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ABSTRACT. The function

x€ z
is logarithmically completely monotonic if0, co) if and only if ¢ > 1 and its reciprocal is
logarithmically completely monotonic if0, co) if and only if ¢ < 0. The function
V() + 24 (6+c)z + (4 + 3c)x? + (2 + 3¢)2® + ca?
z3(z +1)3
is completely monotonic if0, o) if and only if ¢ > 1 and its negative is completely monotonic
in (0, 00) ifand only if¢ < 0.

[T(x+ 1))/ <1+ 1)‘”
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1. INTRODUCTION

A function f is said to be completely monotonic on an interyaf f has derivatives of all
orders on/ and

(1.1) (=1)"f"(x) > 0

for z € I andn > 0. The set of completely monotonic functions is denoted’ fy.
A positive functionf is said to be logarithmically completely monotonic on an inteifvil
its logarithmin f satisfies

(1.2) (—1)*[In f(2)]® >0

for k € NonI. The set of logarithmically completely monotonic functions is denoted [3Y.
A function f is called a Stieltjes transform if it can be of the form

> du(s)
1.3 —
13) fla) = ot [ B
wherea > 0 andy is a nonnegative measure fihoo) satisfying
>~ 1
1.4 d :
(1.4) /0 —du(s) < o

The set of Stieltjes transforms is denoted$y

The notion or terminology “logarithmically completely monotonic function” was explicitly
introduced in[[9], formally published in [8], and immediately studied or citedlin/[2} 4,15, 10, 11].
Among other things, it is implicitly or explicitly proved in][2] 3| 8,[9,112] that/| ¢ C[I], but
not conversely [9]. Among others, it is also showed in [2, 12] that

(1.5) S\ {0} € £[(0,00)] € C[(0, 00)].

In [2, Theorem 1.1] and [4, 10] it is pointed out that the logarithmically completely monotonic
functions on(0, co) can be characterized as the infinitely divisible completely monotonic func-
tions studied by Horn in |6, Theorem 4.4]. For more information on the logarithmically com-
pletely monotonic functions, please refer(to([2, 7, 12] and the references therein.

In [10,[11], it is proved that

T 1/z T
(1.6) P(z) = LEF DI (1 + i) € £](0, 00)],

T

wherel'(x) is the well known classical Euler gamma function, which is one of the most im-
portant special functions and has much extensive applications in many branches, for example,
statistics, physics, engineering, and other mathematical sciences.

Motivated by [9/ 11], the paper|[2] proved th&fz) € S andln ®(z) € S and obtained the
integral representations fdr(x) andin ®(x) respectively.

Define

T 1/z z
(1.7) () = w <1 + i)

for z € (0,00). Itis clear thatb, (z) = ®(x).
The main purpose of this paper is to find the range ef R such thatb.(z) € L[(0, c0)].
Our main results are as follows.

Theorem 1.1. The function

(1.8)  o(x) = ¢ (2) + = (6 + )z + (4 + 3c)a? + (2 + 3¢)2® + cx?

x3(z +1)3

€ C[(0, 00)]
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if and only ifc > 1 and—¢(x) € C[(0, c0)] if and only ifc < 0.
Theorem 1.2. The function®.(z) € L[(0, c0)] if and only ifc > 1 and[®.(z)]~! € L[(0, )]

if and only ifc < 0.

Remark 1.1. Since®, (z) andln @, (x) are both Stieltjes transforms, it is natural to ask whether
the functionsd,.(x) andln ®.(z) are Stieltjes transforms fer+ 1.

2. PROOFS OF THEOREM [I.IAND THEOREM [1.2

Proof of Theorer 1]1lt is well known [1] that, forz > 0, » > 0, andk € N,
1 [e.9]
/ tr—le—xt dt,
0

1
(2.1) P W
1 N 1
(2.2) PP () = (—1)F k‘ggm
®) o ) 00 tke—zt
W) = o [T
(=) '(k = 1)

