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2 A. ABDELDAIM

1. I NTRODUCTION

After the classic word, "Inequalities", which appeared by Hardy et al. [12] in 1934, initiated
the discovery of new types of inequalities and its applications in many parts of analysis. In
the past several years there has been considerable interest in the application of differential and
integral inequalities in many parts of analysis. One of the most used inequalities in theory of
ordinary differential equations which due to Gronwall in 1919 [11]. Bellman R. in 1943 intro-
duced the fundamental inequality named Gronwall-Bellman’s inequality, this inequality plays
a vital role in studying stability and asymptotic behaviour of solutions of differential equations,
see [1]-[4],[6]-[9]. Integral inequalities involving functions and their derivatives have played
a significant role in the developments of various branches of analysis, see [5, 10]. Pachpatte
[13]-[18] has given some integral inequalities of the Gronwall-Bellman type involving func-
tions and their derivatives which are useful in certain applications in theory of differential and
integro-differential equations.
The aim of this paper is to extend certain results which proved by Pachpatte in [13] to ob-
tain a new nonlinear integro-differential inequalities which can be used as handy tools to study
the qualitative properties as well as the quantitative properties of solutions of some nonlinear
integro-differential equations.

2. M AIN RESULTS

In this section, we state and prove some new nonlinear integro-differential inequalities of
Gronwall-Bellman-Pachpatte type.

Theorem 2.1. Let x(t), dx(t)
dt

andk(t) be realvalued nonnegative continuous functions defined
on I = [0,∞), for which the inequality

(2.1)
dx(t)

dt
≤ x0 +

∫ t

0

k(s)[
dx(s)

ds
]p[

dx(s)

ds
+ x(s)]ds,∀t ∈ I,

wherex0, p are positive constants. Ifp 6= 1, andp[2x0]
p
∫ t

0
k(s)epsds < 1 for all t ∈ I, then

(2.2)
dx(t)

dt
≤ [x

(1−p)
0 + (1− p)

∫ t

0

k(s)R(s)ds]
1

(1−p) ,∀t ∈ I,

where

(2.3) R(t) = 2x0e
t[1− p[2x0]

p

∫ t

0

k(s)epsds]
−1
p ,∀t ∈ I.

Proof. Let m(t) equal the right hand side in 2.1, we havem(0) = x0 and

(2.4)
dx(t)

dt
≤ m(t),∀t ∈ I.

By takingt = s in 2.4 and integration it from0 to t, we have

x(t) ≤ x0 +

∫ t

0

m(s)ds,∀t ∈ I.

Differentiatingm(t) with respect tot and using 2.4 and the above inequality we have

(2.5)
dm(t)

dt
≤ k(t)mp(t)n(t),∀t ∈ I,
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wheren(t) = m(t) + x0 +
∫ t

0
m(s)ds, n(0) = 2x0. Differentiatingn(t) with respect tot and

using the fact thatm(t) ≤ n(t) and 2.5 we obtain

dn(t)

dt
≤ k(t)n(p+1)(t) + n(t) ⇒ n−(p+1)(t)

dn(t)

dt
− n−p(t) ≤ k(t),∀t ∈ I.

Let z(t) = n−p(t) → [−1
p

][dz(t)
dt

] = n−(p+1)(t)[dn(t)
dt

]; z(0) = [2x0]
−p, then from the above

inequality we have
dz(t)

dt
+ pz(t) ≥ −pk(t),∀t ∈ I.

The above inequality implies the estimation forz(t) such that

z(t) ≥ e−pt[z(0)− p

∫ t

0

k(s)epsds] ⇒ z(t) = n−p(t) ≥ R−p(t) ⇒ n(t) ≤ R(t),∀t ∈ I,

whereR(t) is defined in 2.3. Thus from 2.5 and the above inequality we have

dm(t)

dt
≤ k(t)R(t)mp(t) ⇒ m−p(t)

dm(t)

dt
≤ k(t)R(t),∀t ∈ I.

By takingt = s in the above inequality and integration it from0 to t, we have

m(t) ≤ [x
(1−p)
0 + (1− p)

∫ t

0

k(s)R(s)ds]
1

(1−p) ,∀t ∈ I.

Using the above inequality in 2.4 we get the desired inequality in 2.2. This completes the
proof.

