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1. I NTRODUCTION

A double factorialn!! is defined by

(2m)!! = Πm
i=1(2i) and (2m− 1)!! = Πm

i=1(2i− 1)

for given positive integerm. Let

(1.1) Pn =
(2n− 1)!!

(2n)!!
,

then

(1.2)

√
2√

(2n+ 1)π
< Pn <

2√
(4n+ 1)π

for n > 1, which is called Wallis’ inequality in [12, p. 96].
In [4, 5, 6, 7, 8, 9], the best lower and upper bounds forPn were obtained:

(1.3)
1√

π(n+ 4/π − 1)
≤ Pn <

1√
π(n+ 1/4)

.

For more information and recent developments on the Wallis’ inequality, please refer to [11,
12, 15] and the references therein.

The first result of this short note is the following Wallis type inequality.

Theorem 1.1.Let

(1.4) Pn+1/2 =
(2n)!!

(2n+ 1)!!

for n ∈ N. Then

(1.5)

√
π

2
√
n+ 9π/16− 1

≤ Pn+1/2 <

√
π

2
√
n+ 3/4

.

The constants9π/16− 1 and3/4 in (1.5)are the best possible.

The second result of this short note, as an application of inequalities (1.3) and (1.5), is the
following double inequality for the probability integral.

Theorem 1.2.For all natural numbern,

(1.6)

√
π√

1 + (9π/16− 1)/n
≤

∫ √
n

−
√

n

e−x2

dx <

√
π√

1− 3/4n
.

In particular, takingn→∞ in (1.6) leads to

(1.7)
∫ ∞

−∞
e−x2

dx =
√
π .

2. L EMMAS

The following lemmas are necessary for proving our main results.

Lemma 2.1. For x > 0,

(2.1) ψ

(
x+

1

2

)
− ψ(x) >

2x+ 1

x(4x+ 1)
.

Asx→∞,

(2.2) xb−a Γ(x+ a)

Γ(x+ b)
= 1 +

(a− b)(a+ b− 1)

2x
+O

(
1

x2

)
.
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Inequality (2.1) is given in [2, 3, 13] and the asymptotic expansion (2.2) can be found in [1,
p. 257], [10] and [14, p. 378].

Lemma 2.2. For x > −1,

(2.3)
Γ(x+ 3/2)

Γ(x+ 1)
<

2(x+ 1)√
4x+ 5

.

Proof. For positive real numberx, let

f(x) = ln[2(x+ 1)] + ln Γ(x+ 1)− 1

2
ln(4x+ 5)− ln Γ

(
x+

3

2

)
.

Differentiation off(x) gives us

f ′(x) =
1

x+ 1
− 2

4x+ 5
− ψ

(
x+

3

2

)
+ ψ(x+ 1).

Replacingx by x+ 1 in (2.1) yields

(2.4) ψ

(
x+

3

2

)
− ψ(x+ 1) >

2x+ 3

(x+ 1)(4x+ 5)

for x > −1. Utilizing (2.4), we obtain

f ′(x) <
1

x+ 1
− 2

4x+ 5
− 2x+ 3

(x+ 1)(4x+ 5)
= 0.

Therefore,f(x) is strictly decreasing in(0,∞), andf(x) > limx→∞ f(x) = 0, which leads to
inequality (2.3).

Lemma 2.3. The sequence

(2.5) Qn ,

[
Γ(n+ 3/2)

Γ(n+ 1)

]2

− n

is strictly decreasing.

Proof. Using the well known formulas

(2.6) Γ(n+ 1) = n!, Γ

(
n+

1

2

)
=

(2n− 1)!!

2n

√
π and 2nn! = (2n)!!

reveals that

Qn+1 −Qn =

[
Γ(n+ 5/2)

Γ(n+ 2)

]2

− (n+ 1)−
[
Γ(n+ 3/2)

Γ(n+ 1)

]2

+ n

=

[
(2n+3)!!

