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1. INTRODUCTION

Random differential and integral equations play an important role in characterizing many
social, physical, biological and engineering problems. Neutral differential equations arises in
many areas of applied mathematics and such equations have received attention in recent years.
The existence, uniqueness, stability, invariant measures and other qualitative behaviors of so-
lutions to stochastic differential equations have been extensively investigated by many authors
(see for example [7,/8, 9, 12]). Semigroup theory gives a unified treatment of a wide class of
stochastic parabolic, hyperbolic and functional differential equations, and much effort has been
devoted to the study of existence results for such evolution equations.

In this paper, we are interested to study the existence of solutions of the following nonlinear
neutral stochastic functional differential equation in a Hilbert space,

dz(t) + F(t,z:)] = Ax(t)dt + G(t, z¢)dw(t), t € J:=|0,b],

(1.1)
z(t) = ¢(t) € Ly(Q2,B), fora.e te Jy:=(—00,0],

where A is the infinitesimal generator of an analytic semigroup of bounded linear operators
T(t),t > 0, on a separable Hilbert spaéewith inner product-, -) and norm|| - ||. Let K be
another separable Hilbert space with inner produej and norm|| - || x. Supposgw(t) }+>o
is a givenk—valued Brownian motion or Wiener process with a finite trace nuclear covariance
operator > 0. We are also employing the same notatjon|| for the normL(K, H), where
L(K, H) denotes the space of all bounded linear operators fkoimto H. The historiesz,
belongs to some abstract phase spatefined axiomatically (see Sectioh 2);: J x B — H
andG : J x B — Lo(K, H)(Lo(K, H) denotes the space of @}-Hilbert-Schmidt operators
from K into H which is going to be defined below) are the measurable mappings-inorm
and Ly (K, H)—norm respectively.

This paper is organized as follows. In Secfign 2, we recall some necessary preliminaries. In
Sectiorj B we prove the existence of a mild solution. The existence of a strong solution is proved
in sectior] 4. Finally in Sectidn 5, an example is presented which illustrates the main theorem.

2. PRELIMINARIES

For more details on the material of this section s€e [2], [3] and the references therein.
Throughout the papetH, || - ||) and(K, || - || x) denote real separable Hilbert spaces.

Let (2, §, P) be a complete probability space furnished with complete family of right con-
tinuous increasing sub-algebras{g;,t € J} satisfyingg; C §. An H-valued random
variable is an §-measurable function(t) : @ — H and a collection of random variables
S = {z(t,w) : Q — H|t € J} is called astochastic procesdJsually we suppress the depen-
dence onw € Q) and writez(t) instead ofz(¢,w) andx(t) : J — H in the place ofS. Let
B,t)(n=1,2,...) be a sequence of real-valued one-dimensional standard Brownian motions
mutually independent ovéf), §, P). Set

w(t) =Y VA (t)C, t >0,

n=1

where)\,, > 0, (n=1, 2, ...) are nonnegative real numbers &Od (n=1, 2, ...) is complete
orthonormal basis ik(. Let @ € L(K, K) be an operator defined ly¢,, = \,.(,, with finite
Tr(Q) = >.0°, A\, < o0, (Tr denotes the trace of the operator). Then the atiévealued
stochastic process(t) is called a)-Wiener process. We assume tfat= o(w(s) : 0 < s < t)
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is thes-algebra generated hy and3, = §. Letp € L(K, H) and define

lelly = Tr(pQe®) Z“\/_SOC [

If ||¢llg < oo, theny is called aQ-Hllbert-Schmldt operator. Lekq (K, H) denote the space
of all Q-Hilbert-Schmidt operatorg : K’ — H. The completionL, (K, H) of L(K, H) with
respect to the topology induced by the ndmi|o where|¢|lo = ({¢, ©))*/? is a Hilbert space
with the above norm topology.

