

The Australian Journal of Mathematical Analysis and Applications

http://ajmaa.org

Volume 4, Issue 1, Article 3, pp. 1-6, 2007

A WALLIS TYPE INEQUALITY AND A DOUBLE INEQUALITY FOR PROBABILITY INTEGRAL

JIAN CAO, DA-WEI NIU, AND FENG QI

Received 4 February, 2006; accepted 19 September, 2006; published 19 January, 2007.

SCHOOL OF MATHEMATICS AND INFORMATICS, HENAN POLYTECHNIC UNIVERSITY, JIAOZUO CITY, HENAN PROVINCE, 454010, CHINA 21caojian@163.com, goodfriendforeve@163.com

School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China nnddww@tom.com

RESEARCH INSTITUTE OF MATHEMATICAL INEQUALITY THEORY, HENAN POLYTECHNIC UNIVERSITY, JIAOZUO CITY, HENAN PROVINCE, 454010, CHINA qifeng@hpu.edu.cn, fengqi618@member.ams.org, qifeng618@hotmail.com, qifeng618@msn.com, qifeng618@qq.com URL: http://rgmia.vu.edu.au/qi.html

ABSTRACT. In this short note, a Wallis type inequality with the best upper and lower bounds is established. As an application, a double inequality for the probability integral is found.

Key words and phrases: Wallis type inequality, Best bound, Probability integral, Double inequality, Psi function.

2000 Mathematics Subject Classification. Primary 05A10, 33B20; Secondary 26D15.

ISSN (electronic): 1449-5910

^{© 2007} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

A double factorial n!! is defined by

$$(2m)!! = \prod_{i=1}^{m} (2i)$$
 and $(2m-1)!! = \prod_{i=1}^{m} (2i-1)$

for given positive integer m. Let

(1.1)
$$P_n = \frac{(2n-1)!!}{(2n)!!},$$

then

(1.2)
$$\frac{\sqrt{2}}{\sqrt{(2n+1)\pi}} < P_n < \frac{2}{\sqrt{(4n+1)\pi}}$$

for n > 1, which is called Wallis' inequality in [12, p. 96].

In [4, 5, 6, 7, 8, 9], the best lower and upper bounds for P_n were obtained:

(1.3)
$$\frac{1}{\sqrt{\pi(n+4/\pi-1)}} \le P_n < \frac{1}{\sqrt{\pi(n+1/4)}}$$

For more information and recent developments on the Wallis' inequality, please refer to [11, 12, 15] and the references therein.

The first result of this short note is the following Wallis type inequality.

Theorem 1.1. Let

(1.4)
$$P_{n+1/2} = \frac{(2n)!!}{(2n+1)!!}$$

for $n \in \mathbb{N}$. Then

(1.5)
$$\frac{\sqrt{\pi}}{2\sqrt{n+9\pi/16-1}} \le P_{n+1/2} < \frac{\sqrt{\pi}}{2\sqrt{n+3/4}}.$$

The constants $9\pi/16 - 1$ and 3/4 in (1.5) are the best possible.

The second result of this short note, as an application of inequalities (1.3) and (1.5), is the following double inequality for the probability integral.

Theorem 1.2. For all natural number n,

(1.6)
$$\frac{\sqrt{\pi}}{\sqrt{1 + (9\pi/16 - 1)/n}} \le \int_{-\sqrt{n}}^{\sqrt{n}} e^{-x^2} \, \mathrm{d}x < \frac{\sqrt{\pi}}{\sqrt{1 - 3/4n}}$$

In particular, taking $n \rightarrow \infty$ in (1.6) leads to

(1.7)
$$\int_{-\infty}^{\infty} e^{-x^2} \,\mathrm{d}x = \sqrt{\pi} \,.$$

2. LEMMAS

The following lemmas are necessary for proving our main results.

Lemma 2.1. For
$$x > 0$$
,

(2.1)
$$\psi\left(x+\frac{1}{2}\right) - \psi(x) > \frac{2x+1}{x(4x+1)}.$$

As $x \to \infty$,

(2.2)
$$x^{b-a} \frac{\Gamma(x+a)}{\Gamma(x+b)} = 1 + \frac{(a-b)(a+b-1)}{2x} + O\left(\frac{1}{x^2}\right).$$

Inequality (2.1) is given in [2, 3, 13] and the asymptotic expansion (2.2) can be found in [1, p. 257], [10] and [14, p. 378].

Lemma 2.2. For x > -1,

(2.3)
$$\frac{\Gamma(x+3/2)}{\Gamma(x+1)} < \frac{2(x+1)}{\sqrt{4x+5}}.$$

Proof. For positive real number x, let

$$f(x) = \ln[2(x+1)] + \ln\Gamma(x+1) - \frac{1}{2}\ln(4x+5) - \ln\Gamma\left(x+\frac{3}{2}\right).$$

Differentiation of f(x) gives us

$$f'(x) = \frac{1}{x+1} - \frac{2}{4x+5} - \psi\left(x+\frac{3}{2}\right) + \psi(x+1).$$

Replacing x by x + 1 in (2.1) yields

(2.4)
$$\psi\left(x+\frac{3}{2}\right) - \psi(x+1) > \frac{2x+3}{(x+1)(4x+5)}$$

for x > -1. Utilizing (2.4), we obtain

$$f'(x) < \frac{1}{x+1} - \frac{2}{4x+5} - \frac{2x+3}{(x+1)(4x+5)} = 0.$$

Therefore, f(x) is strictly decreasing in $(0, \infty)$, and $f(x) > \lim_{x\to\infty} f(x) = 0$, which leads to inequality (2.3).

