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2 A. ABDELDAIM

1. INTRODUCTION

After the classic word, "Inequalities”, which appeared by Hardy et al. [12] in 1934, initiated

the discovery of new types of inequalities and its applications in many parts of analysis. In
the past several years there has been considerable interest in the application of differential and
integral inequalities in many parts of analysis. One of the most used inequalities in theory of
ordinary differential equations which due to Gronwall in 1919 [11]. Bellman R. in 1943 intro-
duced the fundamental inequality named Gronwall-Bellman’s inequality, this inequality plays
a vital role in studying stability and asymptotic behaviour of solutions of differential equations,
see [1]-14],16]-[9]. Integral inequalities involving functions and their derivatives have played
a significant role in the developments of various branches of analysis,!seée [5, 10]. Pachpatte
[13]-[18] has given some integral inequalities of the Gronwall-Bellman type involving func-
tions and their derivatives which are useful in certain applications in theory of differential and
integro-differential equations.
The aim of this paper is to extend certain results which proved by Pachpattel in [13] to ob-
tain a new nonlinear integro-differential inequalities which can be used as handy tools to study
the qualitative properties as well as the quantitative properties of solutions of some nonlinear
integro-differential equations.

2. MAIN RESULTS

In this section, we state and prove some new nonlinear integro-differential inequalities of
Gronwall-Bellman-Pachpatte type.

Theorem 2.1. Let x(t), d’;ff) andk(t) be realvalued nonnegative continuous functions defined

on ! = [0, c0), for which the inequality

0 <ot [ RIS catos v,

(2.1)

wherez,, p are positive constants. #f # 1, andp[2z|? f(f k(s)eP*ds < 1forall t € I, then

dl’ (t) (1—p

(2.2) = < lag 4 (1-p) /Ot k(s)R(s)ds] ™9, V¢ € I,
where
(2.3) R(t) = 2zpe'[L — p[2z0]” / t k(s)er*ds]# vt € 1.

0
Proof. Let m(t) equal the right hand side in 2.1, we hawé0) = z, and
(2.4) dg;—(tt) < mf(t),vt e I.

By takingt = s in[2.4 and integration it frond to ¢, we have
t
z(t) < o +/ m(s)ds,Vt € I.
0
Differentiatingm (¢) with respect ta and using 24 and the above inequality we have
dm(t)
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wheren(t) = m(t) + zo f s)ds,n(0) = 2x,. Differentiatingn(t) with respect ta and
using the fact thatn(t) < n(t) and. we obtain
dzg ) < kE@)n®(t) + n(t) = n—@“)(t)dT;—Y) —n7P(t) < k(t),Vt € I.

Let z2(t) = n"P(t) — [%][dfi—(t”] = n*(p+1)(t)[d7;—f)];z(0) = [2x0]7P, then from the above
inequality we have
dz(t)
dt
The above inequality implies the estimation f@t) such that

+pz(t) > —pk(t),Vt € 1.

t
2(t) > e P[2(0) — p/ k(s)eP®ds] = z(t) =n"P(t) > R7P(t) = n(t) < R(t),Vt € I,
0
whereR(t) is defined irf 2.8. Thus frofn 2.5 and the above inequality we have
) Lo r@mee) =m0 < o r@), eI

at  — dt
By taking? = s in the above inequality and integration it frdito ¢, we have

m(t) < [z + (1 - p) /0 t k(s)R(s)ds| T, ¥t € I.

Using the above inequality in 2.4 we get the desired inequalify ih 2.2. This completes the
proof. n

Theorem 2.2. Let z(¢), 22\ (t) be realvalued nonnegative continuous functions defined
on ! = [0, c0), for which the inequality

(2.6) dfl(tt) <o+ /O k<s)[dflis)}p[[d2f)]2 4 o(s)ds, Wt € I.

wherex, > 1,p > 0 are constants If
2(p + 1)[22 + 2] P+Y f k(s)e®tVsds < 1,¥t € I andp # 1, then

2.7) < [x“*p) +(1—p) / t k(s)Ry(s)ds| T, Wt € T,
0

where
t

(2.8) Ri(t) = [22 + mole![1 — 2(p + 1)[22 + 2] / /{:(s)e(pﬂ)sds]ﬁ,‘v’t el
0

Proof. Let m,(t) equal the right hand side|in 2.6, we hawg(0) = z, and
dx(t)
dt
By takingt = s in[2.9 and integration it from to ¢, we have