We suppose thal € p(A) and that the semigroup(-) is uniformly bounded, that is to
say, [|T(t)|| < M,, for some constand/; > 1 and everyt > 0. For0 < o < 1, itis
possible to define the fractional power operdterd)®, as a closed linear operator on its domain
D((—A)*). Furthermore, the subspatq(—A4)*) is dense inH and the expression

lzllo = II(=A)*z]l, =€ D((-A)"),

defines a norm o ((—A)*). Hereafter we represent by, the spaceD((—A)*) endowed
with the norm|| - ||.. Then the following properties are well known ([10]).

Lemma 2.1. Suppose that the preceding conditions are satisfied.

(@) Let0 < a < 1. ThenH,, is a Banach space.
(b) If 0 < 8 < athenH, — Hg, the imbedding is continuous.
(c) For every0 < a < 1, there exists a positive constahf, such that

2.1) [(-APT@ < T2 0<t<h

To study the systen (1.1), we assume that the histatiesy — H, z(0) = {z(t + 6)(w) :

0 € (—o0,0]} belong to some abstract phase sp@cevhich is defined axiomatically. In this
work, we will employ an axiomatic definition of the phase sp&entroduced by Hale and
Kato [4]. Thus, the spac® will be a linear space d§,-measurable functions mapping frof

into H, endowed with a seminorif ||os. We will assume tha® satisfies the following axioms:

(ai) If x : (—o0,b) — H, b > 0, is continuous off0, b) andx, in B, then for every € [0, b)

the following conditions hold:

1. z;isin ‘B,

2. |=(t)|] < Lilztlls,

3. ||zl < K(t) sup{||z(s)]| : 0 < s <t} + N(t)||xo||s, whereL > 0 is a constant;
K,N : [0,00) — [0,00), K is continuous,N is locally bounded and., K, N are
independent of:(-).

(aii) For the functionz(-) in (ad), x; is a®B-valued continuous function df, b).

(aiii) The spaceB is complete.

The collection of all strongly-measurable, square-integrabalued random variables, de-
noted byLQ(Q §,P;H) = Ly(2; H), is a Banach space equipped with nojm(-)||., =
(Bllz(+ w)HH) where the expectatiod; is defined byF' (k) = [, h(w)dP. Let.J; = (—o0, b]
andC(Jy, Lo (€, H)) be the Banach space of alll contlnuous maps fmrrmto Ly(Q2; H) satis-
fying the conditiorsup, ;, E||z(t)||* < oc.

Let Z be the closed subspace of all continuous procehlat belong to the spa«ié(Jl, Lo(;
H )) consisting of§;-adapted measurable processes such thaggredapted processes €
Ly(€2;B). Let|| - ||z be a seminorm it¥ defined by

[NIES

lzllz = (sup [|z:[%)
teJ
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where ) i
|z¢]|s < NE||¢||s + K sup{E||z(s)| : 0 < s < b},

N = sup,c,{N(t)}, K = sup,c;{K(t)}. It is easy to verify thatZ furnished with the norm
topology as defined above, is a Banach space.
The consideration of this paper is based in the following fixed point theotem ([11]).

Theorem 2.2. (Sadovskii’s fixed point theorem). L&tbe a condensing operator on a Banach
space H, that is® is continuous and takes bounded sets into bounded setsy@nd)) <
a(B) for every bounded sdB of H with o(B) > 0. If &(Q) C Q for a convex, closed and
bounded sef2 of H, then® has a fixed point in7 (wherea(-) denotes Kuratowski’'s measure
of non-compactness).

3. MAIN RESULT
Before stating and proving our main result, we give first the definition of the mild solution.

Definition 3.1. An §;-adapted stochastic procesg) : J; — H is a mild solution of the ab-
stract Cauchy proble.l):h‘o = ¢ € L*(Q,B) on J, satisfying||¢||3 < oo; the restriction

of z(+) to the interval[0, b) is continuous stochastic processes, for eaeh|0, ¢) the function

AT (t — s)f(s, ) is integrable and the following integral equation is verified :

x(t) =T)$(0) + F(0,0)] = F(t,x;) — [y AT(t = 5)f(s,2,)ds
+ [IT(t — 8)G(s,25)dw(s), fora. et € J.
Theorem 3.1. Assume that:
(H1) the semigrouf’(¢) is compact fort > 0, and there existd/; > 1 such that
|IT(t)]| < My, forall ¢>0;