(2.3)
PE V(@ +1) = V(@) + o

(2.4)
From formulas[(Z]1)] (2]2)[ (2.3) and (R.4), ferc (0, c0) and any nonnegative integérit

follows that
¢(x) £ 9" (x) + g2(2) + ha()
2+ cx — 2%  2(3+ 3z + 2?)
é "
Vi) + a3 * (x+1)3
2 c 2 2 2 2
— " = =
4 (x)+x3 et (14+2z)*  (1+4x)? * 1+z
c 2 2 2 =1
- _ 2 -
2 x (1+x)2+1+:c ;(x—irz')?)
2 2 2
— I 2 i _ =
Vi + >+x2 x+ (1—|—x)2+1+x
:c/ te—“dt—Q/ e_ztdt—i-Z/ te~ (@Dt q¢
0 0 0
) [e’e) t2 —(.1’+2)t
+ 2/ e p - / _a
% o . ) —(z+2)t
:/ [(ct —2)e* + (2t — ct + 4)e’ — (£ + 2t + 2)] T dt
. o 67(z+2)t 4
= t t
/0 ()=
and
- ‘ 0o —(z+2)t
(25) 6(w) = (-1 [ o)t
0
Standard argument shows thét) § 0 is equivalent to
2% —2(t +2)el +t2 + 2t +2
c§ ( ; )t = ()
tet(et — 1)
AJMAA

(2.6)
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for t > 0. Straightforward computing yields

(1) = 242t + 12+ 13 — (6 + 4t + 3t% + 2t3)e! + 2(3 + t + t2)e? — 2e¥
¥ - t2€t(€t _ 1)2
A M)

 t2et(et —1)2’

N (t) =2+ 2t + 3t* — (10 + 10t + 9* + 2t%)e' + 2(7 + 4t + 2t*)e*" — 6¢*,
M (t) = 24 6t — (20 + 28t + 157 + 2t)e’ + 4(9 + 6t + 2t%)e* — 18e™,

M (t) = 6 — 54e® — (48 + 58t + 21t + 2t%)e’ + 16(6 + 4t + t*)e*

AP () = —[106 + 100t 4 27¢2 + 2> + 162e* — 32(8 + 5t + 1%)e!] !

= Ao(t),

Mo (t) = 100 + 54t + 612 — 32(13 + 7t + t*)e’ + 324e*,
Ny (t) = 6(9 + 2t) — 32(20 + 9t + t?)e! + 648e*,

Ay (1) =4[3 - 8(29 + 11t + t*)e’ + 324€™],

AW () = 32(81€" — 2 — 13t — 40)e’

It is clear that>\ ( ) > 01in (0,00) and/\ ( ) > 0for 0 < i < 3. Therefore, the functions
/\( )(t) is mcreasmg and positive for < : < 3in (0, 00). This |mpI|es thav\( (t) is negative
n (0, 00). Slnce/\ (0) = 0for0 < < 3, it follows that/\ ( ) is decreasing and negative
for 0<¢<3in (O 00). This givesy’(t) < 0in (0, 00). Hence the functiorp(¢) is strictly
decreasing in0, o).
Using the decreasingly monotonicity ft) and the fact that

PI% p(t) =1 and tlim e(t)=0

leads to0 < p(t) < 1. If ¢ > 1, theng(t) > 0; if ¢ < 0, theng(t) < 0. This means that the
function ¢(x) is strictly completely monotonic if0, co) for ¢ > 1 and—¢(x) is also strictly
completely monotonic if0, co) for ¢ < 0.

If ¢(x) is completely monotonic i0, co), then by definition

2(3+ 12z + 172% + 8% + 32*)  2¢

2.7) #(x) = ¥"(x) - ETET - 550

which is equivalent to

x3 2(3 + 12z + 172% + 823 + 32%)
2. > - " _ 1

asx — oo by using the asymptotic formulal[1]:

(2.9) (1) = Db o +(”+1)!+O( ! > 7 — o0,

xn 2$n+1 12xn+2 xn+3

Similarly, it is easy to see that the necessary condition@fz) being completely monotonic
in (0, 00) is ¢ < 0. The proof of Theorer 1]1 is completg.