Theorem 2.2. Let x(t), dx(t)
dt

andk(t) be realvalued nonnegative continuous functions defined
on I = [0,∞), for which the inequality

(2.6)
dx(t)

dt
≤ x0 +

∫ t

0

k(s)[
dx(s)

ds
]p[[

dx(s)

ds
]2 + x(s)]ds,∀t ∈ I,

wherex0 > 1, p > 0 are constants. If
2(p + 1)[x2

0 + x0]
(p+1)

∫ t

0
k(s)e(p+1)sds < 1,∀t ∈ I andp 6= 1, then

(2.7)
dx(t)

dt
≤ [x

(1−p)
0 + (1− p)

∫ t

0

k(s)R1(s)ds]
1

(1−p) ,∀t ∈ I,

where

(2.8) R1(t) = [x2
0 + x0]e

t[1− 2(p + 1)[x2
0 + x0]

(p+1)

∫ t

0

k(s)e(p+1)sds]
−1

(p+1) ,∀t ∈ I.

Proof. Let m1(t) equal the right hand side in 2.6, we havem1(0) = x0 and

(2.9)
dx(t)

dt
≤ m1(t),∀t ∈ I.

By takingt = s in 2.9 and integration it from0 to t, we have

x(t) ≤ x0 +

∫ t

0

m1(s)ds,∀t ∈ I.

Differentiatingm1(t) with respect tot and using 2.9 and the above inequality we have

(2.10)
dm1(t)

dt
≤ k(t)mp

1(t)n1(t),∀t ∈ I,

AJMAA, Vol. 11, No. 1, Art. 8, pp. 1-13, 2014 AJMAA

http://ajmaa.org


4 A. ABDELDAIM

wheren1(t) = m2
1(t) + x0 +

∫ t

0
m1(s)ds, n1(0) = x2

0 + x0, butx0 > 1 → m1(t) > 1, thus we
have

m1(t) ≤ m2
1(t) ≤ n1(t),∀t ∈ I.

Differentiatingn1(t) with respect tot and using 2.10 and the above inequality we obtain

dn1(t)

dt
≤ 2k(t)n

(p+2)
1 (t) + n1(t) ⇒ n

−(p+2)
1 (t)

dn1(t)

dt
− n

−(p+1)
1 (t) ≤ 2k(t),∀t ∈ I.

Let z1(t) = n
−(p+1)
1 (t) → [ −1

(p+1)
][dz1(t)

dt
] = n

−(p+2)
1 (t)[dn1(t)

dt
]; z1(0) = [x2

0 +x0]
−(p+1), then from

the above inequality we have

dz1(t)

dt
+ (p + 1)z1(t) ≥ −2(p + 1)k(t),∀t ∈ I.

The above inequality implies the estimation forz1(t) such that

z1(t) ≥ e−(p+1)t[z1(0)− 2(p + 1)

∫ t

0

k(s)e(p+1)sds],∀t ∈ I ⇒

z1(t) = n
−(p+1)
1 (t) ≥ R

−(p+1)
1 (t) ⇒ n1(t) ≤ R1(t),∀t ∈ I,

whereR1(t) is defined in 2.8. Thus from 2.10 and the above inequality we have

dm1(t)

dt
≤ k(t)R1(t)m

p
1(t) ⇒ m−p

1 (t)
dm1(t)

dt
≤ k(t)R1(t),∀t ∈ I.

By takingt = s in the above inequality and integration it from0 to t, we have

m1(t) ≤ [x
(1−p)
0 + (1− p)

∫ t

0

k(s)R1(s)ds]
1

(1−p) ,∀t ∈ I.

Using the above inequality in 2.9 we get the desired inequality in 2.7. This completes the
proof.

Theorem 2.3. Let x(t), dx(t)
dt

andk(t) be realvalued nonnegative continuous functions defined
on I = [0,∞), for which the inequality

(2.11)
dx(t)

dt
≤ x0 +

∫ t

0

k(s)[
dx(s)

ds
]p[[

dx(s)

ds
]p + x(s)]ds,∀t ∈ I,

wherex0 > 1 and p > 1 are constants, if(p − 1)x
(p−1)
0

∫ t

0
k(s)R2(s)ds < 1, and h(t) =

p(2p− 1)[xp
0 + x0]

(2p−1)
∫ t

0
k(s) exp((2p− 1)s)ds < 1,∀t ∈ I, then

(2.12)
dx(t)

dt
≤ x0[1− (p− 1)x

(p−1)
0

∫ t

0

k(s)R2(s)ds]
−1

(p−1) ,∀t ∈ I,

where

(2.13) R2(t) = [xp
0 + x0]e

t[1− h(t)]
−1

(2p−1) ,∀t ∈ I.