(H2) F : J x B — H is a continuous function, and there exists a constant (0,1)
and Mg, M > 0 such that the functio’ is Hs-valued, and satisfies the Lipschitz
condition:

I(=A)PF(s1,61) — (—A) F(s2, 69)l| < Mp(|s1 — s2| + |61 — dl),
for 0 < 51,59 < b, 91, ¢, € B, and the inequality
(3.2) I(—A)’F(t, ¢)ll < Mp(||¢|ls + 1)

holds fort € J, ¢ € B;
(H3) The function : J x %8 — L(K, H) satisfies the following conditions :

(i) for eacht € J, the functionG(t,-) : B — L(K, H) is continuous and for each
¢ € B the functionG(-, ¢) : J — L(K, H) is §;-measurable;

(ii) for each positive numbey, there is a positive functioh, € L'(.J) such that

(3.1)

1 b
sup E[G(t,9)||5) < he(t) and liminf _/ he(s)ds = v < oo.
0

lI6l12<q oo g

Then the Cauchy problern (1.1) has a mild solution/gorovided that

AW
(3.3) Lo = (2Mp)? (Mg + %—fbl)) <1,
(3.4) 16 | (2Mo M p)? + (2M12 ‘;_Mf vy’ +Tr(Q) M2y | < 1,
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whereM, = ||(—A)~?|| and M,_g is defined in[(2]1).

Proof. Let 9B, be the space of all functions : (—oco,b] — H such thatz, € B and the
restrictionz : J — H is continuous. Lef - ||, be the seminorm ifB, defined by

[2lls = llzoll + sup{flz(s)[| : 0 < s < b}, 2 € By,

Let Z, = C(J1, L2(;By)). Consider the ma : Z, — Z, defined by®z, the setof € Z,
such that

(1), it te.J,
h(t) = { T()[6(0) + F(0,8)] — F(t,2,) — [ AT(t — 8)F(s, z)ds
+ [y T(t — 5)G(s, z5)dw(s), fora. e.t € J.

We shall show that the operatdrhas a fixed point, which then is a solution of the systen (1.1).
Forg € Z, lety(-) : (—oo,b) — Z, be the function defined by

o o(t), if ¢te€(—00,0],
YO =91 1me0), i e

Setz(t) = z(t) + y(t), —oo < t < b. Itis clear thatz satisfies[(3]1) if and only if satisfies
zo = 0and

2(t) = Tt)F(0,9) — F(t,z + ) — /0 AT (t — s)F (s, zs + ys)ds

+ /Ot T(t—s)G(s,zs+ys)dw(s), te

LetB) = {z € B, : 20 = 0 € B}. For anyz € B) we have

1Zlle = llzolles + sup{[|z(s)[| : 0 < s < b} = sup{[[2(s)[| : 0 < s < b}.
Thus if Z) = C(Ji, Lo(€;BY), then(Z7, || - ||,) is a Banach space. Set

By ={z€ 7 :||z|l; < ¢} for someg > 0;

then, B, C Z} is uniformly bounded and, for € B,, we remark that
lze + wells < 4(l2el% + vl %)

< 16( K (t) suppe.c, Bll=(5)]12 + N(0)Ell20]%

K () supge.e Blly(s) |2 + N(6)Ellyol)
< 16(K2(q+ ME6(0)|3) + N6l ) := k.

Let the operatoR : Z) — Z} be defined byQz, the set ofv € Z} such that

(3.5)

0’ t E J(),
h(t) =14 T()F(0,0) — F(t, 2+ yi) — Jo AT(t — 8)F (s, 2, + ys)ds
+ [0 T(t — 8)G(s, 25 + ys)dw(s), teJ

Obviously the operatopb has a fixed point is equivalent t@ has one, so it turns out to prove
that @ has a fixed point. For each positive numbketet

Br,={2€27):2(0)=0,|z|; <k, 0<t<b} forsomek > 0;
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then for eachk, B, C Z} is clearly a bounded closed convex set. In addition to the famil-
iar Young, Hilder and Minkowskii inequalities, the inequality of the for(TE?:1 ai)m <
n™ % " a*, wherea; are nonnegative constants = 1,2,...,n) andm,n € N is helpful
to establishing various estimates. Frdm |(2.1) (3.2) together with dlteHnequality,

yields the following relation:

G 6!)\(—14)T(t—s)F(svzsws)dsH2 = || Jo (=)' PT(t = s)(=A)°F(s, v(s))ds|
' <4 WMF (k + 1)ds.

