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2 C. S. LALITHA AND MONIKA MEHTA

1. INTRODUCTION

The classical variational inequality problem is to finde K such that
(VP) (T'(xg),x —xo) >0, forall z e K,

whereK is a nonempty closed convex subseRdfand7 : R" — R".

Existence results for the problefR)) have been studied by Harker and Péng [8] and refer-
ences cited therein. Historically, the variational inequality problem was introduced by Hartman
and Stampacchia in their seminal paper [12]. The early studies were set in the context of calcu-
lus of variation/optimal control theory and in connection with the solutions of boundary value
problems posed in the form of differential equations. There are applications of variational in-
equalities in problems of engineering and physics.

If fis areal valued convex differentiable function defined on a closed convex setR”
then the following optimization problerfPf

(P) min f(z)
subjecttar € K,

is equivalent to the variational inequality proble®) with 7" = V f. However, for nondif-
ferentiable functions there is a lack of the gradient map concept. Since a generalized derivative
might be considered as a bifunctianz; d) wherex refers to a point ink” andd refers to a
direction inR"™, one gets motivated to associate the following variational inequality problem
with the optimization probleniR), which is to find a vector, € K such that

(VIP) h(zo;y — ) >0, V yeK,

whereh : K x R® — R = RU {+00, —oc} is some sort of generalized derivative fofIf we
takeh(z;y — ) = (T'(z),y — x) then the problem\(IP) reduces to the problervP).

As a consequence of the extensive research carried out in the area of multiobjective optimiza-
tion during the last few decades, the study of vector variational inequality problems received
a great deal of attention. Giannessil[10] introduced vector variational inequality problem and
since then various authors have contributed in this direction((see[1, 5,[6,/13, 14/ 16, 18]).

The paper aims at establishing an existence theorem for the following generalized vector
variational inequality problem which is to fing) € K such that

(WIP) h(zo;y — o) ¢ —int C(zg), Vye€ K,

whereK is a nonempty closed convex subsef¥fandh : K x R* — R is any bifunction,
C : K — R™is a point to set map such that for eacin K, C'(x) is a closed convex pointed
cone inR™. We assume that for eache K, intC(z) # ¢, where intC(x) denotes the interior
of the setC'(x).

In caseC(x) = P,V x € K whereP is a closed convex pointed cone Ri" then this
problem reduces to the Stampacchia kind vector variational inequality problem considered by
Lalitha and Mehta in[[14]. In[[14], the existence of this problem was studied under a weak
form of pseudomonotonicity assumption and a continuity assumptioin dfiowever, in this
paper we use the concepts of cone-convexity and cone-strong quasiconvexity to establish the
existence of solution for the problefdVIP)).

For the case wheh(z; y — z) = (T'(z), y — x), the problem[{VIP)) has been investigated by
many authors like Chenl[5], Yu and Y&o [18] etc. Whéfw) = P,V z € K andh(z;y — ) =

(T(x),y — ) then WVIP)) becomegNVIP) x (seel5]) that is, to find:, € K such that
(T(x),y—x) ¢ —int P, V ye K.

The existence results in all these papers were established by imposing monotonicity or some
generalized monotonicity condition dn
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The problem|VVIP) is a particular case of the following vector equilibrium problem. Find

o € K such that

(VEP) f(zo;y) ¢ —int C(z0), VyeK
wheref : K x K — R™. A similar problem was considered by Ansairi [1] where in two
existence results were derived for the problem. Existence of some other functions, associated to
the given functionf, was required in order to establish existence results in this paper. Usually
stringent conditions are required to establish the existence theorem because of the general nature
of an equilibrium problem (seéel[1],][4], [15]).

The main purpose of this paper is to establish existence theorem for the pr@BlEaR)(
which arises naturally via the concept of generalized derivatives, under certain continuity and
generalized convexity assumptions on the bifuncionrComparisons are also made with the
corresponding results for vector equilibrium probl¢vVEP).

The paper is organized as follows. In Secf{ipn 2, we present some preliminaries that will be
used in the subsequent sections. In Sedtjon 3, we establish an existence theo¥iRQr (
when K is compact using the notions of convexity and strong quasiconvexity in terms of cones.
We further give an existence theorem whi€ns not necessarily bounded. In the last section,
we investigate two types of gap functions for the vector variational inequality profM&iP(),
the scalar valued type and vector valued type. We then consider a vector optimization problem
involving the vector valued gap function and prove that every solution of the problem
(VVIP) is also a solution of{OP). In the end, we relate the two gap functions given in the
paper.