Proof. Let m2(t) equal the right hand side in 2.11, we havem2(0) = x0 and

(2.14)
dx(t)

dt
≤ m2(t),∀t ∈ I.

By takingt = s in 2.14 and integration it from0 to t, we have

x(t) ≤ x0 +

∫ t

0

m2(s)ds,∀t ∈ I.
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Differentiatingm2(t) with respect tot and using 2.14 and the above inequality we have

(2.15)
dm2(t)

dt
≤ k(t)mp

2(t)n2(t),∀t ∈ I,

wheren2(t) = mp
2(t) + x0 +

∫ t

0
m2(s)ds; n2(0) = xp

0 + x0, butx0 > 1 andp > 1, thus we have

m2(t) > 1 ⇒ m2(t) ≤ mp
2(t) ≤ n2(t),∀t ∈ I.

Differentiatingn2(t) with respect tot and using 2.15 and the above inequality we obtain

dn2(t)

dt
≤ pk(t)n2p

2 (t) + n2(t) ⇒ n−2p
2 (t)

dn2(t)

dt
− n

−(2p−1)
2 (t) ≤ pk(t),∀t ∈ I.

Let z2(t) = n
−(2p−1)
2 (t) → [ −1

(2p−1)
][dz2(t)

dt
] = n−2p

2 (t)[dn2(t)
dt

]; z2(0) = [xp
0 +x0]

−(2p−1), then from
the above inequality and the fact that(2p− 1) > 0 we have

dz2(t)

dt
+ (2p− 1)z2(t) ≥ −p(2p− 1)k(t),∀t ∈ I.

The above inequality implies the estimation forz2(t) such that

z2(t) ≥ e−(2p−1)t[z2(0)− p(2p− 1)

∫ t

0

k(s)e(2p−1)sds],∀t ∈ I ⇒

z2(t) = n
−(2p−1)
2 (t) ≥ R

−(2p−1)
2 (t) ⇒ n2(t) ≤ R2(t),∀t ∈ I,

whereR2(t) is defined in 2.13. Thus from 2.15 and the above inequality we have

dm2(t)

dt
≤ k(t)mp

2(t)R2(t) ⇒ m−p
2 (t)

dm2(t)

dt
≤ k(t)R2(t),∀t ∈ I.

By taking t = s in the above inequality and integration it from0 to t and using the fact that
p > 1 → (p− 1) > 0, we have

m2(t) ≤ x0[1− (p− 1)x
(p−1)
0

∫ t

0

k(s)R2(s)ds]
−1

(p−1) ,∀t ∈ I.

Using the above inequality in 2.14 we get the desired inequality in 2.12. This completes the
proof.

Theorem 2.4. Let x(t), dx(t)
dt

andk(t) be realvalued nonnegative continuous functions defined
on I = [0,∞), for which the inequality

(2.16)
dx(t)

dt
≤ x0 +

∫ t

0

k(s)[
dx(s)

ds
]p[[

dx(s)

ds
] + x2(s)]ds,∀t ∈ I

wherex0 > 1 andp > 1 are constants, if(p− 1)x
(p−1)
0

∫ t

0
k(s)R3(s)ds < 1,

g(t) = p(2p− 1)[[x2
0 + x0]

p + x0]
(2p−1)

∫ t

0

k(s) exp((2p− 1)s)ds < 1,

h2(t) = p[x2
0 + x0]

p

∫ t

0

[k(s)− 2] exp(2p

∫ s

0

Q(λ)dλ)ds < 1,∀t ∈ I,

then

(2.17)
dx(t)

dt
≤ x0[1− (p− 1)x

(p−1)
0

∫ t

0

k(s)R3(s)ds]
−1

(p−1) ,∀t ∈ I,

where

(2.18) R3(t) = [x2
0 + x0][1− h2(t)]

−1
p exp(2

∫ t

0

Q(s)ds),∀t ∈ I,
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6 A. ABDELDAIM

(2.19) Q(t) = [[x2
0 + x0]

p + x0]e
t[1− g(t)]

−1
(2p−1) ,∀t ∈ I.

Proof. Let m3(t) equal the right hand side in 2.16 we havem3(0) = x0 and

(2.20)
dx(t)

dt
≤ m3(t),∀t ∈ I.

