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ABSTRACT. The function
[Γ(x+ 1)]1/x

xc

(
1 +

1
x

)x

is logarithmically completely monotonic in(0,∞) if and only if c ≥ 1 and its reciprocal is
logarithmically completely monotonic in(0,∞) if and only if c ≤ 0. The function

ψ′′(x) +
2 + (6 + c)x+ (4 + 3c)x2 + (2 + 3c)x3 + cx4

x3(x+ 1)3

is completely monotonic in(0,∞) if and only if c ≥ 1 and its negative is completely monotonic
in (0,∞) if and only if c ≤ 0.

Key words and phrases:Completely monotonic function, Logarithmically completely monotonic function, Gamma function,
Polygamma function.
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2 B.-N. GUO AND X.-A. L I AND F. QI

1. I NTRODUCTION

A function f is said to be completely monotonic on an intervalI if f has derivatives of all
orders onI and

(1.1) (−1)nf (n)(x) ≥ 0

for x ∈ I andn ≥ 0. The set of completely monotonic functions is denoted byC[I].
A positive functionf is said to be logarithmically completely monotonic on an intervalI if

its logarithmln f satisfies

(1.2) (−1)k[ln f(x)](k) ≥ 0

for k ∈ N on I. The set of logarithmically completely monotonic functions is denoted byL[I].
A functionf is called a Stieltjes transform if it can be of the form

(1.3) f(x) = a+

∫ ∞

0

dµ(s)

s+ x
,

wherea ≥ 0 andµ is a nonnegative measure on[0,∞) satisfying

(1.4)
∫ ∞

0

1

1 + s
dµ(s) <∞.

The set of Stieltjes transforms is denoted byS.
The notion or terminology “logarithmically completely monotonic function" was explicitly

introduced in [9], formally published in [8], and immediately studied or cited in [2, 4, 5, 10, 11].
Among other things, it is implicitly or explicitly proved in [2, 3, 8, 9, 12] thatL[I] ⊂ C[I], but
not conversely [9]. Among others, it is also showed in [2, 12] that

(1.5) S \ {0} ⊂ L[(0,∞)] ⊂ C[(0,∞)].

In [2, Theorem 1.1] and [4, 10] it is pointed out that the logarithmically completely monotonic
functions on(0,∞) can be characterized as the infinitely divisible completely monotonic func-
tions studied by Horn in [6, Theorem 4.4]. For more information on the logarithmically com-
pletely monotonic functions, please refer to [2, 7, 12] and the references therein.

In [10, 11], it is proved that

(1.6) Φ(x) =
[Γ(x+ 1)]1/x

x

(
1 +

1

x

)x

∈ L[(0,∞)],

whereΓ(x) is the well known classical Euler gamma function, which is one of the most im-
portant special functions and has much extensive applications in many branches, for example,
statistics, physics, engineering, and other mathematical sciences.

Motivated by [9, 11], the paper [2] proved thatΦ(x) ∈ S andln Φ(x) ∈ S and obtained the
integral representations forΦ(x) andln Φ(x) respectively.

Define

(1.7) Φc(x) =
[Γ(x+ 1)]1/x

xc

(
1 +

1

x

)x

for x ∈ (0,∞). It is clear thatΦ1(x) = Φ(x).
The main purpose of this paper is to find the range ofc ∈ R such thatΦc(x) ∈ L[(0,∞)].

Our main results are as follows.

Theorem 1.1.The function

(1.8) φ(x) = ψ′′(x) +
2 + (6 + c)x+ (4 + 3c)x2 + (2 + 3c)x3 + cx4

x3(x+ 1)3
∈ C[(0,∞)]
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TWO CLASSES OF COMPLETELY MONOTONIC FUNCTIONS 3

if and only ifc ≥ 1 and−φ(x) ∈ C[(0,∞)] if and only ifc ≤ 0.

Theorem 1.2. The functionΦc(x) ∈ L[(0,∞)] if and only ifc ≥ 1 and [Φc(x)]
−1 ∈ L[(0,∞)]

if and only ifc ≤ 0.

