
The Australian Journal of Mathematical
Analysis and Applications

http://ajmaa.org

Volume 3, Issue 2, Article 11, pp. 1-11, 2006

ON VECTOR VARIATIONAL INEQUALITY PROBLEM IN TERMS OF
BIFUNCTIONS

C. S. LALITHA AND MONIKA MEHTA

Received 6 October, 2005; accepted 15 November, 2005; published 12 October, 2006.

DEPARTMENT OFMATHEMATICS, RAJDHANI COLLEGE, UNIVERSITY OF DELHI , RAJA GARDEN, DELHI

110015, INDIA

cslalitha@rediffmail.com

DEPARTMENT OFMATHEMATICS, SATYAWATI COLLEGE, UNIVERSITY OF DELHI , ASHOK V IHAR ,
PHASE-III, D ELHI 110052, INDIA

mridul_in@yahoo.com

ABSTRACT. In this paper, we consider a generalized vector variational inequality problem ex-
pressed in terms of a bifunction and establish existence theorems for this problem by using the
concepts of cone convexity and cone strong quasiconvexity and employing the celebrated Fan’s
Lemma. We also give two types of gap functions for this problem.

Key words and phrases:Vector variational inequality problem, Bifunctions, Cones, Convexity, Strong quasiconvexity, Gap
functions.

2000Mathematics Subject Classification.Primary 90C33, Secondary 90C26, 49J52.

ISSN (electronic): 1449-5910

c© 2006 Austral Internet Publishing. All rights reserved.

The authors are grateful to the anonymous referee for the constructive comments and valuable suggestions that have helped them improve

the paper.

http://ajmaa.org/
mailto:<cslalitha@rediffmail.com>
mailto:<mridul_in@yahoo.com>
http://www.ams.org/msc/


2 C. S. LALITHA AND MONIKA MEHTA

1. I NTRODUCTION

The classical variational inequality problem is to findx0 ∈ K such that

(VP) 〈T (x0), x− x0〉 ≥ 0 , for all x ∈ K ,

whereK is a nonempty closed convex subset ofRn andT : Rn → Rn.
Existence results for the problem (VP) have been studied by Harker and Pang [8] and refer-

ences cited therein. Historically, the variational inequality problem was introduced by Hartman
and Stampacchia in their seminal paper [12]. The early studies were set in the context of calcu-
lus of variation/optimal control theory and in connection with the solutions of boundary value
problems posed in the form of differential equations. There are applications of variational in-
equalities in problems of engineering and physics.

If f is a real valued convex differentiable function defined on a closed convex setK ⊆ Rn

then the following optimization problem (P)

(P) min f(x)

subject tox ∈ K ,

is equivalent to the variational inequality problem (VP) with T = ∇f . However, for nondif-
ferentiable functions there is a lack of the gradient map concept. Since a generalized derivative
might be considered as a bifunctionh(x; d) wherex refers to a point inK andd refers to a
direction inRn, one gets motivated to associate the following variational inequality problem
with the optimization problem (P), which is to find a vectorx0 ∈ K such that

(VIP ) h(x0; y − x0) ≥ 0 , ∀ y ∈ K ,

whereh : K × Rn → R = R ∪ {+∞,−∞} is some sort of generalized derivative off . If we
takeh(x; y − x) = 〈T (x), y − x〉 then the problem (VIP ) reduces to the problem (VP).

As a consequence of the extensive research carried out in the area of multiobjective optimiza-
tion during the last few decades, the study of vector variational inequality problems received
a great deal of attention. Giannessi [10] introduced vector variational inequality problem and
since then various authors have contributed in this direction (see [1, 5, 6, 13, 14, 16, 18]).

The paper aims at establishing an existence theorem for the following generalized vector
variational inequality problem which is to findx0 ∈ K such that

(VVIP ) h(x0; y − x0) /∈ −int C(x0) , ∀ y ∈ K ,

whereK is a nonempty closed convex subset ofRn andh : K × Rn → Rm
is any bifunction,

C : K → Rm is a point to set map such that for eachx in K, C(x) is a closed convex pointed
cone inRm. We assume that for eachx ∈ K, intC(x) 6= φ, where intC(x) denotes the interior
of the setC(x).