2. PRELIMINARIES

To prove the main result of this paper, we need the following concepts and results:

Let C' be a closed convex pointed coneRf'. For anyy;, y» € R™, letsup {yi,y.} denote
the supremum of; andys,, thatis, ifp = sup.{y1,y2, } theny, e p—C,i =1,2and ify € R™
withy, e y— C,i=1,2thenp e y — C.

Definition 2.1. A point to set mapF' : R” — R™ is said to be upper semicontinuouscat R
if z, — zinR™andy,, — y in R™ with y,, € F(x,) imply thaty € F(z).
Fis said to be upper semicontinuous®hif it is upper semicontinuous at each of its points.
Let X be a nonempty convex subseti®f andC be a closed convex pointed coneR'.
We recall that a vector valued functigh: X — R™ is said to beC-convex onX if for any
y1,92 € X andt € [0,1], f(tyr + (1 = t)y2) — tf (1) — (1 = 1) f(y2) € —C.

We now have the following notion of cone strong quasiconvexity analogous to the concept of
cone strong quasiconcavity considered by Dong et al. [8].

Definition 2.2. Let X be a nonempty convex subsetli®f andC' be a closed convex pointed
cone inR™ with int C' # ¢. Afunction f : X — R™ is said to be
(i) C-quasiconvex oiX if the level set
S(a) ={z € X|f(x) —a € -C}

is convex, for anyy € R™ satisfyingS(«) # ¢;
(i) C-strongly quasiconvex o whenf is C'-quasiconvex and for any, y» € X, y1 # o
andt € (0,1), f(tyr + (1 = t)y2) € supc{f(y1), f(y2)} — int C.

For the scalar case, it is well known that a strongly quasiconvex function is strictly quasi-
convex (see Avriel]2]). As an extension Dong et all [8] compared the notiafi-strong
guasiconvexity with the notion of strict quasiconvexity for vector-valued function introduced
by Benson and Sun|[3].
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The following theorem due to Fanl[9] and its extensior [17] will be required to establish the
main result of this paper.

Several authors have followed this approach for establishing existence theorems for instance,
seel[1] and[15].

Lemma 2.1. ([9]) Let K be a nonempty compact convex seRih Let L be a subset ok x K
having the following properties:

(i) foreachz € K, (z,x) € L;
(i) for each fixed) € K, the setL(y) = {x € K|(x,y) € L} is closed ink;
(iii) foreachz € K, the setM (z) = {y € K | (z,y) ¢ L} is convex or empty;

then there exists, € K such that{z,} x K C L.
Lemma 2.2. ([17]) Let K be a nonempty closed convex seRihand L be a subset o’ x K
satisfying the following properties :

(i) foreachz € K, (z,x) € L;
(i) for each fixed) € K, the setL(y) = {x € K|(x,y) € L} is closed ink;
(iii) for eachz € K, the setM (z) = {y € K|(z,y) ¢ L} is convex or empty;
(iv) there exists a nonempty compact convex subset K such that for eaclr € K\ D
there existy € D such that(z,y) ¢ L;

then there exists, € K such that{z,} x K C L.

3. EXISTENCE THEOREM

We first establish an existence theorem when K is nonempty compact convex
subset ofR™.
Theorem 3.1.Let K be a nonempty compact convex subs@’ofAssume that

(a) the point to set mapV : K — R™ defined by (z) = R™\(—int C(z)), for any
x € K is upper semicontinuous;

(b) h: K x R® — R™ is such that: is continuous in both the arguments ;

(€) h(x;0) ¢ —int C(z), forany z € K

(d) for eachz € K, the functionf : K — R™ defined asf(y) = h(z;y — x) is either
C'(x)-strongly quasiconvex af'(z)-convex onk;

then there exists a solution ®VIP).

Proof. Let L = {(z,y) € K x K|h(z;y — x) ¢ —int C(x)}. From (c) itis clear thal, # ¢ as
(z,z) € L, foreachr € K. Lety € K be arbitrary but fixed and let

Ly) = {zeK|(x,y) € L}
= {re K|h(z;y —x) ¢ —int C(x)}.