Remark 1.1. SinceΦ1(x) andln Φ1(x) are both Stieltjes transforms, it is natural to ask whether
the functionsΦc(x) andln Φc(x) are Stieltjes transforms forc 6= 1.

2. PROOFS OF THEOREM 1.1 AND THEOREM 1.2

Proof of Theorem 1.1.It is well known [1] that, forx > 0, r > 0, andk ∈ N,

1

xr
=

1

Γ(r)

∫ ∞

0

tr−1e−xt d t,(2.1)

ψ(k)(x) = (−1)k+1k!
∞∑
i=0

1

(x+ i)k+1
,(2.2)

ψ(k)(x) = (−1)k+1

∫ ∞

0

tke−xt

1− e−t
d t,(2.3)

ψ(k−1)(x+ 1) = ψ(k−1)(x) +
(−1)k−1(k − 1)!

xk
.(2.4)

From formulas (2.1), (2.2), (2.3) and (2.4), forx ∈ (0,∞) and any nonnegative integeri, it
follows that

φ(x) , ψ′′(x) + g2(x) + h2(x)

, ψ′′(x) +
2 + cx− 2x2

x3
+

2(3 + 3x+ x2)

(x+ 1)3

= ψ′′(x) +
2

x3
+

c

x2
− 2

x
+

2

(1 + x)3
+

2

(1 + x)2
+

2

1 + x

=
c

x2
− 2

x
+

2

(1 + x)2
+

2

1 + x
− 2

∞∑
i=2

1

(x+ i)3

= ψ′′(x+ 2) +
c

x2
− 2

x
+

2

(1 + x)2
+

2

1 + x

= c

∫ ∞

0

te−xt d t− 2

∫ ∞

0

e−xt d t+ 2

∫ ∞

0

te−(x+1)t d t

+ 2

∫ ∞

0

e−(x+1)t d t−
∫ ∞

0

t2e−(x+2)t

1− e−t
d t

=

∫ ∞

0

[
(ct− 2)e2t + (2t− ct+ 4)et − (t2 + 2t+ 2)

]e−(x+2)t

1− e−t
d t

,
∫ ∞

0

q(t)
e−(x+2)t

1− e−t
d t

and

(2.5) φ(i)(x) = (−1)i

∫ ∞

0

tiq(t)
e−(x+2)t

1− e−t
d t.

Standard argument shows thatq(t) Q 0 is equivalent to

(2.6) c Q
2e2t − 2(t+ 2)et + t2 + 2t+ 2

tet(et − 1)
= ϕ(t)
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4 B.-N. GUO AND X.-A. L I AND F. QI

for t ≥ 0. Straightforward computing yields

ϕ′(t) =
2 + 2t+ t2 + t3 − (6 + 4t+ 3t2 + 2t3)et + 2(3 + t+ t2)e2t − 2e3t

t2et(et − 1)2

,
λ1(t)

t2et(et − 1)2
,

λ′1(t) = 2 + 2t+ 3t2 − (10 + 10t+ 9t2 + 2t3)et + 2(7 + 4t+ 2t2)e2t − 6e3t,

λ′′1(t) = 2 + 6t− (20 + 28t+ 15t2 + 2t3)et + 4(9 + 6t+ 2t2)e2t − 18e3t,

λ′′′1 (t) = 6− 54e3t − (48 + 58t+ 21t2 + 2t3)et + 16(6 + 4t+ t2)e2t,

λ
(4)
1 (t) = −

[
106 + 100t+ 27t2 + 2t3 + 162e2t − 32(8 + 5t+ t2)et

]
et

, λ2(t),

λ′2(t) = 100 + 54t+ 6t2 − 32(13 + 7t+ t2)et + 324e2t,

λ′′2(t) = 6(9 + 2t)− 32(20 + 9t+ t2)et + 648e2t,

λ′′′2 (t) = 4
[
3− 8(29 + 11t+ t2)et + 324e2t

]
,

λ
(4)
2 (t) = 32(81et − t2 − 13t− 40)et.