In caseC(x) = P , ∀ x ∈ K whereP is a closed convex pointed cone inRm then this
problem reduces to the Stampacchia kind vector variational inequality problem considered by
Lalitha and Mehta in [14]. In [14], the existence of this problem was studied under a weak
form of pseudomonotonicity assumption and a continuity assumption onh. However, in this
paper we use the concepts of cone-convexity and cone-strong quasiconvexity to establish the
existence of solution for the problem (VVIP ).

For the case whenh(x; y−x) = 〈T (x), y−x〉, the problem (VVIP ) has been investigated by
many authors like Chen [5], Yu and Yao [18] etc. WhenC(x) = P , ∀ x ∈ K andh(x; y−x) =
〈T (x), y − x〉 then (VVIP ) becomes (VVIP )K (see [5]) that is, to findx0 ∈ K such that

〈T (x), y − x〉 /∈ −int P , ∀ y ∈ K .

The existence results in all these papers were established by imposing monotonicity or some
generalized monotonicity condition onT .
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ON VECTOR VARIATIONAL INEQUALITY PROBLEM 3

The problem (VVIP ) is a particular case of the following vector equilibrium problem. Find
x0 ∈ K such that

(VEP) f(x0; y) /∈ −int C(x0) , ∀ y ∈ K

wheref : K × K → Rm. A similar problem was considered by Ansari [1] where in two
existence results were derived for the problem. Existence of some other functions, associated to
the given functionf , was required in order to establish existence results in this paper. Usually
stringent conditions are required to establish the existence theorem because of the general nature
of an equilibrium problem (see [1], [4], [15]).

The main purpose of this paper is to establish existence theorem for the problem (VVIP ),
which arises naturally via the concept of generalized derivatives, under certain continuity and
generalized convexity assumptions on the bifunctionh. Comparisons are also made with the
corresponding results for vector equilibrium problem (VEP).

The paper is organized as follows. In Section 2, we present some preliminaries that will be
used in the subsequent sections. In Section 3, we establish an existence theorem for (VVIP ),
whenK is compact using the notions of convexity and strong quasiconvexity in terms of cones.
We further give an existence theorem whenK is not necessarily bounded. In the last section,
we investigate two types of gap functions for the vector variational inequality problem (VVIP ),
the scalar valued type and vector valued type. We then consider a vector optimization problem
(VOP) involving the vector valued gap function and prove that every solution of the problem
(VVIP ) is also a solution of (VOP). In the end, we relate the two gap functions given in the
paper.

2. PRELIMINARIES

To prove the main result of this paper, we need the following concepts and results:
Let C be a closed convex pointed cone inRm. For anyy1, y2 ∈ Rm, let supc{y1, y2} denote

the supremum ofy1 andy2, that is, ifp = supc{y1, y2, } thenyi ∈ p−C, i = 1, 2 and ify ∈ Rm

with yi ∈ y − C, i = 1, 2 thenp ∈ y − C.

Definition 2.1. A point to set mapF : Rn → Rm is said to be upper semicontinuous atx ∈ Rm

if xn → x in Rn andyn → y in Rm with yn ∈ F (xn) imply thaty ∈ F (x).
F is said to be upper semicontinuous onRn if it is upper semicontinuous at each of its points.
Let X be a nonempty convex subset ofRn andC be a closed convex pointed cone inRm.

We recall that a vector valued functionf : X → Rm is said to beC-convex onX if for any
y1, y2 ∈ X andt ∈ [0, 1], f(ty1 + (1− t)y2)− tf(y1)− (1− t)f(y2) ∈ −C.

We now have the following notion of cone strong quasiconvexity analogous to the concept of
cone strong quasiconcavity considered by Dong et al. [8].