By takingt = s in 2.20 and integration it from0 to t, we have

x(t) ≤ x0 +

∫ t

0

m3(s)ds,∀t ∈ I.

Differentiatingm3(t) with respect tot and using the above inequality and 2.20 we obtain

(2.21)
dm3(t)

dt
≤ k(t)mp

3(t)n3(t),∀t ∈ I,

wheren3(t) = m3(t) + x2
0 + 2x0

∫ t

0
m3(s)ds + [

∫ t

0
m3(s)ds]2; n3(0) = x2

0 + x0∀t ∈ I. Differ-
entiatingn3(t) with respect tot and using the fact thatm3(t) ≤ n3(t) and 2.21 we obtain

dn3(t)

dt
≤ k(t)n

(p+1)
3 (t) + 2[x0 +

∫ t

0

n3(s)ds]n3(t),∀t ∈ I,

thus
dn3(t)

dt
≤ k(t)n

(p+1)
3 (t)− 2n

(p+1)
3 (t) + 2n

(p+1)
3 (t) + 2[x0 +

∫ t

0

n3(s)ds]n3(t) ⇒

(2.22)
dn3(t)

dt
≤ n

(p+1)
3 (t)[k(t)− 2] + 2n3(t)z3(t),∀t ∈ I,

wherez3(t) = np
3(t) + x0 +

∫ t

0
n3(s)ds, wherez3(0) = [x2

0 + x0]
p + x0 for all t ∈ I, butx0 > 1

andp > 1 thus we have

n3(t) > 1 ⇒ n3(t) ≤ np
3(t) ≤ z3(t),∀t ∈ I.

Differentiatingz3(t) with respect tot and using the above inequality and 2.22 we obtain

dz3(t)

dt
≤ pz2p

3 (t)[k(t)− 2] + 2pz
(p+1)
3 (t) + z3(t),∀t ∈ I,

but x0 > 1 → z3(t) > 1, and1 < p → p + 1 < 2p → z
(p+1)
3 (t) ≤ z2p

3 (t), thus from the above
inequality we have

dz3(t)

dt
≤ pz2p

3 (t)k(t) + z3(t),⇒ z−2p
3 (t)

dz3(t)

dt
− z

−(2p−1)
3 (t) ≤ pk(t),∀t ∈ I.

Definew(t) = z
−(2p−1)
3 (t) → w(0) = z

−(2p−1)
3 (0) = [[x2

0+x0]
p+x0]

−(2p−1), and[ −1
(2p−1)

][dw(t)
dt

] =

z−2p
3 (t)[dz3(t)

dt
],∀t ∈ I. Thus from the above inequality we have

dw(t)

dt
+ (2p− 1)w(t) ≥ −p(2p− 1)k(t),∀t ∈ I.

The above inequality implies the estimation forw(t) such that

w(t) ≥ exp(−(2p− 1)t)[w(0)− p(2p− 1)

∫ t

0

k(s)exp((2p− 1)s)ds] ⇒

w(t) = z
−(2p−1)
3 (t) ≥ Q−(2p−1)(t) ⇒ z3(t) ≤ Q(t),∀t ∈ I,

whereQ(t) is defined in 2.19. From the above inequality and 2.22 we obtain

dn3(t)

dt
≤ n

(p+1)
3 (t)[k(t)− 2] + 2n3(t)Q(t) ⇒ n

−(p+1)
3 (t)[

dn3(t)

dt
]− 2n−p

3 (t)Q(t) ≤ [k(t)− 2],
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for all t ∈ I. Defineu(t) = n−p
3 (t) → [−1

p
][du(t)

dt
] = n

−(p+1)
3 (t)[dn3(t)

dt
],∀t ∈ I, andu(0) =

[x2
0 + x0]

−p. Thus from the above inequality we have

du(t)

dt
+ 2pu(t)Q(t) ≥ −p[k(t)− 2],∀t ∈ I.

The above inequality implies the estimation foru(t) such that

u(t) ≥ exp(−2p

∫ t

0

Q(s)ds)[u(0)− p

∫ t

0

[k(s)− 2] exp(2p

∫ s

0

Q(λ)dλ))ds] ⇒

u(t) = n−p
3 (t) ≥ R−p

3 (t) ⇒ n3(t) ≤ R3(t),∀t ∈ I,

whereR3(t) is defined in 2.18. From the above inequality and 2.21 we obtain

dm3(t)

dt
≤ k(t)mp

3(t)R3(t) ⇒ m−p
3 (t)

dm3(t)

dt
≤ k(t)R3(t),∀t ∈ I.