It is clear thatλ(4)
2 (t) > 0 in (0,∞) andλ(i)

2 (0) > 0 for 0 ≤ i ≤ 3. Therefore, the functions
λ

(i)
2 (t) is increasing and positive for0 ≤ i ≤ 3 in (0,∞). This implies thatλ(4)

1 (t) is negative
in (0,∞). Sinceλ(i)

1 (0) = 0 for 0 ≤ i ≤ 3, it follows thatλ(i)
1 (t) is decreasing and negative

for 0 ≤ i ≤ 3 in (0,∞). This givesϕ′(t) < 0 in (0,∞). Hence, the functionϕ(t) is strictly
decreasing in(0,∞).

Using the decreasingly monotonicity ofϕ(t) and the fact that

lim
t→0

ϕ(t) = 1 and lim
t→∞

ϕ(t) = 0

leads to0 < ϕ(t) < 1. If c ≥ 1, thenq(t) ≥ 0; if c ≤ 0, thenq(t) ≤ 0. This means that the
functionφ(x) is strictly completely monotonic in(0,∞) for c ≥ 1 and−φ(x) is also strictly
completely monotonic in(0,∞) for c ≤ 0.

If φ(x) is completely monotonic in(0,∞), then by definition

(2.7) φ′(x) = ψ′′′(x)− 2(3 + 12x+ 17x2 + 8x3 + 3x4)

x4(1 + x)4
− 2c

x3
≤ 0

which is equivalent to

(2.8) c ≥ x3

2

(
ψ′′′(x)− 2(3 + 12x+ 17x2 + 8x3 + 3x4)

x4(1 + x)4

)
→ 1

asx→∞ by using the asymptotic formula [1]:

(2.9) (−1)n+1ψ(n)(x) =
(n− 1)!

xn
+

n!

2xn+1
+

(n+ 1)!

12xn+2
+O

(
1

xn+3

)
, x→∞.

Similarly, it is easy to see that the necessary condition of−φ(x) being completely monotonic
in (0,∞) is c ≤ 0. The proof of Theorem 1.1 is complete.

The first proof of Theorem 1.2.Taking logarithm ofΦc(x) gives

ln Φc(x) = x ln

(
1 +

1

x

)
+

ln Γ(x+ 1)

x
− c lnx.
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Differentiating yields

(2.10) [ln Φc(x)]
′ = ln

(
1 +

1

x

)
− 1

x+ 1
+
xψ(x+ 1)− ln Γ(x+ 1)

x2
− c

x

and

[ln Φc(x)]
(n) = (−1)(n−1)(n− 1)!x

[
1

(x+ 1)n
− 1

xn

]
+ (−1)n(n− 1)!

c

xn

+ (−1)n(n− 2)!n

[
1

(x+ 1)n−1
− 1

xn−1

]
+
hn(x)

xn+1

= (−1)n(n− 2)!

[
c(n− 1)− x

xn
+

x+ n

(x+ 1)n

]
+
hn(x)

xn+1
,

wheren ≥ 2,

ψ(−1)(x+ 1) = ln Γ(x+ 1), ψ(0)(x+ 1) = ψ(x+ 1),

and

hn(x) =
n∑

k=0

(−1)n−kn!xkψ(k−1)(x+ 1)

k!
,(2.11)

h′n(x) = xnψ(n)(x+ 1)

{
> 0 if n is odd,

< 0 if n is even.
(2.12)

Therefore,

(−1)nxn+1[ln Φc(x)]
(n) + (−1)n+1hn(x) = (n− 2)!

{
c(n− 1)− x+

xn(x+ n)

(x+ 1)n

}
x

and, by (2.4),

d
{
(−1)nxn+1[ln Φc(x)]

(n)
}

dx
= (−1)nxnψ(n)(x+ 1) + (n− 2)!

{
c(n− 1)− 2x

+
xn[n+ n2 + (2 + 2n)x+ 2x2]

(x+ 1)n+1

}
= xn

{
(−1)nψ(n)(x+ 1) + (n− 2)!