Definition 2.2. Let X be a nonempty convex subset ofRn andC be a closed convex pointed
cone inRm with int C 6= φ. A functionf : X → Rm is said to be

(i) C-quasiconvex onX if the level set

S(α) = {x ∈ X|f(x)− α ∈ −C}
is convex, for anyα ∈ Rm satisfyingS(α) 6= φ;

(ii) C-strongly quasiconvex onX whenf is C-quasiconvex and for anyy1, y2 ∈ X, y1 6= y2

andt ∈ (0, 1), f(ty1 + (1− t)y2) ∈ supC{f(y1), f(y2)} − int C.

For the scalar case, it is well known that a strongly quasiconvex function is strictly quasi-
convex (see Avriel [2]). As an extension Dong et al. [8] compared the notion ofC-strong
quasiconvexity with the notion of strict quasiconvexity for vector-valued function introduced
by Benson and Sun [3].
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4 C. S. LALITHA AND MONIKA MEHTA

The following theorem due to Fan [9] and its extension [17] will be required to establish the
main result of this paper.

Several authors have followed this approach for establishing existence theorems for instance,
see [1] and [15].

Lemma 2.1. ([9]) LetK be a nonempty compact convex set inRn. LetL be a subset ofK ×K
having the following properties:

(i) for eachx ∈ K, (x, x) ∈ L;
(ii) for each fixedy ∈ K, the setL(y) = {x ∈ K|(x, y) ∈ L} is closed inK;

(iii) for eachx ∈ K, the setM(x) = {y ∈ K | (x, y) /∈ L} is convex or empty;

then there existsx0 ∈ K such that{x0} ×K ⊂ L.

Lemma 2.2. ([17]) LetK be a nonempty closed convex set inRn andL be a subset ofK ×K
satisfying the following properties :

(i) for eachx ∈ K, (x, x) ∈ L;
(ii) for each fixedy ∈ K, the setL(y) = {x ∈ K|(x, y) ∈ L} is closed inK;

(iii) for eachx ∈ K, the setM(x) = {y ∈ K|(x, y) /∈ L} is convex or empty;
(iv) there exists a nonempty compact convex subsetD of K such that for eachx ∈ K\D

there existsy ∈ D such that(x, y) /∈ L;

then there existsx0 ∈ K such that{x0} ×K ⊂ L.

3. EXISTENCE THEOREM

We first establish an existence theorem for (VVIP ) whenK is nonempty compact convex
subset ofRn.

Theorem 3.1.LetK be a nonempty compact convex subset ofRn. Assume that

(a) the point to set mapW : K → Rm defined byW (x) = Rm\(−int C(x)), for any
x ∈ K is upper semicontinuous;

(b) h : K × Rn → R̄m is such thath is continuous in both the arguments ;
(c) h(x; 0) /∈ −int C(x), for any x ∈ K
(d) for eachx ∈ K, the functionf : K → Rm defined asf(y) = h(x; y − x) is either

C(x)-strongly quasiconvex orC(x)-convex onK;

then there exists a solution to(VVIP ).

Proof. Let L = {(x, y) ∈ K ×K|h(x; y − x) /∈ −int C(x)}. From (c) it is clear thatL 6= φ as
(x, x) ∈ L, for eachx ∈ K. Let y ∈ K be arbitrary but fixed and let

L(y) = {x ∈ K|(x, y) ∈ L}
= {x ∈ K|h(x; y − x) /∈ −int C(x)}.

Clearly, L(y) 6= φ asy ∈ L(y). Let {xn} be a sequence inL(y) such thatxn → x. Since
xn ∈ L(y) therefore, we have

h(xn; y − xn) /∈ −int C(xn),∀ n = 1, 2, 3, . . .

that is,

h(xn; y − xn) ∈ W (xn) = Rm\(−int C(xn)),∀ n = 1, 2, 3, . . .

SinceW is upper semicontinuous so it follows that

lim
n→∞

h(xn; y − xn) ∈ W (x),
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ON VECTOR VARIATIONAL INEQUALITY PROBLEM 5

and by continuity ofh it follows that

h(x; y − x) ∈ W (x),

which implies thatx ∈ L(y). Thus,L(y) is closed for eachy ∈ K. Now for eachx in K, define

M(x) = {y ∈ K|h(x; y − x) ∈ −int C(x)}.