Clearly, L(y) # ¢ asy € L(y). Let{x,} be a sequence ih(y) such thatz, — z. Since
x, € L(y) therefore, we have

hMzp;y — ) ¢ —int C(x,),¥Y n=1,2,3,...
that is,
WMzn;y — ) € W(zy,) = R™"\(=int C(z,)),¥V n=1,2,3,...
SincelV is upper semicontinuous so it follows that

lim h(z,;y —x,) € W(x),

AIJMAA Vol. 3, No. 2, Art. 11, pp. 1-11, 2006 AJMAA


http://ajmaa.org

ON VECTOR VARIATIONAL INEQUALITY PROBLEM 5

and by continuity of it follows that
Wy —x) € W(x),
which implies that: € L(y). Thus,L(y) is closed for each € K. Now for eachr in K, define
M(x) ={y € K|h(x;y —x) € —int C(z)}.

If M(zx) is empty the result follows from Lemnja 2.1. L&f(x) be a nonempty set. Let
y1,Y2 € M(x),y1 # 12,0 < t < landw = (1 — t)y; + tys. ASy1,y2 € M(z) we have,
fy1) = h(z;y1 — ) € —int C(x) and f(y2) = h(z;y2 — x) € —int C(x). Now by condition
(d) we have that either

f(w) € supe{f(y1), f(y2)} — int C(x)

or
flw) € X =t)f(y) +tf(y2) — Cla).

Clearly,supc( {f (1), f(y2)} € —int C(z), asf(y1), f(y2) € —int C(z). Since— int C(z)

is a convex cone so in either case it follows thialy) € —int C(z), that is,w € M (x). Thus,
M(z) is a convex set for eachin K. Hence by Lemma 21, there exists € K such that
{zo} x K C L, thatis, for eacty € K, (zo,y) € L. Thus,h(xo;y — x¢) ¢ —int C(zo),

Vye K.

The following example illustrates the above theorem.

Example 3.1.Let K = [—1, 1] and for eachr in K let

C(z) {Cl:{(%,m)€R2|y1207y220} ifz >0
xT) =
Co ={(y1,12) €R?*|y2 > —y1,52 > 0} ifz <0.

Then eachC(z) is a closed convex pointed conel?. Leth : K x R — R? be defined
as h(x;d) = (d + x,—e%d). We note that the functiofi : K — R? defined asf(y) =
h(z;y —x) = (y,—e*(y — x)) is bothC'(z)-strongly quasiconvex as well &§x)-convex on
K andh(z;0) = (2,0) ¢ —intC(z),V = € K. Thus, all the conditions of Theorém[3.1 are
satisfied and it can be easily verified that each [0, 1] is a solution of(VVIP)).

We now give an example of when the functiory given in condition (d) of Theorem
isC'(x)-convex but noC'(z)-strongly quasiconvex.

Example 3.2.Let K = [—1,2] and leth : K x R — R? be defined aé(x; ) (—e”,d). Let
for eachz € K, coneC(z) be same as in Examgle B.1. Thefx;0) = (—e”,0) ¢ 1nt C( ),

vV xz € K. We note that the mapping: K — R? defined as (y) = h(z;y —x) = ( 7)
is C'(x)-convex onk but f is notC'(z)-strongly quasiconvex oA because for: = 0, y; = 2,

yo = —landt =1/2

FI(L=0y1 + tya) = supey {f (1), f(y2)} = (=1,1/2) = (=1,2)
= (0,-3/2) ¢ —int C(x).

Clearly, z = —1 is a solution of (VVIP)).

Our next example is that of a vector variational inequality problem where the funtti®n
not C'(x)-convex but isC'(x)-strongly quasiconvex.
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Example 3.3.Let K = [—2, 1] and for eachr € K define

C(z) = {(y1,y2) € R?|y1 > 0,2 > 0}.

Leth : K x R — R? be defined a&(z;d) = (d3,e7* — ). Then,h(x;0) = (0,7 — 1) ¢

—int C(z), V x € K and it can be easily verified that the functign: K — R? defined as
fly) =h(z;y —x) = ((y — )%, e7%(1 — ¢¥)) is C(x)-strongly quasiconvex of” but f is not
C(z)-convex onk because for =0, y; = —1, y» = —2 andt = 1/2 we have

Fltyr+ (1= t)a) = tf (1) = (1= 1) f(y2) = (9/8, (7" +7?)/2 = %) ¢ ~C(a).
Here,z = 0 andz = —2 are the only solutions ofVVIP)).