[
c(n− 1)− 2x

xn

+
n+ n2 + (2 + 2n)x+ 2x2

(x+ 1)n+1

]}
= xn

{
(−1)nψ(n)(x) +

n!

xn+1
+ (n− 2)!

[
c(n− 1)− 2x

xn

+
n+ n2 + (2 + 2n)x+ 2x2

(x+ 1)n+1

]}
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= xn

{
(−1)nψ(n)(x) +

n!

xn+1
+ (n− 2)!

[
c(n− 1)− 2x

xn

+
n(n+ 1) + 2(n+ 1)x+ 2x2

(x+ 1)n+1

]}
= xn

{
(−1)nψ(n)(x) + (n− 2)!

[
n(n− 1) + c(n− 1)x− 2x2

xn+1

+
n(n+ 1) + 2(n+ 1)x+ 2x2

(x+ 1)n+1

]}
, xn

{
(−1)nψ(n)(x) + (n− 2)![gn(x) + hn(x)]

}
with

g′n(x) = −(n− 1)gn+1(x) and h′n(x) = −(n− 1)hn+1(x)

which implies

g
(n−2)
2 (x) = (−1)n(n− 2)!gn(x) and h

(n−2)
2 (x) = (−1)n(n− 2)!hn(x)

by induction. Hence, by using Theorem 1.1, we have

d
{
(−1)nxn+1[ln Φc(x)]

(n)
}

dx
= (−1)nxnφ(n−2)(x)

{
> 0 if and only if c ≥ 1,

< 0 if and only if c ≤ 0,

and the function(−1)nxn+1[ln Φc(x)]
(n) is increasing (or decreasing) if and only ifc ≥ 1 (or

c ≤ 0) in (0,∞). Fromlimx→0

{
(−1)nxn+1[ln Φc(x)]

(n)
}

= 0, it is deduced that

(−1)nxn+1[ln Φc(x)]
(n)

{
> 0 if and only if c ≥ 1

< 0 if and only if c ≤ 0

and

(−1)n[ln Φc(x)]
(n)

{
> 0 if and only if c ≥ 1

< 0 if and only if c ≤ 0

for n ≥ 2 in (0,∞). This implies the function[ln Φc(x)]
′ is increasing (or decreasing) if and

only if c ≥ 1 (or c ≤ 0) in (0,∞). It is ready to obtainlimx→∞[ln Φc(x)]
′ = 0, so

[ln Φc(x)]
′

{
< 0 if and only if c ≥ 1

> 0 if and only if c ≤ 0

andln Φc(x) is decreasing (or increasing) if and only ifc ≥ 1 (or c ≤ 0) in (0,∞). The first
proof of Theorem 1.2 is complete.

The second proof of Theorem 1.2.Write Φc(x) = Φ(x)
xc−1 . Hence

f(x) ≡ ln[Φc(x)] = −(c− 1) lnx+ ln[Φ(x)].

By applying one of the results in [10] thatΦ(x) is logarithmically completely monotonic in
(0,∞), it is easy to show(−1)nf (n)(x) ≥ 0 in (0,∞) for all n ∈ N if c ≥ 1.

For the part ofc < 1, the second part of Theorem 1.2 is proved if one usesln 1
Φc(x)

=

− ln[Φc(x)].
If the functionΦc(x) is logarithmically completely monotonic in(0,∞), then by definition

[ln Φc(x)]
′ ≤ 0 which is equivalent to

(2.13) c ≥ x ln

(
1 +

1

x

)
− x

x+ 1
+
xψ(x+ 1)− ln Γ(x+ 1)

x
, ϑ(x)
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from (2.10). If 1
Φc(x)

is logarithmically completely monotonic in(0,∞), then by definition
[ln Φc(x)]

′ ≥ 0 which is equivalent to the reversed inequality of (2.13). By L’Hôspital’s rule, it
is easy to obtain thatlimx→0 ϑ(x) = 0. Utilizing directly the following formulas

ln Γ(x =

(
x− 1

2

)
lnx− x+

ln(2π)