If M(x) is empty the result follows from Lemma 2.1. LetM(x) be a nonempty set. Let
y1, y2 ∈ M(x), y1 6= y2, 0 < t < 1 andw = (1 − t)y1 + ty2. As y1, y2 ∈ M(x) we have,
f(y1) = h(x; y1 − x) ∈ −int C(x) andf(y2) = h(x; y2 − x) ∈ −int C(x). Now by condition
(d) we have that either

f(w) ∈ supC(x){f(y1), f(y2)} − int C(x)

or

f(w) ∈ (1− t)f(y1) + tf(y2)− C(x).

Clearly,supC(x){f(y1), f(y2)} ∈ −int C(x), asf(y1), f(y2) ∈ −int C(x). Since− int C(x)
is a convex cone so in either case it follows thatf(w) ∈ −int C(x), that is,w ∈ M(x). Thus,
M(x) is a convex set for eachx in K. Hence by Lemma 2.1, there existsx0 ∈ K such that
{x0} × K ⊂ L, that is, for eachy ∈ K, (x0, y) ∈ L. Thus,h(x0; y − x0) /∈ −int C(x0),
∀ y ∈ K.

The following example illustrates the above theorem.

Example 3.1.LetK = [−1, 1] and for eachx in K let

C(x) =

{
C1 = {(y1, y2) ∈ R2 | y1 ≥ 0, y2 ≥ 0} if x ≥ 0

C2 = {(y1, y2) ∈ R2 | y2 ≥ −y1, y2 ≥ 0} if x < 0.

Then eachC(x) is a closed convex pointed cone inR2. Let h : K × R → R2 be defined
as h(x; d) = (d + x,−exd). We note that the functionf : K → R2 defined asf(y) =
h(x; y − x) = (y,−ex(y − x)) is bothC(x)-strongly quasiconvex as well asC(x)-convex on
K andh(x; 0) = (x, 0) /∈ −int C(x),∀ x ∈ K. Thus, all the conditions of Theorem 3.1 are
satisfied and it can be easily verified that eachx ∈ [0, 1] is a solution of(VVIP ).

We now give an example of a (VVIP ) when the functionf given in condition (d) of Theorem
3.1 isC(x)-convex but notC(x)-strongly quasiconvex.

Example 3.2. LetK = [−1, 2] and leth : K × R → R2 be defined ash(x; d) = (−ex, d). Let
for eachx ∈ K, coneC(x) be same as in Example 3.1. Thenh(x; 0) = (−ex, 0) /∈ −int C(x),
∀ x ∈ K. We note that the mappingf : K → R2 defined asf(y) = h(x; y−x) = (−ex, y−x)
is C(x)-convex onK but f is notC(x)-strongly quasiconvex onK because forx = 0, y1 = 2,
y2 = −1 andt = 1/2

f((1− t)y1 + ty2)− supC(x){f(y1), f(y2)} = (−1, 1/2)− (−1, 2)

= (0,−3/2) /∈ −int C(x).

Clearly,x = −1 is a solution of(VVIP ).

Our next example is that of a vector variational inequality problem where the functionf is
notC(x)-convex but isC(x)-strongly quasiconvex.
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6 C. S. LALITHA AND MONIKA MEHTA

Example 3.3.LetK = [−2, 1] and for eachx ∈ K define

C(x) = {(y1, y2) ∈ R2|y1 ≥ 0, y2 ≥ 0}.

Let h : K × R → R2 be defined ash(x; d) = (d3, e−x − ed). Then,h(x; 0) = (0, e−x − 1) /∈
−int C(x), ∀ x ∈ K and it can be easily verified that the functionf : K → R2 defined as
f(y) = h(x; y − x) = ((y − x)3, e−x(1− ey)) is C(x)-strongly quasiconvex onK but f is not
C(x)-convex onK because forx = 0, y1 = −1, y2 = −2 andt = 1/2 we have

f(ty1 + (1− t)y2)− tf(y1)− (1− t)f(y2) = (9/8, (e−1 + e−2)/2− e−3/2) /∈ −C(x).