Remark 3.1. In [1], an existence result (Theorem 2) for a special case of the proM&fm)(
whenf(z,y) = g(x,y) + h(z,y), g,h : K x K — R™, has been proved assumigg, y) and

h(x,-) to be P-convex (referred to aB-function in [1]), whereP = [ C(z), which is a more
zeK
stringent condition than the cone-convexity assumption taken by us. In this paper the author

has assumed that(z;0) = 0, V z € K whereas we require a milder assumptigix; 0) ¢

—int C(z), V= € K. Moreover, the author in [1] imposes certain inclusion conditions on the
functionsg andh in order to establish existence theorem. We now illustrate with the help of an
example that the conditions (a)-(d) of Theorlerm 3.1 are satisfied but the conditions of Theorem
2 in Ansari [1] are not satisfied for the vector variational inequality prob[éRiP).

Example 3.4.Let K = [—1, 1] and for eachz in K define

Cl) = {(y1,12) €R2|yy >0, 45 >0} if 2>0
{(y1,92) € R*|yp > 0} if 2 <0.

Leth : K x R — R? be defined a&(z; d) = (23(d + z)?, (d + x)?). We note that the function
f: K — R? defined asf(y) = h(z;y — x) = (23y?,y?) is C(z)-convex but nof’-convex
because for = —1,y; = —1, y, = 1 andt = 1/2 we have

Sy + (L =t)y2) = tf() — (1 =1)f(y2) = (1, -1) ¢ =P,

whereP = ) C(z) = {(y.2) € B |yy > 0, yo > 0} Also,h(x;0) = (a°,a?) ¢
zeK

—int C(z),V x € K. In this case every € K is a solution of (VVIP)).

We now prove an existence theorem faMIP) for the case whelx is not a compact subset
of R".

Theorem 3.2. Let K be a nonempty closed convex subsék’af Suppose that conditions (a)-

(d) of Theorem 3]1 are satisfied. Further suppose that there exists a nonempty compact convex
subsetD C K such that for eachx € K\D there existyy € D such thath(z;y — z) €

—int C(z), then the problenfVVIP) has a solution.

Proof. The result can be proved exactly on the lines of Thedrein 3.1 using Léming 2.2.

4. GAP FUNCTIONS

Gap functions play a crucial role in transforming a variational inequality problem into an
optimization problem. Then, the methods for solving an optimization problem can be exploited
for finding the solutions of a variational inequality problem. In this section, we propose two
types of gap functions for the vector variational inequality prob[@MIP)), one is single valued
and the other is set valued.
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For eachr in K, let C*(z) denote the positive polar cone ©{z), that is,
C*(z) ={ueR™: (u,v) >0,V vel(x)}

Let B*(z) = {u € C*(z)|||lu|| = 1}. For eachz in K, B*(x) is a compact set such that
0 ¢ B*(x) andC*(xz)=coneB*(x), where coneB*(x) is the cone generated by*(x). Since
int C'(x) # ¢, we have a weak ordering IR™ given by

€ <intc 1, ifand only ifn — ¢ € int C'(z),
€ Lintcy n, ifand only ifn — & ¢ int C(x).
Defineh(z; K — z) =, . h(z;y — =) and for a nonempty subsdtof R we define
Min, o A := {a € A| thereis noa € A such thati < ;, ¢ a},

yeK

whereC' is a cone inR™ with nonempty interior.
Throughout this section we assume that for eaeh K, h(x;0) = 0.
By a scalar gap function we mean the following:

Definition 4.1. An extended real valued functign : R" — R U {—oc} is said to be a gap
function for the problem{{VIP) if and only if it satisfies the following properties

(i) ¢(#) = 0 < 7 is a solution of [fVIP);
(i) o(z) <0,V z € K.

In the following theorem we have a scalar type gap functions for the vector variational in-
equality problem{VIP)).
Theorem 4.1. The functiony(x) defined asp(z) = in}f{ H]13a>(<)<u, h(z;y — x)), is a gap func-
yeK ueB*(x
tion for (VVIP).