It follows that(—A)T'(t — s)F'(s,v(s))ds is integrable on J, s@ is well defined onB;..
Similarly from (4 3))(i7) together with the Ito’s formula, a computation can be performed to
obtain the following:

E|| [y T(t = $)G(s, 2 +y,)dw(s)|* < Tr(Q)Mz [y EIG(s,u(s))l|3ds
(3.7) .
< Tr(Q)MZ [, hy(s)ds

We claim that there exists a positive numladesuch that9 B, C By. If it is not true, then for
each positive numbek, there is a function®)(-) € By, but 9z ¢ By, but| Q" (#)||* > k
for somet € J. However from the equationis (3.2), (8.6) apd|3.7), we have

ko< BllQM @)

t
= E||TOF0.0) = Pt +) = [ AT( = 5)F(s,2 + y)ds
0

2

n /Ot T(t — 5)G(s, 2 + ys)dw(S)H

IN

16{M%E||F<o, I+ BIF(t, 2 + )|
+b / I(- — IPEIN(= AV F(s, 20 + ) ds

T Q)M / B]G(s, 20 + ) [yds
0

Then
F< QMWL < 16{@MrM (1 + l6]3) + 2MoM ) (k+1)

b
+ (2M,_sM pb?)?(k + 1) + Tr(Q)M%k:l/ hy(s)ds
< M+ 16{ (MM )k + 55 (2My gD pb)h
(3.8)
FTr(Q)MERE [} hils)ds .
where

_ _ 1 _
M= 16{(2MTMF)2(1 +161%) + (2MeM )* + : (2M1_5Mpbﬁ)2}.

26 —
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Dividing on both sides of the equatidn (B.8) byand taking the lower limit a5 — oo, we get

(2M,_s M pb®)?
260 — 1

This contradicts (3]4) and hence for some positive numb&B;, C By.

Next we will show that the operat@ has a fixed point o, which implies problem (1]1)
has a mild solution. To this end, we decomp@sasQ = Q; + Q,, where the operatorg;, Q.
are defined orB,, respectively, by

16 [(2MoM p)? +

+T7“(Q)M%y} > 1.

(Qiz)(t) = T F(0,¢) — F(t, 2 + ye) — /t AT(t — 5)F(s, 25 + ys)ds, te€J,
and
(Qa2)(t) = / T(t—8)G(s,2zs +x5)ds te

We will show thatQ; is a contraction, whil@z iS a compact operator.
To prove thatQ; is a contraction we take"), 2(?) € B,. Then for eacht € .J, by condition

(/72) and equatiory (3]3), we have
E[(Qz")(t) — (Quz®(@)° 4BIF(t 2" +y) = F(t.27 + yi)II

t
+4b/ E||AT(t — s) [F(s, zgl) +ys) — F(s, 252) + ys)} 1%ds
0

t M2_
< MMPE - o+ a6 [ M P = =2 ds
0
M,_3bP)?
< (M) (M§+M) sup B2 (s) - 2 (s)
Qﬁ -1 0<s<b
= Lo sup BzV(s) — 2% (s)|5
0<s<b

Thus,
112 — Q12?5 < Lo|l2M — 2|7,

and soQ; is a contraction, sincé, < 1.
To prove thatQ, is compact, first we prove tha, is continuous onB,. Let {z("} C B,

with 2™ — zin By. Then for eachs € J, 2" — z,, by (H3) (i), we have
G(s, zﬁ”) +ys) — G(s, 25 + ys),n — 0.