Here,x = 0 andx = −2 are the only solutions of(VVIP ).

Remark 3.1. In [1], an existence result (Theorem 2) for a special case of the problem (VEP),
whenf(x, y) = g(x, y) + h(x, y), g, h : K ×K → R̄m, has been proved assumingg(·, y) and
h(x, ·) to beP -convex (referred to asP -function in [1]), whereP =

⋂
x∈K

C(x), which is a more

stringent condition than the cone-convexity assumption taken by us. In this paper the author
has assumed thath(x; 0) = 0, ∀ x ∈ K whereas we require a milder assumptionh(x; 0) /∈
−int C(x), ∀ x ∈ K. Moreover, the author in [1] imposes certain inclusion conditions on the
functionsg andh in order to establish existence theorem. We now illustrate with the help of an
example that the conditions (a)-(d) of Theorem 3.1 are satisfied but the conditions of Theorem
2 in Ansari [1] are not satisfied for the vector variational inequality problem (VVIP ).

Example 3.4.LetK = [−1, 1] and for eachx in K define

C(x) =

{
{(y1, y2) ∈ R2 | y1 ≥ 0, y2 ≥ 0} if x ≥ 0

{(y1, y2) ∈ R2 | y2 ≥ 0} if x < 0 .

Leth : K × R → R2 be defined ash(x; d) = (x3(d + x)2, (d + x)2). We note that the function
f : K → R2 defined asf(y) = h(x; y − x) = (x3y2, y2) is C(x)-convex but notP -convex
because forx = −1, y1 = −1, y2 = 1 andt = 1/2 we have

f(ty1 + (1− t)y2)− tf(y1)− (1− t)f(y2) = (1,−1) /∈ −P ,

whereP =
⋂

x∈K

C(x) = {(y1, y2) ∈ R2 | y1 ≥ 0, y2 ≥ 0}. Also, h(x; 0) = (x5, x2) /∈

−int C(x), ∀ x ∈ K. In this case everyx ∈ K is a solution of(VVIP ).

We now prove an existence theorem for (VVIP ) for the case whenK is not a compact subset
of Rn.

Theorem 3.2. Let K be a nonempty closed convex subset ofRn. Suppose that conditions (a)-
(d) of Theorem 3.1 are satisfied. Further suppose that there exists a nonempty compact convex
subsetD ⊂ K such that for eachx ∈ K\D there existsy ∈ D such thath(x; y − x) ∈
−intC(x), then the problem(VVIP ) has a solution.

Proof. The result can be proved exactly on the lines of Theorem 3.1 using Lemma 2.2.

4. GAP FUNCTIONS

Gap functions play a crucial role in transforming a variational inequality problem into an
optimization problem. Then, the methods for solving an optimization problem can be exploited
for finding the solutions of a variational inequality problem. In this section, we propose two
types of gap functions for the vector variational inequality problem (VVIP ), one is single valued
and the other is set valued.
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ON VECTOR VARIATIONAL INEQUALITY PROBLEM 7

For eachx in K, let C∗(x) denote the positive polar cone ofC(x), that is,

C∗(x) = {u ∈ Rm : 〈u, v〉 ≥ 0,∀ v ∈ C(x)}.
Let B∗(x) = {u ∈ C∗(x) | ||u|| = 1}. For eachx in K, B∗(x) is a compact set such that
0 /∈ B∗(x) andC∗(x)=coneB∗(x), where coneB∗(x) is the cone generated byB∗(x). Since
int C(x) 6= φ, we have a weak ordering inRm given by

ξ <int C(x) η, if and only if η − ξ ∈ int C(x),

ξ ≮int C(x) η, if and only if η − ξ /∈ int C(x).

Defineh(x; K − x) =
⋃

y∈K h(x; y − x) and for a nonempty subsetA of Rm we define

Minint C A := {a ∈ A | there is noa ∈ A such thata < int C a},
whereC is a cone inRm with nonempty interior.