2n+2

√
π

(n+ 1)!

]2

−

[
(2n+1)!!

2n+1

√
π

n!

]2

− 1

=

[
(2n+ 1)!!

(2n+ 2)!!

]2
(4n+ 5)π

4
− 1.

(2.7)

Replacingn by n+ 1 in (1.3) yields

1√
π(n+ 4/π)

≤ (2n+ 1)!!

(2n+ 2)!!
<

1√
π(n+ 5/4)

,

that is,
1

π(n+ 4/π)
≤

[
(2n+ 1)!!

(2n+ 2)!!

]2

<
1

π(n+ 5/4)
.
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Hence,

Qn+1 −Qn <
1

π(n+ 5/4)
· (4n+ 5)π

4
− 1 = 0.

As a result, the sequenceQn is strictly decreasing.

Lemma 2.4. For natural numbern,

(2.8)
∫ √

n

−
√

n

(
1− x2

n

)n

dx = 2
√
n

∫ π/2

0

sin2n+1 x dx = 2
√
nPn+1/2

and

(2.9)
∫ √

n

−
√

n

(
1 +

x2

n

)−n

dx =
√
n

∫ 3π/4

π/4

sin2n−2 x dx < π
√
nPn−1.

Proof. Lettingx =
√
n cos t in the left side of (2.8) yields∫ √

n

−
√

n

(
1− x2

n

)n

dx = −
√
n

∫ 0

π

sin2n+1 t d t = 2
√
n

∫ π/2

0

sin2n+1 t d t.

Using Wallis sine formula gives∫ π/2

0

sin2n+1 x dx =
(2n)!!

(2n+ 1)!!
= Pn+1/2.

Lettingx =
√
n tan t in the left side of (2.9) shows∫ √

n

−
√

n

(
1 +

x2

n

)−n

dx =
√
n

∫ π/4

−π/4

cos2n−2 t d t

< 2
√
n

∫ π/2

0

sin2n−2 t d t = π
√
nPn−1.

The proof of Lemma 2.4 is complete.

Lemma 2.5. For |x| <
√
n ,

(2.10)

(
1− x2

n

)n

≤ e−x2 ≤
(

1 +
x2

n

)−n

.

Proof. It was given in [12, p. 289] that forx < 1,

(2.11) 1 + x ≤ ex ≤ 1

1− x
.

Replacingx by−x2/n > −1 and takingn-times power on the both sides of inequality (2.11)
leads to (2.10). The proof is complete.

3. PROOFS OF THEOREMS

Proof of Theorem 1.1.From Lemma 2.3, it follows that

lim
n→∞

Qn < Qn ≤ Q1 =

[
Γ(5/2)

Γ(2)

]2

− 1 =
9

16
π − 1.

Using the asymptotic formula (2.2), we conclude from

Qn = n

[
n−1/2 Γ(n+ 3/2)

Γ(n+ 1)
− 1

][
n−1/2 Γ(n+ 3/2)

Γ(n+ 1)
+ 1

]
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that

lim
n→∞

Qn = lim
n→∞

n

[
(1/2)(3/2)

2n
+O

(
1

n2

)]
×

[
2 +

(1/2)(3/2)

2n
+O

(
1

n2

)]
=

3

4
.

Thus, Theorem 1.1 follows.

Proof of Theorem 1.2.By formula (2.8) and inequality (2.10), we obtain∫ √
n

−
√

n

e−x2

dx ≥
∫ √

n

−
√

n

(
1− x2

n

)n

dx = 2
√
nPn+1/2

and ∫ √
n

−
√

n

e−x2

dx ≤
∫ √

n

−
√

n

(
1 +

x2

n

)−n

dx < π
√
nPn−1.

By virtue of the right hand side of (1.3) and the left hand side of (1.5), inequality (1.6) is proved.
The proof of Theorem 1.2 is complete.
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