Lemma 2.3. The sequence

(2.5)
$$Q_n \triangleq \left[\frac{\Gamma(n+3/2)}{\Gamma(n+1)}\right]^2 - n$$

is strictly decreasing.

Proof. Using the well known formulas

(2.6)
$$\Gamma(n+1) = n!, \quad \Gamma\left(n+\frac{1}{2}\right) = \frac{(2n-1)!!}{2^n}\sqrt{\pi} \quad \text{and} \quad 2^n n! = (2n)!!$$

reveals that

(2.7)

$$Q_{n+1} - Q_n = \left[\frac{\Gamma(n+5/2)}{\Gamma(n+2)}\right]^2 - (n+1) - \left[\frac{\Gamma(n+3/2)}{\Gamma(n+1)}\right]^2 + n$$

$$= \left[\frac{\frac{(2n+3)!!}{2^{n+2}}\sqrt{\pi}}{(n+1)!}\right]^2 - \left[\frac{\frac{(2n+1)!!}{2^{n+1}}\sqrt{\pi}}{n!}\right]^2 - 1$$

$$= \left[\frac{(2n+1)!!}{(2n+2)!!}\right]^2 \frac{(4n+5)\pi}{4} - 1.$$

Replacing n by n + 1 in (1.3) yields

$$\frac{1}{\sqrt{\pi(n+4/\pi)}} \le \frac{(2n+1)!!}{(2n+2)!!} < \frac{1}{\sqrt{\pi(n+5/4)}},$$

that is,

$$\frac{1}{\pi(n+4/\pi)} \le \left[\frac{(2n+1)!!}{(2n+2)!!}\right]^2 < \frac{1}{\pi(n+5/4)}.$$

Hence,

$$Q_{n+1} - Q_n < \frac{1}{\pi(n+5/4)} \cdot \frac{(4n+5)\pi}{4} - 1 = 0.$$

As a result, the sequence Q_n is strictly decreasing.

Lemma 2.4. For natural number n,

(2.8)
$$\int_{-\sqrt{n}}^{\sqrt{n}} \left(1 - \frac{x^2}{n}\right)^n \mathrm{d}x = 2\sqrt{n} \int_0^{\pi/2} \sin^{2n+1} x \,\mathrm{d}x = 2\sqrt{n} P_{n+1/2}$$

and

(2.9)
$$\int_{-\sqrt{n}}^{\sqrt{n}} \left(1 + \frac{x^2}{n}\right)^{-n} \mathrm{d}x = \sqrt{n} \int_{\pi/4}^{3\pi/4} \sin^{2n-2} x \,\mathrm{d}x < \pi\sqrt{n} P_{n-1}.$$

Proof. Letting $x = \sqrt{n} \cos t$ in the left side of (2.8) yields

$$\int_{-\sqrt{n}}^{\sqrt{n}} \left(1 - \frac{x^2}{n}\right)^n \mathrm{d}x = -\sqrt{n} \int_{\pi}^{0} \sin^{2n+1} t \,\mathrm{d}t = 2\sqrt{n} \int_{0}^{\pi/2} \sin^{2n+1} t \,\mathrm{d}t.$$

Using Wallis sine formula gives

$$\int_0^{\pi/2} \sin^{2n+1} x \, \mathrm{d} \, x = \frac{(2n)!!}{(2n+1)!!} = P_{n+1/2}.$$

Letting $x = \sqrt{n} \tan t$ in the left side of (2.9) shows

$$\int_{-\sqrt{n}}^{\sqrt{n}} \left(1 + \frac{x^2}{n}\right)^{-n} \mathrm{d}x = \sqrt{n} \int_{-\pi/4}^{\pi/4} \cos^{2n-2} t \,\mathrm{d}t$$
$$< 2\sqrt{n} \int_{0}^{\pi/2} \sin^{2n-2} t \,\mathrm{d}t = \pi\sqrt{n} P_{n-1}.$$

The proof of Lemma 2.4 is complete. ∎

Lemma 2.5. For $|x| < \sqrt{n}$, (2.10) $\left(1 - \frac{x^2}{n}\right)^n \le e^{-x^2} \le \left(1 + \frac{x^2}{n}\right)^{-n}$.

Proof. It was given in [12, p. 289] that for x < 1,

(2.11)
$$1 + x \le e^x \le \frac{1}{1 - x}.$$

Replacing x by $-x^2/n > -1$ and taking *n*-times power on the both sides of inequality (2.11) leads to (2.10). The proof is complete.

