A2,m

+ 2m3,mγ2
A3,m

,

where Hm is the gyroorthocenter of a gyrotriangle A1,mA2,mA3,m in a Möbius gyrovector space
(Vs,⊕M ,⊗M), and where the homogeneous gyrobarycentric coordinates (m1,m : m2,m : m3,m)
are given by (14.13) and (14.11).

To formalize the result in (14.14) we slightly rearrange Identity (14.14) and omit the subscript
“m”, obtaining the following theorem.

Theorem 14.1 (Möbius Gyrotriangle Gyroorthocenter). Let A1A2A3 be a gyrotriangle in a
Möbius gyrovector space (Vs,⊕,⊗). The gyroorthocenter H of the gyrotriangle, Fig. 14.1, is
given by the equation

(14.15) H = 1
2
⊗ m1γ2

A1
A1+m2γ2

A2
A2+m3γ2

A3
A3

m1γ2
A1

+m2γ2
A2

+m3γ2
A3
− 1

2
(m1 +m2 +m3)

,

where the homogeneous gyrobarycentric coordinates (m1 : m2 : m3) are given by
m1 = C12C13,

m2 = C12C23,

m3 = C13C23,

(14.16)

where
C12 = (2γ2

13 − 1)(2γ2
23 − 1)− (2γ2

12 − 1),

C13 = (2γ2
12 − 1)(2γ2

23 − 1)− (2γ2
13 − 1),

C23 = (2γ2
12 − 1)(2γ2

13 − 1)− (2γ2
23 − 1),

(14.17)

and where

(14.18) γij = γ	Ai⊕Aj
,

i, j = 1, 2, 3, and i < j.

A Möbius gyrotriangle gyroorthocenter, with position calculated by (14.15), is shown in
Fig. 14.1.
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