By taking t = s in the above inequality and integration it from0 to t and using the fact that
p > 1 → (p− 1) > 0, we have

m3(t) ≤ x0[1− (p− 1)x
(p−1)
0

∫ t

0

k(s)R3(s)ds]
−1

(p−1) ,∀t ∈ I.

Using the above inequality in 2.20 we get the desired inequality in 2.17. This completes the
proof.

Theorem 2.5. Let x(t), dx(t)
dt

andk(t) be realvalued nonnegative continuous functions defined
on I = [0,∞), for which the inequality

(2.23)
dx(t)

dt
≤ x0 +

∫ t

0

k(s)[
dx(s)

ds
]p[[

dx(s)

ds
]2 + x2(s)]ds,∀t ∈ I,

wherex0 > 1, p > 1 are constants, if(p− 1)x
(p−1)
0

∫ t

0
k(s)R4(s)ds < 1, and

g1(t) = 2(p + 1)[x0 + [2x2
0]

(p+1)]

∫ t

0

k(s)esds < 1,

h3(t) = 2(p + 1)[2x2
0]

(p+1)

∫ t

0

[k(s)− 1] exp(2(p + 1)

∫ s

0

Q1(λ)dλ)ds < 1,

for all t ∈ I, then

(2.24)
dx(t)

dt
≤ x0[1− (p− 1)x

(p−1)
0

∫ t

0

k(s)R4(s)ds]
−1

(p−1) ,∀t ∈ I,

where

(2.25) R4(t) = 2x2
0[1− h3(t)]

−1
(p+1) exp(2

∫ t

0

Q1(s)ds),∀t ∈ I,

(2.26) Q1(t) = [x0 + [2x2
0]

(p+1)]et[1− g1(t)]
−1,∀t ∈ I.

Proof. Let m4(t) equal the right hand side in 2.23 we havem4(0) = x0 and

(2.27)
dx(t)

dt
≤ m4(t),∀t ∈ I.

By takingt = s in 2.27 and integration it from0 to t, we have

x(t) ≤ x0 +

∫ t

0

m4(s)ds,∀t ∈ I.
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8 A. ABDELDAIM

Differentiatingm4(t) with respect tot and using the above inequality and 2.27 we obtain

(2.28)
dm4(t)

dt
≤ k(t)mp

4(t)n4(t),∀t ∈ I,

wheren4(t) = m2
4(t) + x2

0 + 2x0

∫ t

0
m4(s)ds + [

∫ t

0
m4(s)ds]2, n4(0) = 2x2

0,∀t ∈ I but,x0 >
1 → m4(t) > 1, thus we have

m4(t) ≤ m2
4(t) ≤ n4(t),∀t ∈ I.

Differentiatingn4(t) with respect tot and using 2.28 and the above inequality we obtain

dn4(t)

dt
≤ 2k(t)n

(p+2)
4 (t) + 2[x0 +

∫ t

0

n4(s)ds]n4(t),∀t ∈ I,

thus
dn4(t)

dt
≤ 2k(t)n

(p+2)
4 (t)− 2n

(p+2)
4 (t) + 2n

(p+2)
4 (t) + 2[x0 +

∫ t

0

n4(s)ds]n4(t) ⇒

(2.29)
dn4(t)

dt
≤ 2[k(t)− 1]n

(p+2)
4 (t) + 2n4(t)z4(t),∀t ∈ I,

wherez4(t) = n
(p+1)
4 (t) + x0 +

∫ t

0
n4(s)ds, wherez4(0) = [x0 + [2x2

0]
(p+1)] for all t ∈ I.

Differentiatingz4(t) with respect tot and using 2.29 we obtain

dz4(t)

dt
≤ 2(p + 1)[k(t)− 1]n

2(p+1)
4 (t) + 2(p + 1)n

(p+1)
4 (t)z4(t) + n4(t),∀t ∈ I,

but,n(p+1)
4 (t) ≤ z4(t) , thus from the above inequality we have

dz4(t)

dt
≤ 2(p + 1)k(t)z2

4(t) + z
1

(p+1)

4 (t),∀t ∈ I,

but, x0 > 1; p > 1 → z4(t) > 1 → z
1

(p+1)

4 (t) ≤ z4(t), for all t ∈ I, thus from the above
inequality we have

dz4(t)

dt
≤ 2(p + 1)k(t)z2

4(t) + z4(t) ⇒ z−2
4 (t)

dz4(t)

dt
− z−1

4 (t) ≤ 2(p + 1)k(t),∀t ∈ I.