Throughout this section we assume that for eachx ∈ K, h(x; 0) = 0.
By a scalar gap function we mean the following:

Definition 4.1. An extended real valued functionϕ : Rn → R ∪ {−∞} is said to be a gap
function for the problem (VVIP ) if and only if it satisfies the following properties

(i) ϕ(x̂) = 0 ⇔ x̂ is a solution of (VVIP );
(ii) ϕ(x) ≤ 0, ∀ x ∈ K.

In the following theorem we have a scalar type gap functions for the vector variational in-
equality problem (VVIP ).

Theorem 4.1.The functionϕ(x) defined asϕ(x) = inf
y∈K

max
u∈B∗(x)

〈u, h(x; y − x)〉, is a gap func-

tion for (VVIP ).

Proof. (i) Let x̂ be a solution of (VVIP ). It follows thath(x̂; y− x̂) /∈ −int C(x̂), ∀ y ∈ K that
is, for eachy ∈ K there existsuy ∈ B∗(x̂) such that

〈uy, h(x̂; y − x̂)〉 ≥ 0.

This yields that

max
u∈B∗(x̂)

〈u, h(x̂; y − x̂)〉 ≥ 0,

and hence,

inf
y∈K

max
u∈B∗(x̂)

〈u, h(x̂; y − x̂)〉 ≥ 0,

that is,ϕ(x̂) ≥ 0. Also,ϕ(x̂) ≤ max
u∈B∗(x̂)

〈u, h(x̂; 0)〉 = 0 implies thatφ(x̂) = 0.

Conversely, supposeϕ(x̂) = 0 for somex̂ ∈ K. This implies that

max
u∈B∗(x̂)

〈u, h(x̂; y − x̂)〉 ≥ 0, ∀ y ∈ K.

Then for eachy ∈ K there exists someuy ∈ B∗(x̂) such that〈uy, h(x̂; y − x̂)〉 ≥ 0, which
implies thath(x̂; y − x̂) /∈ −int C(x̂),∀ y ∈ K and hencêx is a solution of (VVIP ).
(ii) Clearly, ϕ(x) ≤ max

u∈B∗(x)
〈u, h(x; 0)〉 = 0, ∀ x ∈ K.

Thus,ϕ(x) is a gap function for (VVIP ).

Remark 4.1. Solving the vector variational inequality problem (VVIP ) is thus equivalent to
solving the following scalar optimization problem of maximizing the gap functionϕ(x) over
K:

AJMAA, Vol. 3, No. 2, Art. 11, pp. 1-11, 2006 AJMAA

http://ajmaa.org


8 C. S. LALITHA AND MONIKA MEHTA

(P1) Max ϕ(x)

subject tox ∈ K .

We now have the notion of a set-valued gap function.

Definition 4.2. A set valued mappingΦ : Rn → Rm is said to be a gap function for the problem
(VVIP ) if and only if

(i) 0 ∈ Φ(x̂) ⇔ x̂ solves (VVIP );
(ii) z /∈ int C(x), ∀ z ∈ Φ(x) and∀ x ∈ K.

The set valued gap function given in the following theorem is similar to the one considered
by Chen, Goh and Yen [7].

Theorem 4.2.The set valued mappingΦ : Rn → Rm defined by

Φ(x) = Minint C(x) h(x; K − x)

is a gap function for(VVIP ).

Proof. (i) Suppose0 ∈ Φ(x̂). This implies that, there does not exist anyy ∈ K such that
h(x̂; y − x̂) < int C(x̂) 0 = h(x̂; x̂ − x̂), that is,h(x̂; y − x̂) /∈ −int C(x̂), ∀ y ∈ K. Thus,x̂
solves (VVIP ). Conversely, suppose thatx̂ solves (VVIP ) then tracing back the steps we get
that0 ∈ Φ(x̂).

(ii) For anyx ∈ K andz ∈ Φ(x) we next prove thatz ≯ int C(x) 0. On the contrary, suppose
that there existsy ∈ K such thath(x; y − x) = z > int C(x) 0 = h(x; x − x). This contradicts
the fact thatz ∈ Φ(x).

Thus,Φ(x) is a gap function for (VVIP ).