(2.9)

S ml(t),Vt el

t
z(t) < o +/ my(s)ds,Vt € I.
0

Differentiatingm; (¢) with respect td and using 2/9 and the above inequality we have

dm1 (t)
dt

(2.10) < k(t)mY(t)n(t),Vt € I,
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wheren, (t) = m3(t) + zo + fo my(s)ds,n1(0) = 3 + zg, butzg > 1 — my(t) > 1, thus we
have
my(t) <mi(t) <ny(t), vt el

Differentiatingn, () with respect ta and using 2.70 and the above inequality we obtain

d _
dn;t( ) < 2k(t)n (p+2)(t) +ni(t) = ny (p+2) () n;t( ) — (p+1)(t) < 2k(t), Vi € I.
Let 21( ) _ nl_(p+1)(t) N [(pj:l)Hdzjlt(t)] _ nl—(p+2) (t>[dn;t(t)]; 21(0) _ [xg _i_xo]—(p-i-l)’ then from

the above inequality we have
dz(t)
Cdt
The above inequality implies the estimation fgf¢) such that

+(p+Da(t) =2 =2(p+ k(1) vVt € 1.

t
2 (t) > e @2 (0) — 2(p + 1)/ k(s)e®tVsds) Vit e I =
0

a(t) =n ") > Ry () = () < Ri(t), Yt € 1,
whereR; (t) is defined irf 2.8. Thus frofn 2.]L0 and the above inequality we have

d””;lt(t) < k(t) Ry (t)m? () = mlp(t)dmd—lt(t) < k(O R(t), Ve € 1.

By takingt = s in the above inequality and integration it frdnio ¢, we have

mi(t) < [z + (1 —p) /Ot k(s)R,(s)ds] T, vt € 1.

Using the above inequality in 2.9 we get the desired inequalify ih 2.7. This completes the
proof. i

Theorem 2.3. Let z(t), & dt (t) be realvalued nonnegative continuous functions defined
onI = [0, c0), for which the inequality

dx(t) ! dx(s),, . dx(s)

A1 < p P 1
(2.11) o <ot [ RO atsds e
wherez, > 1andp > 1 are constants, i{p — 1)zP ™" fo s)ds < 1, and h(t) =
p(2p — D)[ah + x0] @Y [ k(s) exp((2p — 1)s)ds < 1,Vt el then

t _ ¢ -1
(2.12) dfzi) <[l — (p—1)alf 1)/ k(s)Ry(s)ds| "0, Vt € 1,
0
where
(2.13) Ro(t) = [a8 + wole![L — h(t)] @7, V¢ € 1.
Proof. Let m,(t) equal the right hand sidefin 2]11, we haxg(0) = z, and
(2.14) dfl(tt) < ma(t), Vi € 1.

By takingt = s in[2.14 and integration it frorfi to ¢, we have

t
z(t) < o +/ mo(s)ds,Vt € I.
0
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Differentiatingm.(¢) with respect ta and using 2.14 and the above inequality we have
dm(1)
dt
wherens (t) = mb(t) +xo + [, ma(s)ds; n2(0) = 2 + o, butzy > 1 andp > 1, thus we have

ma(t) > 1= mao(t) < mi(t) < no(t),Vt € 1.
Differentiatingn. (¢) with respect ta and using 2.15 and the above inequality we obtain

(2.15) < K()mB(t)na(t), V¢ € 1,

dno(t dno(t —(2p—

"2 < preynr 1) + noft) = ng () T2 @) < prr) e 1
Letz(t) = ny 70(8) — [ [502] = ny ™ (D[ “52); 25(0) = [f + 2o] ), then from
the above inequality and the fact ti{ap — 1) > 0 we have

ng (t)

—5 T (@ =1Dz(t) > —p(2p — D), Ve € 1.

The above inequality implies the estimation fgf¢) such that

t
2(t) > eV 2(0) — p(2p — 1)/ k(s)e®P=Vsds) Vit € T =
0

2(t) =ny® V() > RyPPTV(1) = na(t) < Ra(t),VE € I,
whereR,(t) is defined irf 2.13. Thus from 2./15 and the above inequality we have

d“’;i(t) < k(t)mb(t) Ry(t) = m;p(t)dwi;(t) < k(t)Ra(t), ¥t € 1.