Definew1(t) = z−1
4 (t), w1(0) = [x0 + [2x2

0]
(p+1)]−1, and−dw1(t)

dt
= z−2

4 (t)[dz4(t)
dt

], for all t ∈ I.
Thus from the above inequality we have

dw1(t)

dt
+ w1(t) ≥ −2(p + 1)k(t),∀t ∈ I.

The above inequality implies the estimation forw1(t) such that

w1(t) ≥ e−t[w1(0)− 2(p + 1)

∫ t

0

k(s)esds] ⇒

w1(t) = z−1
4 (t) ≥ Q−1

1 (t) ⇒ z4(t) ≤ Q1(t),∀t ∈ I,

whereQ1(t) is defined in 2.26. From the above inequality and 2.29 we obtain

dn4(t)

dt
≤ 2[k(t)−1]n

(p+2)
4 (t)+2n4(t)Q1(t) ⇒ n

−(p+2)
4 (t)[

dn4(t)

dt
]−2n

−(p+1)
4 (t)Q1(t) ≤ 2[k(t)−1],

for all t ∈ I. Defineu1(t) = n
−(p+1)
4 (t) → [ −1

(p+1)
][du1(t)

dt
] = n

−(p+2)
4 (t)[dn4(t)

dt
], andu1(0) =

[2x2
0]
−(p+1). Thus from the above inequality we have

du1(t)

dt
+ 2(p + 1)u1(t)Q1(t) ≥ −2(p + 1)[k(t)− 1],∀t ∈ I.
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The above inequality implies the estimation foru1(t) such that

u1(t) ≥ exp(−2(p+1)

∫ t

0

Q1(s)ds)[u1(0)−2(p+1)

∫ t

0

[k(s)−1] exp(2(p+1)

∫ s

0

Q1(λ)dλ)ds] ⇒

u1(t) = n
−(p+1)
4 (t) ≥ R

−(p+1)
4 (t) ⇒ n4(t) ≤ R4(t),∀t ∈ I,

whereR4(t) is defined in 2.25. From the above inequality and 2.28 we obtain

dm4(t)

dt
≤ k(t)mp

4(t)R4(t) ⇒ m−p
4 (t)

dm4(t)

dt
≤ k(t)R4(t),∀t ∈ I.

By taking t = s in the above inequality and integration it from0 to t and using the fact that
p > 1 → (p− 1) > 0, we have

m4(t) ≤ x0[1− (p− 1)x
(p−1)
0

∫ t

0

k(s)R4(s)ds]
−1

(p−1) ,∀t ∈ I.

Using the above inequality in 2.27 we get the desired inequality in 2.24. This completes the
proof.

Theorem 2.6. Let x(t), dx(t)
dt

andk(t) be realvalued nonnegative continuous functions defined
on I = [0,∞), for which the inequality

(2.30)
dx(t)

dt
≤ x0 +

∫ t

0

k(s)[
dx(s)

ds
]p[[

dx(s)

ds
]p + x2(s)]ds,∀t ∈ I,

wherex0 > 1 andp > 1 are constants, if(p− 1)x
(p−1)
0

∫ t

0
k(s)R5(s)ds < 1,

g2(t) = p(2p− 1)[x0 + [xp
0 + x2

0]
(2p−1)]

∫ t

0

k(s)esds < 1,

h4(t) = (2p− 1)

∫ t

0

[pk(s)− 2][[xp
0 + x2

0] exp(2

∫ s

0

Q2(λ)dλ)](2p−1)ds < 1,

for all t ∈ I, then

(2.31)
dx(t)

dt
≤ x0[1− (p− 1)x

(p−1)
0

∫ t

0

k(s)R5(s)ds]
−1

(p−1) ,∀t ∈ I,

where

(2.32) R5(t) = [[xp
0 + x2

0] exp(2

∫ t

0

Q2(s)ds)][1− h4(t)]
−1

(2p−1) ,

(2.33) Q2(t) = [x0 + [xp
0 + x2

0]
(2p−1)]et[1− g2(t)]

−1,∀t ∈ I.

Proof. Let m5(t) equal the right hand side in 2.30 we havem5(0) = x0 and

(2.34)
dx(t)

dt
≤ m5(t),∀t ∈ I.