Remark 4.2. WhenC(x) = P , ∀ x ∈ K, whereP is a closed convex pointed cone inRm and
h(x; y − x) = 〈T (x), y − x〉 then (VVIP ) becomes the problem considered by Chen, Goh and
Yang [7] andΦ reduces to the gap function considered therein.

The following example shows that the solution of the problem (VVIP ) can also be obtained
by solving the generalized equation0 ∈ Φ(x).

Example 4.1.LetK = [0, 2] and for eachx in K let C(x) = R2
+. Leth : K × R → R2 be de-

fined ash(x; d) = (xd, d(d+2x)). Thenh(x; 0) = 0, ∀ x ∈ K andΦ(x) = Minint C(x) h(x; K−
x) is given as

Φ(x) =

{
(−x2,−x2), if x > 0

{(0, y2) | y ∈ K}, if x = 0 .

Since0 ∈ Φ(x), if and only if, x = 0 therefore,x = 0 is the only solution of the problem
(VVIP ).

We now associate the following vector optimization problem with the problem (VVIP ):

(VOP) Maxint P Φ(x) subject tox ∈ K .

Solving the problem (VOP) is to findx̂ ∈ K for which there existŝz ∈ Φ(x̂) such that(Φ(K)−
ẑ) ∩ int P = φ, whereΦ(K) =

⋃
y∈K

Φ(x) andP =
⋂

x∈K

C(x) andΦ is the set-valued map

considered in Theorem 4.2.

Theorem 4.3. If x̂ ∈ K is a solution of the vector variational inequality problem(VVIP ) then
x̂ is a solution of the problem(VOP).
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Proof. As x̂ is a solution of the problem (VVIP ) andΦ is a gap function it follows that0 ∈ Φ(x̂).
For everyx ∈ K andz ∈ Φ(x) asz /∈ int C(x) we havez /∈ int P , asP =

⋂
x∈K

C(x). This

implies that(Φ(K)− 0) ∩ int P = φ. Since0 ∈ Φ(x̂) it follows that x̂ is also a solution of the
problem (VOP).

Remark 4.3. The converse of the above theorem is not true in general as can be seen from the
following example.

Example 4.2. Let K = [0, 2] and for eachx in K let C(x) = R2
+. Let h : K × R → R2 be

defined as

h(x; d) =

{
(−d2,−1), if d 6= 0

(0, 0), if d = 0.

Now,Φ(x) = {h(x; y−x) | y ∈ K \{x}} = {(−(y−x)2,−1) | y ∈ K \{x}}. As0 /∈ Φ(x) for
anyx ∈ K therefore, the problem(VVIP ) has no solution but every element ofK is a solution
of the optimization problem(VOP). Also, we may note thatϕ(x) = −1, ∀ x ∈ K.

Next we relate the two types of gap functions proposed in the paper.

Theorem 4.4.Let ẑ ∈ Φ(x̂) andh(x̂; K − x̂) be a convex set inRm then the following hold:

(i) there existŝu ∈ B∗(x̂) such thatϕ(x̂) ≥ 〈û, ẑ〉;
(ii) there existŝu ∈ B∗(x̂) such thatϕ(x̂)e− ẑ /∈ −int C(x̂).

Proof. Sinceẑ ∈ Φ(x̂) = Minint C(x̂) h(x̂; K − x̂) therefore there exists somêy ∈ K such that
ẑ = h(x̂; ŷ− x̂) and(h(x̂; K − x̂)− ẑ)∩ (−int C(x̂)) = φ. By separation theorem there exists
u ∈ Rm \ {0} such that

〈u, h(x̂; y − x̂)− ẑ〉 > 〈u, c〉, ∀ y ∈ K and ∀ c ∈ −int C(x̂).(4.1)

We assert thatu ∈ C∗(x̂) \ {0}. Let d ∈ C(x̂) then there exists a sequencecn ∈ −int C(x̂)
such that−d = lim

n→∞
cn. Sincetcn ∈ −int C(x̂) for everyt > 0, from (4.1) it follows that

(1/t)〈u, h(x̂; y − x̂)− ẑ〉 > 〈u, cn〉, ∀ y ∈ K .