By takingt = s in the above inequality and integration it frobnto ¢ and using the fact that
p>1—(p—1)>0,wehave

t —
ma(t) < aoft = (p = Do [ k(o) Ra(s)as) D Ve € 1
0

Using the above inequality in 2./14 we get the desired inequalify in 2.12. This completes the
proof. g

Theorem 2.4. Letz(?), dflff) and k(t) be realvalued nonnegative continuous functions defined

on ] = [0, c0), for which the inequality

(2.16) dﬁt) < w0+ /O k(s)[dflf)]p[[ ") g a?(s)ds Vi € 1

wherez, > 1 andp > 1 are constants, ifp — 1)z* " [ k(s)Ry(s)ds < 1,

g(t) = p(2p — 1)[[xf + zo]? + $0](2p71) /Ot k(s)exp((2p — 1)s)ds < 1,

ho(t) = plag + o) /Ot[k:(s) — 2] exp(2p /OS Q(N)dN)ds < 1,Vt € 1,

then

(2.17) dzgf) <zl = (p— Dar™ /0 k(s)Ra(s)ds] =D, V¢ € T,
where

(2.18) Ra(t) = [22 + mo][1 — ha(t)] 7 exp(2 / Q(s)ds), ¥t € T,
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(2.19) Q(t) = [[2% + ol? + wmole'[1 — g(1)] @ Vit € 1.
Proof. Let ms(t) equal the right hand sidefin 2]16 we haug(0) = z, and
(2.20) d”;l(tt) < mg(t),Vt € 1.

By takingt = s in[2.2Q and integration it frorfi to ¢, we have
t
z(t) < xg +/ ms(s)ds,Vt € 1.
0

Differentiatingm(¢) with respect ta and using the above inequality §nd 2.20 we obtain
dm3 (t)
dt

wherens(t) = ma(t) + 2% + 2z [ ma(s)ds + [ [ ma(s)ds]*;n (0) = 22 + xoVt € I. Differ-
entiatingn;(t) with respect ta and usmg the fact thats () < ns(¢) and 2.2]l we obtain

(2.21) < k()mE(t)ns(t), vt € 1,

D) < ket )+2[m0+/0tn3(5)d5]n3(t),‘v’t er,
thus
dnift) < k(En§ V(1) = 20 (1) + 20 (1) + 20 + / na(s)ds]ns(t) =
(2.22) dna(t) _ n& I ()[k(t) — 2] + 2ns(t)23(1), VE € I,

au — 3

wherezs(t) = nb(t) + zo + fo n3(s)ds, wherez3(0) = [22 + zo)P + zo forall t € I, butzy > 1
andp > 1 thus we have

ng(t) > 1= ns(t) < nf(t) < z3(t),vt € I.
Differentiating z;(¢) with respect ta and using the above inequality dnd .22 we obtain

T8) < pr(O(e) 2] + 20 V1) + 2a(0). V1 €

butzg >1— 23(t) > 1,andl <p —p+1<2p — zé”*”(t) < z2?(t), thus from the above
inequality we have

o) < p k(D) + (1), > 57 20

Definew(t) = 2z * Y (t) — w(0) = 25 @ (0) = [[a3+a]P+ao] =Y, and] 15 [242] =
z§2p(t)[dz3(t)] Vt € I. Thus from the above inequality we have

d"‘;_y +(2p— Dw(t) > —p(2p — Dk(H),VE € I.

The above inequality implies the estimation foft) such that
t
w(t) = exp((2p ~ DOw(0) = p(2p~ 1) [ heap((2p— 15)ds] =
0

w(t) =2, 70(t) > Q" I(E) = (1) < Q1) Ve € 1,
whereQ(¢) is defined irj 2.19. From the above inequality and .22 we obtain

| =2n;"(0)Q(t) < [k(t) — 2],

— 2@ < pk(t), vt e 1.

—dnit(t) <PV k(E) — 2] + 2n5(HQ(E) = ny PO [
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dt
(22 + x| 7P. Thus from the above inequality we have

d?fd—(t” + 2pu(t)Q(t) > —plk(t) — 2]Vt € I.