By takingt = s in 2.34 and integration it from0 to t, we have

x(t) ≤ x0 +

∫ t

0

m5(s)ds,∀t ∈ I.

Differentiatingm5(t) with respect tot and using 2.34 and the above inequality we obtain

(2.35)
dm5(t)

dt
≤ k(t)mp

5(t)n5(t),∀t ∈ I,
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wheren5(t) = mp
5(t)+x2

0 +2x0

∫ t

0
m5(s)ds+[

∫ t

0
m5(s)ds]2; n5(0) = xp

0 +x2
0, but,x0 > 1, p >

1 → m5(t) > 1, thus we have

m5(t) ≤ mp
5(t) ≤ n5(t),∀t ∈ I.

Differentiatingn5(t) with respect tot and using 2.35 and the above inequality we obtain

dn5(t)

dt
≤ pk(t)n2p

5 (t) + 2n5(t)[x0 +

∫ t

0

n5(s)ds],∀t ∈ I,

hence
dn5(t)

dt
≤ pk(t)n2p

5 (t)− 2n2p
5 (t) + 2n2p

5 (t) + 2n5(t)[x0 +

∫ t

0

n5(s)ds],∀t ∈ I,⇒

(2.36)
dn5(t)

dt
≤ n2p

5 (t)[pk(t)− 2] + 2n5(t)z5(t),∀t ∈ I,

wherez5(t) = n
(2p−1)
5 (t) + x0 +

∫ t

0
n5(s)ds, z5(0) = x0 + [xp

0 + x2
0]

(2p−1), for all t ∈ I.

Differentiationz5(t) with respect tot and using 2.36 and the fact thatn
(2p−1)
5 (t) ≤ z5(t) we

have
dz5(t)

dt
≤ p(2p− 1)k(t)z2

5(t) + n5(t),∀t ∈ I,

butx0 > 1 → n5(t) > 1 andp > 1 → (2p− 1) > 1 → n5(t) ≤ n
(2p−1)
5 (t) ≤ z5(t), then from

the above inequality we have

dz5(t)

dt
≤ p(2p− 1)k(t)z2

5(t) + z5(t) ⇒ z−2
5 (t)

dz5(t)

dt
− z−1

5 (t) ≤ p(2p− 1)k(t),∀t ∈ I.

Let w2(t) = z−1
5 (t) → w2(0) = [x0 + [xp

0 + x2
0]

(2p−1)]−1; and,dw2(t)
dt

= z−2
5 (t)[dz5(t)

dt
], then from

the above inequality we obtain

dw2(t)

dt
+ w2(t) ≥ −p(2p− 1)k(t),∀t ∈ I.

The above inequality implies the following estimation forw2(t) such that

w2(t) ≥ e−t[w2(0)−p(2p−1)

∫ t

0

k(s)esds] ⇒ w2(t) = z−1
5 (t) ≥ Q−1

2 (t) ⇒ z5(t) ≤ Q2(t),∀t ∈ I,

whereQ2(t) is defined in 2.33. From 2.36 and the above inequality we have

dn5(t)

dt
≤ n2p

5 (t)[pk(t)− 2] + 2n5(t)Q2(t),∀t ∈ I ⇒

n−2p
5 (t)

dn5(t)

dt
− 2n

−(2p−1)
5 (t)Q2(t) ≤ [pk(t)− 2],∀t ∈ I.

Let u2(t) = n
−(2P−1)
5 (t) → [ −1

(2p−1)
][du2(t)

dt
] = n−2p

5 (t)[dn5(t)
dt

] for all t ∈ I andu2(0) = [xp
0 +

x2
0]
−(2p−1), then from the above inequality we obtain

du2(t)

dt
+ 2(2p− 1)Q2(t)u2(t) ≥ −(2p− 1)[pk(t)− 2],∀t ∈ I.

The above inequality implies the following estimation foru2(t) such that

u2(t) ≥ exp(−2(2p− 1)

∫ t

0

Q2(s)ds)[u2(0)

−(2p− 1)

∫ t

0

[pk(s)− 2] exp(2(2p− 1)

∫ s

0

Q2(λ)dλ)ds],∀t ∈ I ⇒
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u2(t) = n
−(2p−1)
5 (t) ≥ R

−(2p−1)
5 (t) ⇒ n5(t) ≤ R5(t),∀t ∈ I,

whereR5(t)is defined in 2.32. From 2.35 and the above inequality we obtain

dm5(t)

dt
≤ k(t)mp

5(t)R5(t) ⇒ m−p
5 (t)

dm5(t)

dt
≤ k(t)R5(t),∀t ∈ I.

