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1. INTRODUCTION
A double factoriah!! is defined by
2m)! =112 ,(2¢) and (2m — DN =T1I",(2i — 1)
for given positive integem. Let

_ (2n—-1)1
then
(1.2) V2 2

—— < P < —
2n+ 1)m (4n + )7
for n > 1, which is called Wallis’ inequality in [12, p. 96].
In [4,5,06,[7] 8] 9], the best lower and upper boundsHprvere obtained:

1 1
(1.3) <P <—
Vrln+4/m—1) m(n+1/4)
For more information and recent developments on the Wallis’ inequality, please refer to [11,
12,/15] and the references therein.

The first result of this short note is the following Wallis type inequality.
Theorem 1.1. Let

(2n)N!
1.4 P 2
(1.4) R Y T
forn € N. Then
(L5) VT ppe T
2¢/n+97/16 — 1 2\/n+3/4

The constant§7/16 — 1 and3/4 in (1.5) are the best possible.

The second result of this short note, as an application of inequalitigs (1.3) ahd (1.5), is the
following double inequality for the probability integral.

Theorem 1.2. For all natural numbem,
i
(1.6) VT < / e dx < L
V1+Or/16 —1)/n ~ J_ym V1—3/4n
In particular, takingn — oo in (1.6)leads to
(2.7) / e dx = VT,

o0

2. LEMMAS
The following lemmas are necessary for proving our main results.

Lemma 2.1. For z > 0,

1 2¢ + 1
ASx — 00,
JJ+a) (a—b)(a+b—1) 1
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Inequality [2.1) is given in[2,]3, 13] and the asymptotic expangion (2.2) can be found in [1,
p. 257], [10] and[[14, p. 378].
Lemma?2.2. Forz > —1,
I'(z+3/2) 2(x+1)
Dz+1) iz +5

Proof. For positive real number, let

(2.3)

f(x) =In2(x + 1)+ In'(z+1) — %ln(4x +5)— lnF(x + ;)
Differentiation of f(x) gives us

f(z) = ! 2 w<x+§> + ¢(z+1).

c+1 4dr+5 2
Replacinge by = + 1 in (2.1) yields
3 20+ 3
(2.4) w(x+§)—¢(x+1)>(x+1)(4x+5)
for x > —1. Utilizing (2.4), we obtain
, 1 2 2v 4+ 3
fx) < =

t+1 4dx+5 (r+1)4z+5)
Therefore,f(x) is strictly decreasing if0, oo), and f(z) > lim,_., f(z) = 0, which leads to

inequality (2.8).x
Lemma 2.3. The sequence

(2.5) 0, 2 {

is strictly decreasing.

Ixn_+3/2)12_
I'(n+1)

Proof. Using the well known formulas

(2.6) I'(n+1)=n!, F(n + %) = w\/% and 2"n! = (2n)!!

reveals that

_[P(n+5/2)]° T'(n+3/2)]°
Qnis = Qn = | T(n+2) } (n+1) T(n+1) "
r n 2 nt1)! 2
(2.7) — W _ M 1
(n+1)! n!
_'@n+nu2@n+mw_1
l@2n+2)0 4 ‘
Replacing: by n + 1 in (1.3) yields
1 _ (@nt 1 1

m(n+4/m) ~ (2n+2)!! = Vr(n+5/4)

1 (2n+ 1)N7° 1
T+ 4/m) = [(2%2)!!1 S Tt 5/4)

that is,
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Hence,
1 (4n +5)m
a1 — Qn < . —1=0.

As a result, the sequencg, is strictly decreasinga

Lemma 2.4. For natural numbenm,

Vv 2\ " m/2
(2.8) / (1 — —) do = 2\/5/ sin® ™z da = 2v/n Poji)e
—n n 0
and
Vn 22\ " 3m/4
(2.9) / (1 + —) dor = \/ﬁ/ sin?" 2 xdz < mv/n P,_1.
_\/ﬁ n 7r/4

Proof. Lettingz = \/n cost in the left side of[(2.8) yields

vn xQ n 0 /2
/ (1 — —) dx = —\/ﬁ/ sin?" e dt = 2\/5/ sin®" !¢ dt.
,\/ﬁ n T 0

Using Wallis sine formula gives
™/2 a2
/ sin?tl ¢ dx = L Poi1ja.
0

Lettingx = y/n tant in the left side of[(2.9) shows
Vn 22\ 7" m/4
/ <1 + —) dz =+vn cos®™ 2t dt
—vn n

—7/4

w/2
< 2\/5/ sin?" 2 tdt = mv/n P,_1.
0
The proof of Lemma@ 2]4 is completg.
Lemma 2.5. For |z| < /n,

2\ " 2\ —Nn
(2.10) (1 _ m-) <e < (1 + x—) .
n n

Proof. It was given in[[12, p. 289] that for < 1,

(2.11) I+z<e" < :
— X

Replacingr by —z%/n > —1 and takingn-times power on the both sides of inequalfty (2.11)
leads to[(2.10). The proof is complet.

3. PROOFS OF THEOREMS
Proof of Theorem I]1From Lemma 23, it follows that

2
nlggo@nwns@l:[%] =2

16
Using the asymptotic formulé (2.2), we conclude from

Qn=n [nmw _ 1] [nl/ZM

I'(n+1) I'(n+1) 1
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that
00— o I8 (1)
b (1] 3

Thus, Theorermn 1]1 follows
Proof of Theorer 1]2By formula [2.8) and inequality (2.10), we obtain

Vi i 2\ "
/ e " de/ (1——) dx:2\/ﬁPn+1/2

Vn Vn n
and

Vvn ) Vvn 22\ "
/ e * dmﬁ/ (1+—> dz < mv/nP,_;.

Vvn Vn n
By virtue of the right hand side df (1.3) and the left hand sid¢ of (1.5), inequality (1.6) is proved.
The proof of Theorerp 112 is completg.
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