Proof. (i) Let z be a solution of({VIP). It follows thath(z;y — ) ¢ —int C(2),V y € K that
is, for eachy € K there exists,, € B*(z) such that

(uy, h(Z;y — )) > 0.

This yields that
h(z;y—2x)) >0
ug]%m, (Z;y — 7)) >0,
and hence,
inf h(z;y —x)) >0
;gKug%w, (Z;y — 1)) >0,
that is,p(z) > 0. Also, ¢(2) < max (u, h(#;0)) = 0implies thatp(z) = 0.

u€EB* (&)
Conversely, supposg(z) = 0 for somez € K. This implies that

max (u,h(z;y—2)) >0, V ye K.
u€B* (%)

Then for eachy € K there exists some, € B*(z) such that(u,, h(zZ;y — £)) > 0, which
implies thath(z;y — &) ¢ —int C'(%),V y € K and hence: is a solution of [ VIP)).
(i) Clearly, p(x) < Hjlg&i()(u, h(z;0)) =0,Vz € K.

ueB*(x

Thus,p(x) is a gap function fof\'\VIP|). &

Remark 4.1. Solving the vector variational inequality problefd\(IP) is thus equivalent to
solving the following scalar optimization problem of maximizing the gap func{¢n) over
K:
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(P1) Max ¢(x)
subjecttor € K .
We now have the notion of a set-valued gap function.

Definition 4.2. A set valued mapping : R" — R™ is said to be a gap function for the problem
(VVIP) if and only if

(i) 0 € ®(2) < & solves[(¢VIP);

(i) z¢intC(z),Vze€ &(x)andv z € K.

The set valued gap function given in the following theorem is similar to the one considered
by Chen, Goh and Yen|[7].

Theorem 4.2. The set valued mapping : R — R™ defined by
P(x) = Mininc@) h(r; K — )

is a gap function fo(VVIP)).
Proof. (i) Supposed € ®(z). This implies that, there does not exist apy= K such that
h(z;y — 2) <imc@) 0= h(@;2 — ), thatis,h(Z;y — 2) ¢ —intC(2),V y € K. Thus,z
solves [/VIP). Conversely, suppose thatsolves [(/VIP) then tracing back the steps we get
that0 € ®(z).

(i) Foranyr € K andz € ®(x) we next prove that # ;. c(;) 0. On the contrary, suppose
that there existg € K such thath(x;y — z) = 2 > o) 0 = h(x; 2 — x). This contradicts

the fact that: € ®(x).
Thus,®(z) is a gap function for\{VIP)). &

Remark 4.2. WhenC(z) = P,V = € K, whereP is a closed convex pointed conelf* and
h(z;y —x) = (T(x),y — x) then MVIP)) becomes the problem considered by Chen, Goh and
Yang [ 7] and® reduces to the gap function considered therein.

The following example shows that the solution of the probIpfIP) can also be obtained
by solving the generalized equatiore ¢ (z).

Example 4.1. Let K = [0, 2] and for eachz in K letC'(z) = R%. Leth : K x R — R? be de-
fined ash(xz;d) = (xd, d(d+2x)). Thenh(x;0) =0,V 2 € K and®(z) = Mingy o) h(x; K —
x) is given as

22 ;
() = (m,2x), !fx>0
{0,9°)[ye K}, if =0,
Since0 € ®(z), if and only if,z = 0 therefore,» = 0 is the only solution of the problem
(WVIP).
We now associate the following vector optimization problem with the prod\éviR):

(VOP) Maxi,, p ®(z) subjecttoz € K .

Solving the problem\(OP) is to findz € K for which there exists € ®(z) such tha{®(K) —
Z)N int P = ¢, where®(K) = |J ¢(z) andP = [ C(z) and® is the set-valued map

. . yeK reK
considered in Theorem4.2.

Theorem 4.3.1f £ € K is a solution of the vector variational inequality probl€mVIP]) then
& is a solution of the problerfVOP).
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Proof. As i is a solution of the problenMVIP) and® is a gap function it follows that € ®(z).

For everyxr € K andz € ®(z) asz ¢ int C(z) we havez ¢ int P, asP = [\ C(x). This
zeK
implies that(®(K) — 0) Nint P = ¢. Since0 € ®(z) it follows thatz is also a solution of the

problem [VOP). 1

Remark 4.3. The converse of the above theorem is not true in general as can be seen from the
following example.