By taking t = s in the above inequality and integration it from0 to t and using the fact that
p > 1 → (p− 1) > 0, we have

m5(t) ≤ x0[1− (p− 1)x
(p−1)
0

∫ t

0

k(s)R5(s)ds]
−1

(p−1) ,∀t ∈ I.

Then from the above inequality in 2.34 we obtain the desired 2.31. This completes the proof.

3. SOME APPLICATIONS

In this section, we use some inequalities obtained in Section2 to obtain the bound for the
solutions of some integro-differential equations of the form

(3.1)
dx(t)

dt
= f(t) +

∫ t

0

F (t, s, x(s),
dx(s)

ds
)ds,∀t ∈ I,

wherex(t), dx(t)
dt

be realvalued nonegative continuous functions defined onI, andf(t), F (t, s, x(s), dx(s)
ds

)
are the elements ofRn, the set of real numbers, and continuous on the respective domains of
their definitions.
As an applications of the Theorem 2.1 we present the following example:

Example 3.1.Letf(t) andF (t, s, x(s), dx(s)
ds

) in 3.1 satisfy

(3.2) | f(t) |≤ x0,∀t ∈ I,

(3.3) | F (t, s, x(s),
dx(s)

ds
) |≤ k(t)[| dx(t)

dt
|]p[| dx(t)

dt
| + | x(t) |],∀t ∈ I,

wherex0, p andk(t) as defined in the Theorem 2.1, then

(3.4) | dx(t)

dt
|≤ [x

(1−p)
0 + (1− p)

∫ t

0

k(s)R(s)ds]
1

(1−p) ,∀t ∈ I,

whereR(t) is defined in 2.3.

Proof. Using 3.2 and 3.3 in 3.1 we have

| dx(t)

dt
|≤ x0 +

∫ t

0

k(s)[| dx(s)

ds
|]p[| dx(s)

ds
| + | x(s) |]ds,∀t ∈ I.

Now an applications of Theorem 2.1 the above inequality yields the desired bound in 3.4. This
completes the proof.

As an applications of the Theorem 2.3 we present the following example:

Example 3.2.Letf(t) andF (t, s, x(s), dx(s)
ds

) in 3.1 satisfy 3.2 and

(3.5) | F (t, s, x(s),
dx(s)

ds
) |≤ k(t)[| dx(t)

dt
|]p[[| dx(t)

dt
|]p+ | x(t) |],∀t ∈ I,

wherex0, p andk(t) as defined in the Theorem 2.3, then

(3.6) | dx(t)

dt
|≤ x0[1− (p− 1)x

(p−1)
0

∫ t

0

k(s)R2(s)ds]
−1

(p−1) ,∀t ∈ I,
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whereR2(t) is defined in 2.13.

Proof. Using 3.2 and 3.5 in 3.1 we have

| dx(t)

dt
|≤ x0 +

∫ t

0

k(s)[| dx(s)

ds
|]p[[| dx(s)

ds
|]p+ | x(s) |]ds,∀t ∈ I.

Now an applications of Theorem 2.3 the above inequality yields the desired bound in 3.6. This
completes the proof.

As an applications of the Theorem 2.5 we present the following example:

Example 3.3.Letf(t) andF (t, s, x(s), dx(s)
ds

) in 3.1 satisfy 3.2 and

(3.7) | F (t, s, x(s),
dx(s)

ds
) |≤ k(t)[| dx(t)

dt
|]p[[| dx(t)

dt
|]2 + [| x(t) |]2],∀t ∈ I,

wherex0, p andk(t) as defined in the Theorem 2.5, then

(3.8) | dx(t)

dt
|≤ x0[1− (p− 1)x

(p−1)
0

∫ t

0

k(s)R4(s)ds]
−1

(p−1) ,∀t ∈ I,

whereR4(t) is defined in 2.25.

Proof. Using 3.2 and 3.7 in 3.1 we have

| dx(t)

dt
|≤ x0 +

∫ t

0

k(s)[| dx(s)

ds
|]p[[| dx(s)

ds
|]2 + [| x(s) |]2]ds,∀t ∈ I.

Now an applications of Theorem 2.5 the above inequality yields the desired bound in 3.8. This
completes the proof.

Remark 3.1. Finally, we note that the integro-differential inequalities established in Section 2
have many possible applications in the theory of integro-differential equations.
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