The above inequality implies the estimation fdt) such that

ult) > exp(—2p / Q(s)ds)[u(0) - p / [k(s) — 2] exp(2p / CQAN)ds] =

whereR;(t) is defined irf 2.18. From the above inequality fnd 2.21 we obtain

W) < (om0 Ba(t) = mi?(e)

By takingt = s in the above inequality and integration it frobrto ¢ and using the fact that
p>1—(p—1)>0,we have

forall t € I. Defineu(t) = ny”(t) — [ZH][242] = ny " ()[220] vt € I, andu(0) =

< k(t)Ry(t),Vt € 1.

¢ -1
mg(t) < xo[l — (p— l)a:(()p_l)/ k(s)R3(s)ds|®=D,Vt € I.
0

Using the above inequality in 2.20 we get the desired inequality in 2.17. This completes the
proof. i

Theorem 2.5. Let z(t), & dt (t) be realvalued nonnegative continuous functions defined
on! = [0, c0), for which the inequality

dx(t) K dz(s),, dx(s),,
2.2 < P I
(2:23) S <ot [ HOEIPISEE +aeasee ,
wherez, > 1, p > 1 are constants, ifp — 1)z " [ k( s)ds < 1,and

g1(t) =2(p+ 1)[xo + [225 ](p+1)]/0 k(s)e*ds < 1,

balt) = 2p-+ D223 [ 6(5) = exp(2p-+ 1) [ Qs <1
forall t € I, then

dx(t) w-1 [ 1
(2.24) o <ol — (p— 1)z, k(s)Ry(s)ds|®=D Yt € I,
0

where

-1 t
(2.25) Ra(t) = 202[1 — ha(£)] 757 exp(2 / Qr(s)ds), ¥t € T,

0

(2.26) Qi(t) = [zo + [225] " V]! [L = g (1)), VE € 1.
Proof. Let ma(t) equal the right hand sidefin 2]23 we hang(0) = z, and
(2.27) @) ) VEe T

dt
By takingt = s in[2.27 and integration it frorfi to ¢, we have

¢
z(t) < o +/ my(s)ds,Vt € I.
0
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Differentiatingm.(¢) with respect ta and using the above inequality §nd 2.27 we obtain
dm4(t)
dt

wheren,(t) = m3(t) + a2 + 2xo [; ma(s)ds + [ [ ma(s)ds]?,ns(0) = 222, V¢ € I but, z >
1 — my(t) > 1, thus we have

my(t) < mj(t) < ny(t),vt el
Differentiatingn.(¢) with respect ta and using 2.28 and the above inequality we obtain

(2.28) < K(OmE(t)na(t), vt € 1,

dn;t( ) < okl 1 +2[xo+/0t na(s)dslng(t), vt € 1,
thus
d”;(t) < 2k(t)n{ () — 20T (1) + 2T (1) + 2[wo + / mals)dslna(t) >
t 0
(2.29) d”;)ft) < 2[k(t) — Un* (1) + 2n4(t)24(t), V2 € 1,

wherez(t) = nP™ (1) + zo + fo ny(s)ds, wherez,(0) = [zo + [222]®+V] for all t € 1.
Differentiatingz4(¢) with respect ta and usm9 we obtain

dthf ) < 9(p+ 1) [k(E) — U2 (0) 4+ 20p + 1O (0)2a(t) + malt) Ve € 1.
but, nP™(¢) < z4(t) , thus from the above inequality we have
dzy(t)

<200+ Dk()22(t) + 270 (1), Vt € 1,

but,zop > Lip > 1 — 2z(t) > 1 — zf’%”(t) < z4(t), for all ¢t € I, thus from the above
inequality we have
dzy(t) dzy(t)
dt dt
Definew, (t) = 27 1(t), w1 (0) = [zo + [223]® V]!, and— 248 — > 72(4)[ W] forallt € 1.
Thus from the above inequality we have
dwi (t)
dt
The above inequality implies the estimation for(¢) such that

wy(t) > e wi(0) —2(p + 1)/0 k(s)e*ds] =

wi(t) = 2,1 (t) > QM) = 24(t) < Q1(t),Vt € 1,
whereQ; (t) is defined i} 2.26. From the above inequality and 2.29 we obtain

<2(p+ k()23 (t) + 24(t) = 2%(t) — 2z () < 2(p+ Dk(t),Vt € I.