2
+

1

12x
+O

(
1

x2

)
, x→∞(2.14)

and

ψ(x) = lnx− 1

2x
− 1

12x2
+O

(
1

x3

)
, x→∞(2.15)

yields limx→∞ ϑ(x) = 1. Therefore, the necessary condition ofΦc(x) being logarithmically
completely monotonic in(0,∞) is c ≥ 1 and the necessary condition of1

Φc(x)
being logarithmi-

cally completely monotonic in(0,∞) is c ≤ 0. The second proof of Theorem 1.2 is complete.

REFERENCES

[1] M. ABRAMOWITZ AND I.A. STEGUN (Eds), Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables, Reprint of the 1972 edition. A Wiley-Interscience Pub-
lication. Selected Government Publications. John Wiley & Sons, Inc., New York; National Bureau
of Standards, Washington, DC, 1984.

[2] C. BERG, Integral representation of some functions related to the gamma function,Mediterr. J.
Math., 1 (2004), no. 4, pp. 433–439.

[3] S. BOCHNER,Harmonic Analysis and the Theory of Probability, California Monographs in Math-
ematical Sciences, University of California Press, Berkeley and Los Angeles, 1955.

[4] A. Z. GRINSHPAN AND M. E. H. ISMAIL, Completely monotonic functions involving the
Gamma andq-gamma functions,Proc. Amer. Math. Soc., 134(2006), no. 4, pp. 1153–1160.

[5] B.-N. GUO AND F. QI, Two classes of completely monotonic functions involving gamma and
polygamma functions,RGMIA Res. Rep. Coll., 8 (2005), no. 3, Art. 16, pp. 511–519. [Online:
http://rgmia.vu.edu.au/v8n3.html ].

[6] R. A. HORN, On infinitely divisible matrices, kernels and functions,Z. Wahrscheinlichkeitstheorie
und Verw. Geb, 8 (1967), pp. 219–230.

[7] F. QI, Certain logarithmicallyN -alternating monotonic functions involving gamma andq-gamma
functions,Nonlinear Funct. Anal. Appl., 13 (2008), no. 1, in press..RGMIA Res. Rep. Coll., 8
(2005), no. 3, Art. 5, pp. 413–422; [Online:http://rgmia.vu.edu.au/v8n3.html ].

[8] F. QI AND CH.-P. CHEN, A complete monotonicity property of the gamma function,J. Math.
Anal. Appl., 296(2004), no. 2, pp. 603–607.

[9] F. QI AND B.-N. GUO, Complete monotonicities of functions involving the gamma and digamma
functions,RGMIA Res. Rep. Coll., 7 (2004), no. 1, Art. 8, pp. 63–72. [Online:http://rgmia.
vu.edu.au/v7n1.html ].

[10] F. QI, B.-N. GUO, AND CH.-P. CHEN, Some completely monotonic functions involving the
gamma and polygamma functions,J. Austral. Math. Soc., 80 (2006), pp. 81–88.

[11] F. QI, B.-N. GUO, AND CH.-P. CHEN, Some completely monotonic functions involving the
gamma and polygamma functions,RGMIA Res. Rep. Coll., 7 (2004), no. 1, Art. 5, pp. 31–36.
[Online: http://rgmia.vu.edu.au/v7n1.html ].

[12] H. VAN HAERINGEN, Completely Monotonic and Related Functions, Report 93-108, Faculty of
Technical Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands,
1993.

AJMAA, Vol. 4, No. 2, Art. 11, pp. 1-7, 2007 AJMAA

http://rgmia.vu.edu.au/v8n3.html
http://rgmia.vu.edu.au/v8n3.html
http://rgmia.vu.edu.au/v7n1.html
http://rgmia.vu.edu.au/v7n1.html
http://rgmia.vu.edu.au/v7n1.html
http://ajmaa.org

	1. Introduction
	2. Proofs of Theorem ?? and Theorem ??
	References