Since
E|G(s, 20 + ys) — G(s, 25 + ys)|* < 2hu(s),

by the dominated convergence theorem, we have

2

— 0,

ElQs2™ — Oyl — sup E\

0<t<b

/0 T(t = $)[G (5, 2 + 42) — G(s, 24 + y)|duw(s)

asn — oo, that is, 9, is continuous.
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Next we prove that the familyQ,z : z € By} is an equicontinuous family of functions. To
do this, lete > 0 small, and) < ¢; < t,. Then we have

E[[(Q2)(t) — (Q2)(®)I”

< Tr@Q) / - IT(t2 — 5) = T(ts = s)IEIG(s, 2 + )| *ds
0

+TrQ) [ Tl = ) = T(ts = )IPEIG(s, 2, + )P

t1

+Tr(Q) / Tt — $)|PE|Gls, 2 + x,)|2ds.

t1
Therefore

1(Q22)(t1) — (Q2)(t2)lz < T7(Q) /Otl_e IT(t2 — 5) = T(ts — )| hae(s)ds

4TN@/tHﬂw—@—Tm—$WM®%

t1—e

to
Q) / Tt — 8)[|2ha(s)ds.
t1

The right hand side tends to zero independently ef B, ast, — t;, with £ sufficiently small,
since the compactness’dft) for t > 0 implies the continuity in the uniform operator topology.
Hence,Q, mapsB;, into a equicontinuous family of functions.

It remains to prove that'(t) = {Q22)(t) : z € By} is relatively compactinH. Let <t <b
be fixed and) < ¢ < t. For z € B;, we define

(Q52)(1) = /O T — G5, 20+ )dw(s)

= T(e) /0 b T(t—e—s)G(s,zs + xs)dw(s).

Then by the compactness6ft) (¢t > 0), we obtainV.(t) = {(Q52)(t) : z € By} is relatively
compact in H for every, 0 < £ < t. Moreover, for every: € By, we have
t

1(Q22)(t) — (2)(M)Z < 4TT(Q)M%/ hi(s)ds.
t—e
Therefore there are relatively compact sets arbitrary close to tHé(sgthence the sét'(¢) is
also relatively compact in H.

Thus, by Arzela-Ascoli theoren®, is a compact operator. These arguments enable us to
conclude tha©® = Q; + Q, is a condensing map oB,, and by the fixed point theorem of
Sadovskii there exists a fixed point:) for Q on By. The proof is completed and we deduce
that® has a fixed point and therefore the Cauchy problenj (1.1) has a mild solutidngpn

4. EXISTENCE OF STRONG SOLUTION

Definition 4.1. An §;-adapted stochastic process) : J; — H is said to be a strong solution
of the Cauchy problenj (1.1), it:(¢t) and F(t,z,) are differentiable a. e. ofd, b]; 2/(¢) and
F'(t, ;) belong toL'([0,b); H); zo = ¢ and equation irf (1]1) is satisfied for a.tén [0, b).
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Theorem 4.1.Letp € D(A) C B. Suppose the conditionig/ 1) and (H2) are satisfied with
F(J x H) ¢ D(A), and the function—A)F(0,-) : H — D(A) maps bounded sets into
bounded sets. In addition assume that the following conditions:

(H4) G(-,-) : J x D(A) — L(K, H) is Lipschitz continuous, that is, there exists a constant
M such that

|G (s1,¢1) — G(s2,05)[l@ < M (|51 — 52| + || &1 — ¢l 8),
for 0 < s1,s, < b,¢,, 0, € D(A). Moreover, thre is an\/; > 0 such that

(4.1) IG(t,9)lle < Ma(l[o]|w + 1)
holds for any(t, ¢) € J x D(A);

(H5) There hold[(3.B) and the inequality
(2M,_sM pbP)?
28 — 1
Then the mild solution of Cauchy problem (1.1) is also a strong solution.

16 | (2MoM )* + + (2MrMg)*Tr(Q)b| < 1.