+wy(t) > —2(p+ Dk(t),Vt € 1.

dng(t _ dn
408) < ()P (042, (D@D = P O[T}, P 001 (1) < (1)1,
forallt € I. Defineus(t) = ny "V (t) — [ Z5][40] = ny P (1) 249], andu, (0) =
[202]~®+1). Thus from the above inequality we have
dU1< )

=+ 2(p+ V(@i (t) = —2(p+ k() — 1, Ve € 1.
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The above inequality implies the estimation fgK¢) such that
i (t) > exp(—2(p+1) / Q1 (5)ds)[ur (0)—2(p+1) / [h(s)—1] exp(2(p+1) / ") dNds] =
0 0 0

wn(t) = ng () = BT = na(t) < Ra(t), Ve € 1,
whereR,(t) is defined irf 2.25. From the above inequality fnd 2.28 we obtain

) < kym(e) Ra(t) = i) 0

By takingt = s in the above inequality and integration it frobnto ¢t and using the fact that
p>1—(p—1)>0,wehave

< k(t)Ra(t), ¥t € 1.

¢ -1
ma(t) < zo[l — (p — 1)z~ / k(s)Ru(s)ds] @D Vt € I.
0

Using the above inequality in 227 we get the desired inequality in 2.24. This completes the
proof. n

Theorem 2.6. Let z(t), & dt (t) be realvalued nonnegative continuous functions defined
on/ = [0, c0), for which the inequality

(2.30) dflit) <o+ /0 k(s)[de>]P[[dZiS>]p +2%(s)]ds, Vit € 1,

wherez, > 1 andp > 1 are constants, ifp — 1)x (” 2 fo s)ds < 1,

t
g2(t) = p(2p — 1) [z + [2h + 23] 3~V / k(s)e’ds < 1,
0

hate) = (2= 1) [ (k) = 2fef + ] xp(z | Q)| Vas <1,

forall t € I, then

(2.31) dz(tt) < o[l — (p— Dalr™ /t k(s)Rs(s)ds]@ D, Vt € I,
where 0

232) Ro(t) = [l + a8 exp(z [ Quls)ds)1 — ha(0) o',
(2.33) Qo(t) = [wo + [zh + 2] @~ Vet [1 — go(t)] 71, WVt € I.
Proof. Let m;(t) equal the right hand sidefin 2]30 we hang(0) = z, and
(2.34) o) vt el

dt  —
By takingt = s in[2.34 and integration it frorfi to ¢, we have

t
z(t) < o +/ ms(s)ds,Vt € 1.
0

Differentiatingm(¢) with respect ta and using 2.34 and the above inequality we obtain
dm5 (t)
dt

(2.35) < k(t)mi(t)ns(t),Vt € I,
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wheren;(t) = mk(t) + 2+ 2z fo ms (s ds+[f 5(s)ds)?; ns(0) = b+ 22, but,zg > 1,p >
1 — ms(t) > 1, thus we have

ms(t) < mi(t) < ns(t),Vt € 1.
Differentiatingns (¢) with respect ta and using 2.35 and the above inequality we obtain

dn;ft) < pk(t)nZ (1) + 2n5(t) o + /0 ns(s)ds), vt € 1,
hence
dn;t(t) < pk(t)nP(t) — 202 (t) + 2n2P(t) + 2ns5(t)[z0 —1—/0 ns(s)ds],Vt € I,=
(236) D5(0) < 02(0) k(1) — 2 + 20s(t)za(0). i € 1

wherez;(t) = n{™ V(t) + zo + I3 ns(s)ds 2’5(0) = x0 + [zh + 23D for allt € I.

Differentiation z;(¢) with respect tot and usm6 and the fact thalf” " y ) < zs(t) we

have
dZ5(t)
dt
butzg > 1 — ns(t) > landp > 1 — (2p — 1) > 1 — ns(t) < ni® V(1) < 2z(t), then from
the above inequality we have

< p(2p — Vk(t)22(t) +ns(t),Vt € I,

0 < pop— DR0ED) + ) = 520 210y < pop— h) e 1
Letws(t) = 251 (t) — wa(0) = [wo + [2f + 22]®~ V]~ and, 228 — =2(1)[42W] then from
the above inequality we obtain

dwg(t>
dt
The above inequality implies the following estimation foy(¢) such that

+ws(t) > —p(2p — Dk(t),Vt € 1.

w(t) > e uwn(0)—p(2p—1) / k(s)eds] = ws(t) = 257 (1) > Q3 (1) = #(t) < Qo(t), VL € 1,
0
whereQ,(t) is defined i} 2.33. Froin 2.86 and the above inequality we have
d";;t> < ngP(4)[pk(t) — 2] + 2n5(t)Q2(t), Vt € I =
n;QP(t)d”C;ft) — 205 PV (1)Qu(t) < [ph(t) — 2]Vt € 1.