On taking limit t → +∞, it follows that〈u, cn〉 ≤ 0, which in turn implies〈u, d〉 ≥ 0. Thus
u ∈ C∗(x̂) \ {0} and 〈u, h(x̂; y − x̂)〉 ≥ 〈u, ẑ〉, ∀ y ∈ K. Define û = u/‖u‖ ∈ B∗(x̂)
then it is clear that max

u∈B∗(x̂)
〈u, h(x̂; y − x̂)〉 ≥ 〈û, h(x̂; y − x̂)〉 ≥ 〈û, ẑ〉, ∀ y ∈ K and hence,

ϕ(x̂) = inf
y∈K

max
u∈B∗(x̂)

〈u, h(x̂; y − x̂)〉 ≥ 〈û, ẑ〉.

(ii) Choosee ∈ int C(x̂) such that〈û, e〉 = 1. Then〈û, ϕ(x̂)e〉 ≥ 〈û, ẑ〉 which implies that
ϕ(x̂)e− ẑ /∈ −int C(x̂).

Theorem 4.5.Suppose that infimum inϕ is attained at somêy ∈ K that is,ϕ(x̂) =
max

u∈B∗(x̂)
〈u, h(x̂; ŷ − x̂)〉 thenh(x̂; ŷ − x̂) ∈ Φ(x̂).

Proof. Observe that

ϕ(x̂) = max
u∈B∗(x̂)

〈u, h(x̂, ŷ − x̂)〉

= inf
y∈K

max
u∈B∗(x̂)

〈u, h(x̂; y − x̂)〉

≤ max
u∈B∗(x̂)

〈u, h(x̂; y − x̂)〉, ∀ y ∈ K .
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Let max
u∈B∗(x̂)

〈u, h(x̂, y− x̂)〉 = 〈uy, h(x̂, y− x̂)〉 for someuy ∈ B∗(x̂) and for eachy ∈ K. Then

we have

max
u∈B∗(x̂)

〈u, h(x̂, ŷ − x̂)〉 ≤ 〈uy, h(x̂, y − x̂)〉 , ∀ y ∈ K .

As 〈uy, h(x̂, ŷ − x̂)〉 ≤ max
u∈B∗(x̂)

〈u, h(x̂; ŷ − x̂)〉 from the above relation we get

〈uy, h(x̂; ŷ − x̂)− h(x̂, y − x̂)〉 ≤ 0 .

Thus,h(x̂; ŷ − x̂) − h(x̂; y − x̂) /∈ int C(x̂), ∀ y ∈ K that is,(h(x̂; K − x̂) − h(x̂; ŷ − x̂)) ∩
(−int C(x̂)) = φ. Thus,h(x̂; ŷ − x̂) ∈ Φ(x̂).

We now prove using the above two theorems that every solution of the problem (P1) is also
a solution of the problem (VOP). This result can also be deduced from Theorem 4.3 due to the
observation made in Remark 4.1.

Theorem 4.6. If x̂ ∈ K is a solution of the problem(P1) andh(x̂; K − x̂) is a convex set in
Rm, thenx̂ is also a solution of the problem(VOP).

Proof. Sincex̂ solves (P1) therefore,ϕ(x̂) = 0 = max
u∈B∗(x̂)

〈u, h(x̂; x̂− x̂)〉. Then from Theorem

4.5 it follows that0 = h(x̂; x̂− x̂) ∈ Φ(x̂). From Theorem 4.4 we have that for eachx ∈ K and
for eachz ∈ Φ(x) there existsuz ∈ B∗(x) such thatϕ(x) ≥ 〈uz, z〉. As ϕ(x) ≤ 0, ∀ x ∈ K we
get that〈uz, z〉 ≤ 0, ∀ z ∈ Φ(x). This implies thatz /∈ int P , ∀ z ∈ Φ(x) and∀ x ∈ K that is,
(Φ(K)− 0) ∩ int P = φ. Since0 ∈ Φ(x̂) it follows thatx̂ solves (VOP).
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