Proof. We prove this theorem by using the fixed point theorem of Sadovskii again. Dénote
the seth € Z, defined as in the proof of the Theorém|3.1. Define the set

S(p) ={z € Zy: 2(0) = ¢(0), lx(®)]Z < p. ll2(t) — z(s)||Z < L*|t — s|*,t,5 € J}

for some positive constantsand L* large enough. Thef(p) is a non-empty bounded, closed
and convex subset df, and the operatop defined in the proof of Theorem 3.1 is well defined
on.S(p). We will show thatd mapsS(p) into S(p). Letx € S(p). Then we have

E|[(Qz)(t2) — (0z)(t:)||*

IN

16{ 1T (t2) = T(E)IPE(6(0) + F(0,9)|1* + E|F(ta, w1,) — F(tr, x|
+E|| /0 2(—A)T(tz — 8)F(s,x5)ds — /o 1(—A)T(t1 — s)F(s,xs)dst

+E /OtQTaz—s)G(s,xs)dw(s)— /Otle—s s.a)du(s)|*§

IA

16{ 1T (t2) = T(t1)|PE|(0) + F (0, )[|* + Ell(=A) [(=A) F(ts, 21,)
(—APF(ty, x|+ E| /0 AT — (AP F(s + s — by, Terpss)
AP Ealds [ AT = () Pl |

+E|| /0 ! T(ty — $)[G(s 4ty — ty, Topay—1,) — G(s, 24)]dw(s)

to—1t1
+/ T(t, — s)G(s,zs)dw(s H}
0
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By conditions(H 1)), (H2)), (H4) and the boundedness ©f A) F(0, -) it yields that
(@) (t2) — (2z)(t1)II7

&)

< 16{MFAY6(0) + F(0,0) 312 — 11 + [(2MoMp)? + (2M_pMrb >j
20 —1

(Mi_sMp)?

28— 1

HTHQ)RM Mo llte — i + L[t — 1] + Tr(@) M (p + Dita — 1}

X[ty — t1|* 4+ L*|ty — t1*] + (p+ 1)[t2° — 2|

IA

{C* +64 KMg + %) M2+ Tr(@)(MTMG)Q] L*} [ty — 1]

< LYty — ]
where L* = C* + N*L*,

B
C* = 16{MEA|9(0) + F(0, 0)|I% + 4| (M + —%}}fblV)Mg
@M Mo + Tr(@ Moo+ 1)+ P ot — ),
and N
NT =64 [(Mg + (Ag[;ibl) ) ME + TT(Q)(MTMG)Q} )

is a constant independent bf andx € S(p). So it follows that
[(@2)(t2) = (@) ()| < L|ta = ta[* 2,11 € J

as long ad.* is large enough & (1—C—N)) Thus,® has a fixed point which is a mild solution
of equation|(1.J1). For this(-), let

f(t) = F(tvxt>a
m(t) = T(t)[p(0)+ F(0,9)],

n(t) = /0(—A)T(t—s)F(s,xs)ds,

oft) = /0 T(t — 5)G(s, zs)duw(s).

Then they are all Lipschitz continuous. Sinces Lipschitz continuous od and taking values

in the Hilbert spacé?, we see that(-) is a. e. differentiable o), b] and that’(-) € L'(J; H).
The same argument shows thatn ando also have this property. On the other hand, by the
standard arguments (also see [5, Lemma 3.1] ) we can obtainthat D(A),o(t) € D(A),
and

n'(t) = —AF(t,x;)ds+ A /Ot(—A)T(t — 8)F(s,x4)ds,

o'(t) = G(t,xt)+A/0 T(t — s)G(s,xs)dw(s).
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So we have that’ satisfies a. e. that

d d , ,
Sl + F(t,2)] = ST@[6(0) + F(O,6)) +n'(¢) + o (1)

= AT(t)[¢(0) + F(0,9)] — AF(t, z:) + An(t)
+ G(t, x¢)dw(t) + Ao(t)
= Ax(t) + G(t, z¢)dw(t).
This shows that:(-) is also a strong solution of the Cauchy problgm](1.1). Thus the proof is
completeda
5. EXAMPLE

In this section an example is presented for the existence of mild and strong solutions of the
following partial neutral stochastic differential equation:

[ t,x) +f fo (s t,y,x)v(s,y)dyds] = amzv(t x)dt
—i—f_oo to(s —t)u(s,z)dB(s), 0<z<m te.J
v(t,0) =v(t,m) =0, t>0,
v(t,z) = ot x), tedy, 0<zx<m.
To write the above systerf ($.1) into the abstract fornq of] (1 1)Hle:t: L?([0,7]) and A be
defined byA¢ = —(8‘9—;)5, with domainD(A) = {f € H : ¢ % are absolutely continuous,

(5.1)

and (Cf—;)f € H,£0)=¢(m) = 0}. Then— A generates astrongly continuous semigréyp
which is compact, analytic, and self-adjoint.
First of all, note that there exists a complete orthonorma{&et, (n = 1,2, 3,...) of eigen-

vectors ofA with ¢, () = 1/2/7 sin nz. Then, the following properties hold:

(@) If ¢ € D(A), thenA¢ = 377, n*(C, ()G,

(b) Foreach¢ € H, A~Y2¢ =3 L(¢,(,)¢,. In particular,|A=/2||2 = 1.

(c) The operatord~'/2 is given by AY2¢ = > n((,¢,)¢, on the spaceD[AY?] =

{C() € H, 3202, n(C,¢,)¢, € HY
Here we take the phase spaBe= C(J,, H) x L*(g; H), which contains all classes of func-
tions ¢ : Jy — H such thatp is F,-measurable and(-)||¢(-)||* is integrable onJ, where
g : (—00,0) — R is a positive integrable function and there exists a nonnegative and locally
bounded functiom) on J, such thaty(r + 0) < n(7)g(0), for r < 0 andf € (—o0,0) \ R,
whereR, C (—o0,0) is a set with Lebesgue measure 0. The seminorf ia defined by
0

lolla = o)l + ([ s@)llo)|as)

—0o0

The general form of phase spae= C((—oo, —r|, H) x LP(g;H), r > 0, 1 < p < oo has
been discussed inl[6] (here in particular, we are taking r = 0, p = 2). From [6], under some
conditions,(*B, ||¢||s) is a Banach space which satisfies (ai)-(aiii) with

0

() =1+ / g(@)d@)l/ " andN(8) = n(—t)" for all £ > 0,

(for details se€ [6]). We assume the following conditions hold:
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(i) The functiony, is §;-measurable and

/ / / 1(0,y,7)/9(0))dydfdz < oo

(i) The function(0/0x)p,(0,y, x) is measurableyl(e y,0) = puy(0,y,m) =0, and let

/ / / /~L1 0,y )) dydfdz < co.

(iii) The functiony, is §;-measurable wmffoo (13(6)/9(0))do < oo.
(iv) The function¢ defined byp(0)(z) = ¢(0, z) belong toB.
(v) B(t) denotes a one-dimensional standard Brownian motion.
We definel,G : J x B — H by F(t,¢) = V(¢) andG(t, ¢) = V5(¢), where

Vi(9) —/ /m@y, ¢(0,y)dyds,

Ty(6) = / 112(8)6(6, )16,

Then, systenj (5]1) is the abstract formulation of the systery (1.1). Moreover, from (i) and (jii)
it is clear that¥; and ¥, are bounded linear operators % Furthermore¥,(¢) € D[AY?],
and||AY2¥, |2 < Ny. In fact, from the definition oft; and (ii) it follows that

1/2
(W1(8), C,) = <3> (W(6), cos(na),

n ™
whereV is defined by

0 T a
=/ / %ul(e,y,x)d)(ﬁ,y)dyd@-
—oc0 J0

From (ii) we know that? : B8 — H is a bounded linear operator with?||> < N;. Hence

| AY2W,(0)]|? = ||¥(4)||?, which iimplies the assertion. Therefore, under the above and if in
addition assumption$ (3.3) holds, then from Thedrerm 3.1, the Cauchy prgobleém (5.1) has a mild
solution onJ and it has also a strong solution|if (B.3) apd (H5) hold by Thegrein 4.1 provided
that N, < 1.
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