The first proof of Theorem 1.Zaking logarithm of®.(z) gives

1 InT" 1
x

T
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Differentiating yields

, 1 1 Yl +1)—InD(z +1
(2.10) [In &, (z)] :1n<1+5>_x+1+x (z )xZn (x )_g
and
I @] = (-0 (0 - e = ]+ 1 - D
1 1 h,,
(=10 = D = |+ 22
e cn—1)—x r+n hn(x)
wheren > 2,
V(@ +1)=nT(@+1), vOz+1) = +1),
and
B “ (—1)"*kn!xk¢(k_1)(x+ 1)
(2.12) @) =3 - ,
PN () >0 if nisodd
(2.12) in(@) = & (@ 1) {< 0 if niseven
Therefore,

(=) 2" In @, ()] + (=1)" hy,(2) = (n — 2)!{c(n —1)—x+ M}x

(z+1)n
and, by [(2-4),

d{(=1)"z" " In®.(z)]"™}
dx

= (_1)”;1;”1/;(”)(1' +1)+(n— 2)!{c(n —1)—2z

a"[n +n?+ (24 2n)z + 227
" (x + 1)ntt }
= x”{(—l)%(”)(x + 1)+ (n—2)! [W
n+n?+ (24 2n)z + 222
SRl

cn—1)—2x
:L-TL

_ a;”{(—nw(")(x) + xﬂ +(n—2)! {
+n+n2+(2+2n)x+2x2”

(x4 1)n+!
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!

= xn{(—n%(”)(x) + xﬁl + (n—2)! l

n(n + 1)(—; i(T):i)x + 21’2] }

cn—1)—2x

xn

n(n—1)+c(n— 1)z — 222
xntl

- x"{(—l)"@b(n)(:ﬂ) +(n—2)! [

n(n + 1)(; i(?ll):i)x + 21;2} }

£ xn{(—l)n¢(n)($) + (n = 2)![gn(x) + hn(x)]}

with
go(2) = —(n— Dgasa(z) and h,(x) = —(n — 1hy ()
which implies
%" (2) = (~1)"(n = 2)lga(z) and By (z) = (~1)"(n - 2)!hy(2)
by induction. Hence, by using Theorl.l, we have
d n n+11 (I) n) ; ; >
{(- [In } (1D () L7 0 !f and only !fc > 1,
dx <0 ifandonlyifc <0,

and the function(—1)"2"*![In ®.(x)]™ is increasing (or decreasing) if and onlycif> 1 (or
¢ < 0)in (0, 00). Fromlim,_o{(—1)"z" ! [In ®.(z)]™} = 0, it is deduced that

>0 ifandonlyifc > 1
<0 ifandonlyifc <0

(=1)"2" ! [In @ ()] ™ {

and

>0 ifandonlyifc > 1
<0 ifandonlyifc <0

(—1)"[In @ ()] {

for n > 2in (0, 00). This implies the functionln ®.(z)|’ is increasing (or decreasing) if and
only if ¢ > 1 (ore < 0) in (0, 00). Itis ready to obtaitiim, . ..[In ®.(z)]’ = 0, so

<0 ifandonlyifc>1
In®.(z)] . .
[In @ (2)] {>0 ifand only if¢ <0

andln ®.(z) is decreasing (or increasing) if and onlycif> 1 (or ¢ < 0) in (0, 00). The first
proof of Theorenm 1]2 is completg.

The second proof of Theorém[1\&/rite ®.(z) = % Hence
f(z) = In[®.(x)] = —(c — 1) Inz + In[®(z)].

By applying one of the results in [10] thét(x) is logarithmically completely monotonic in
(0, 00), it is easy to show—1)" f™(z) > 0in (0,00) for alln € Nif ¢ > 1.

For the part ofc < 1, the second part of Theore.2 is proved if one useg(; =
— In[®.(x)].

If the function®,.(x) is logarithmically completely monotonic ift), co), then by definition
[In ®.(x)]" < 0 which is equivalent to

(2.13) cExln(l—l—i)— x +x1/1(x+1)—lnr(x+1>é

z+1 T

0(x)
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from (2.10). If —— is logarithmically completely monotonic ifD, co), then by definition

In®.(z)]" >0 WhICh is equivalent to the reversed inequality[of (2.13). By L'HGOspital’s rule, it
is easy to obtain thdim, ., J(x) = 0. Utilizing directly the following formulas

(2.14) Inl(zx = (w—%) lna:—x—i—ln(z?r) +L+O(i>, T — 00

2 122 2
and
(2.15) W(x) = e — — - — 4o
. = - — — —
v e 2¢  12x2 x3 )’ T

yieldslim, .., ¥(x) = 1. Therefore, the necessary conditiondf(x) being logarithmically
completely monotonic ifi0, o) is ¢ > 1 and the necessary condition@f@ being logarithmi-

cally completely monotonic if0, co) is ¢ < 0. The second proof of Theordm 1.2 is complege.
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