Letus(t) = ny V(1) — [Gip][#42) = ny ™ ()[“52] for all ¢t € I anduy(0) = [af +

22]~2»=1 then from the above inequality we obtain

W) | 9(op ~ D)Qu(t)ua(t) = (20~ Viph(t) ~ A Vi € 1

The above inequality implies the following estimation f@(t) such that

us(t) > exp(—2(2p — 1) /0 ’ 0a(5)d5) [u(0)

—(2p—1) /Ot[pk’(s) —2]exp(2(2p — 1) OS Q2(N)dN)ds],Vt € I =
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us(t) = ng V() > Ry PV () = ns(t) < Rs(t),Vt € 1,
whereR;(t)is defined irjf 2.32. Frof 2.85 and the above inequality we obtain

d””;i(t) < k(t)mE(t)Rs(t) = mSP(wd”Z(t) < k(t)Rs(t),vt € 1.

By takingt = s in the above inequality and integration it frobrto ¢ and using the fact that
p>1—(p—1)>0,we have

t
ms(t) < 2ol — (p — D)a®™V / k(s)Rs(s)ds] 77, vt € T.
0
Then from the above inequality in 2]34 we obtain the degired 2.31. This completes thegproof.

3. SOME APPLICATIONS

In this section, we use some inequalities obtained in Section2 to obtain the bound for the
solutions of some integro-differential equations of the form

diﬂ( ) = f(t) + /0 F(t,s, x(s), dz(s))ds,Vt el,

(3.1) — -

wherex(t), %W (t), F(t, s, 2(s), Z))
are the elements ak", the set of real numbers, and continuous on the respective domains of
their definitions.

As an applications of the Theor¢m[2.1 we present the following example:

Example 3.1.Let f(t) and F(¢, s, z(s), %) in[3.] satisfy

32) 50 1< et
d d d
@3) | P, T 1< ko) DOy POy e
wherez,, p andk(t) as defined in the Theordm 2.1, then
dx(t)

t 1
(3.4) | IS 4 (=) [ MORE)E T e
0

whereR(t) is defined inf 2.3.

Proof. Using[3.2 andl 3]3 ih 3|1 we have
B 1ot [ ke S 11 S 4 fat s e e o

Now an applications of Theorem 2.1 the above inequality yields the desired bounl in 3.4. This
completes the proof

As an applications of the Theor2 3 we present the following example:

Example 3.2.Let f(¢t) and F (¢, s, z( . satlsf). and

dx(s) dx( ) dx(t)
: < P
(35) rMWw@,$>Lumrﬁ|w\ﬁ\hwwwwmﬁ
wherez,, p andk(t) as defined in the Theorgm P.3, then
t 1
(3.6) | dfi—(t” 1< 2ol — (p— D™ / k(s)Ry(s)ds| w0, Vt € 1,
0
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whereR;(t) is defined iff 2.13.

Proof. Using[3.2 and 3]5 ih 3]1 we have
1 a0+ [ RS P P ) e e

Now an applications of Theorem 2.3 the above inequality yields the desired bgungl in 3.6. This
completes the proof

As an applications of the Theor¢m[2.5 we present the following example:
Example 3.3.Let f(t) and F(t, s, z(s), ) in[3.1 satisfy 3.2 and

dz(s dzx(t dz(t
@7 1 F(tsats). Dy < k) D g T e e e,
wherez, p andk(t) as defined in the Theordm 2.5, then
¢ -1
(39) 0 < anlt = (= 0af ™ [ K RAs)SITT e T
0

whereR,(t) is defined i) 2.25.

Proof. Using[3.2 and 3]7 ih 3]1 we have
a0+ [ RN P 1P () [Pl vt e 1

Now an applications of Theorem 2.5 the above inequality yields the desired bgunl in 3.8. This
completes the proof

Remark 3.1. Finally, we note that the integro-differential inequalities established in Sgdtion 2
have many possible applications in the theory of integro-differential equations.
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