3. PROOFS OF THEOREMS

Proof of Theorem 1.1. From Lemma 2.3, it follows that

$$\lim_{n \to \infty} Q_n < Q_n \le Q_1 = \left[\frac{\Gamma(5/2)}{\Gamma(2)}\right]^2 - 1 = \frac{9}{16}\pi - 1.$$

Using the asymptotic formula (2.2), we conclude from

$$Q_n = n \left[n^{-1/2} \frac{\Gamma(n+3/2)}{\Gamma(n+1)} - 1 \right] \left[n^{-1/2} \frac{\Gamma(n+3/2)}{\Gamma(n+1)} + 1 \right]$$

that

$$\lim_{n \to \infty} Q_n = \lim_{n \to \infty} n \left[\frac{(1/2)(3/2)}{2n} + O\left(\frac{1}{n^2}\right) \right]$$

× $\left[2 + \frac{(1/2)(3/2)}{2n} + O\left(\frac{1}{n^2}\right) \right] = \frac{3}{4}.$

Thus, Theorem 1.1 follows.

Proof of Theorem 1.2. By formula (2.8) and inequality (2.10), we obtain

$$\int_{-\sqrt{n}}^{\sqrt{n}} e^{-x^2} \, \mathrm{d}x \ge \int_{-\sqrt{n}}^{\sqrt{n}} \left(1 - \frac{x^2}{n}\right)^n \, \mathrm{d}x = 2\sqrt{n} \, P_{n+1/2}$$

and

$$\int_{-\sqrt{n}}^{\sqrt{n}} e^{-x^2} \, \mathrm{d}\, x \le \int_{-\sqrt{n}}^{\sqrt{n}} \left(1 + \frac{x^2}{n}\right)^{-n} \, \mathrm{d}\, x < \pi\sqrt{n} \, P_{n-1}.$$

By virtue of the right hand side of (1.3) and the left hand side of (1.5), inequality (1.6) is proved. The proof of Theorem 1.2 is complete.

REFERENCES

- M. ABRAMOWITZ AND I. A. STEGUN (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 9th printing, Dover, New York, 1972.
- [2] H. ALZER, On some inequalities for the gamma and psi function, *Math. Comp.*, **66** (1997), 373–389.
- [3] G. D. ANDERSON, R. W. BARNARD, K. C. RICHARDS, M. K. VAMANAMURTHY, AND M. VUORINEN, Inequalities for zero-balanced hypergeometric functions, *Trans. Amer. Math. Soc.*, 347 (1995), 1713–1723.
- [4] CH.-P. CHEN AND F. QI, A new proof of the best bounds in Wallis inequality, RGMIA Res. Rep. Coll., 6 (2003), No. 2, Article 2. [Online: http://rgmia.vu.edu.au/v6n2.html].
- [5] CH.-P. CHEN AND F. QI, Best upper and lower bounds in Wallis' inequality, J. Indones. Math. Soc. (MIHMI), 11 (2005), No. 2, 137–141.
- [6] CH.-P. CHEN AND F. QI, Completely monotonic function associated with the gamma function and proof of Wallis' inequality, *Tamkang J. Math.*, 36 (2005), No. 4, 303–307.
- [7] CH.-P. CHEN AND F. QI, Improvement of lower bound in Wallis' inequality, *RGMIA Res. Rep. Coll.*, 5 (2002), supplement, Article 23. [Online: http://rgmia.vu.edu.au/v5(E).html].
- [8] CH.-P. CHEN AND F. QI, The best bounds in Wallis' inequality, Proc. Amer. Math. Soc., 133 (2005), No. 2, 397–401. RGMIA Res. Rep. Coll., 5 (2002), No. 4, Article 13, 709–712. [Online: http://rgmia.vu.edu.au/v5n4.html].
- [9] CH.-P. CHEN AND F. QI, The best bounds to $\frac{(2n)!}{2^{2n}(n!)^2}$, Math. Gaz., **88** (2004), 54–55.
- [10] C. L. FRENZER, Error bounds for asymptotic expansions of the ratio of two gamma functions, SIAM J. Math. Anal., 18 (1987), 890–896.
- [11] S. KOUMANDOS, Remarks on a paper by Ch.-P. Chen and F. Qi, Proc. Amer. Math. Soc., 134 (2006), 1365–1367.

- [12] J.-CH. KUANG, Chángyòng Bùděngshì (Applied Inequalities), 3rd ed., Shāndōng Kēxué Jìshù Chūbǎn Shè (Shandong Science and Technology Press), Jinan City, Shandong Province, China, 2004. (Chinese)
- [13] Y. L. LUKE, Inequalities for the gamma function and its logarithmic derivative, *Math. Balkanica* (N. S.), 2 (1972), 118–123.
- [14] A. F. NIKIFOROV AND V. B. UVAROV, *Special Functions of Mathematical Physics*, Birkhauser, Basel, 1988.
- [15] Y.-Q ZHAO AND Q.-B WU, Wallis inequality with a parameter, J. Inequal. Pure Appl. Math., 7 (2006), No. 2, Article 56. [Online: http://jipam.vu.edu.au/article.php?sid= 673].