Example 4.2.Let K = [0,2] and for eachr in K letC(z) = R3. Leth : K x R — R* be
defined as

(=2 -1), i d#0
Mz;d) = {(0,0), if d=0.

Now,&(z) = {h(z;y —z) |y € K\{z}} = {(=(y—2)", =1) [y € K\{x}}. AsO ¢ &(z) for
anyz € K therefore, the problerfVVIP) has no solution but every elementidfis a solution
of the optimization problerfVOP). Also, we may note that(z) = -1,V z € K.

Next we relate the two types of gap functions proposed in the paper.

Theorem 4.4.Letz € ®(z) andh(z; K — &) be a convex set iR™ then the following hold:

(i) there existsi € B*(&) such thatp(z) > (u, 2);
(i) there existd, € B*(z) such thatp(z)e — 2z ¢ —int C'(z).

Proof. Sincez € ®(&) = Minin () h(#; K — 2) therefore there exists sonjec K such that
z=h(z;y—z)and(h(z; K —2) — 2) N (—int C(z)) = ¢. By separation theorem there exists
u € R™\ {0} such that

(4.1) (u,h(Z;y —2) — 2) > (u,¢), YV ye K and V c € —int C(2).

We assert thatt € C*(z) \ {0}. Letd € C(z) then there exists a sequengee —int C()
such that-d = lim ¢,. Sincetc, € —int C(z) for everyt > 0, from ) it follows that

(1/t)(u, h(Z;y — &) — 2) > (u,¢), Yye K.

On taking limitt — +o0, it follows that (u, ¢,,) < 0, which in turn implies(u, d) > 0. Thus
u € C*() \ {0} and (u, h(z;y — 2)) > (u,2), Vy € K. Definea = u/||u|| € B*(z)
then it is clear thatmax (u, h(Z;y — 2)) > (u, h(z;y — 2)) > (a,2), Vy € K and hence,

ueB*(Z

?) = inf h(dy — &) > (4, 2).
o(2) yngugB@é)w, @y — 1)) = (4, 2)

(if) Choosee € int C(z) such that(a,e) = 1. Then(a, p(z)e) > (4, 2) which implies that
p()e—2 ¢ —int C(z). 0
Theorem 4.5. Suppose that infimum ipis attained at somé € K thatis,p(z) =
r%a%{)w, h(z;y — @)) thenh(z;y — &) € ®(2).
ueB*(z

Proof. Observe that

90(:%) = max <U,h([i',@)—fi')>
ueB* (&)
— inf W@y — i
;SKUEB%W’ (y — 1))
< max (u,h(t;y—2)), Vyek.
ueB* (&)
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Let n}ga;zc)m, hz,y—z)) = (uy, h(Z,y — z)) for someu, € B*(z) and for eacty € K. Then
ueB*(z

we have

H}Sa)(()<u7h(i‘7g_‘f;)> < <uy7h’<§jay_§j)>7 vyEK
ueB*(2

As (uy, h(Z,9 — 2)) < max (u, h(2;y — )) from the above relation we get

(., h(: 5 — ) — h(d,y — 2)) < 0.

Thus,h(z;9 — ) — h(z;y — ) ¢ it C(2),Vy € K thatis,(h(z; K — %) — h(Z;9 — 2)) N
(—int C(z)) = ¢. Thus,h(z; 5 — 7) € ®(z).

We now prove using the above two theorems that every solution of the prdBBns(also
a solution of the problenfMOP). This result can also be deduced from Theofem 4.3 due to the
observation made in Remdrk®.1.

Theorem 4.6.1f & € K is a solution of the problenfP1) and i(i; K — ) is a convex set in
R™, thenz is also a solution of the probleVOP).

Proof. Sincez solves|P1) thereforep(z) =0 = H}Bm({)(u, h(z;z — &)). Then from Theorem
ueB*(z

it follows that) = h(z; & —2) € ®(z). From Theorer 4]4 we have that for eack K and
for eachz € ®(z) there exists,, € B*(z) such thatp(z) > (u,, z). Asp(z) <0,Vz € K we
get that(u., z) <0,V z € ®(x). Thisimplies that ¢ int P,V z € &(x) andV = € K thatis,
(®(K)—0)Nint P = ¢. Since0 € ®(2) it follows thatz solves [fOP). &
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