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ABSTRACT. In this paper, basic notions of von Neumann algebra and its direct analogues in the
realm of groupoids and measure spaces have been considered. By recovering the action of a
locally compact Lie group from a crossed product of a von Neumann algebra, other proof of one
of a geometric propositions of O’Neil and an extension of it has been proposed. Also, using the
advanced exploration of nilmanifolds in measure spaces and their corresponding automorphisms
(Lie algebraic derivations) a different proof of an analytic theorem of Gordon and Mao has
been attained. These two propositions are of the most important ones for rigidity problems of
Riemannian manifolds especially 2-step nilmanifolds.
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2 A. HASAN-ZADEH AND H-R. FANAI

1. I NTRODUCTION

Motivation. Let M is a simply connected 2-step nilpotent Lie group with a left invariant
metric andΓ is a cocompact discrete subgroup of isometries ofM . In the literature, one of the
most important rigidity problems of geodesic flows for compact nilmanifolds is the following
problem:

Problem. Whether two compact2-step nilmanifoldsM
Γ

and M ′

Γ′
are isometric or not, if they

have conjugated geodesic flows?
This problem has been studied well through the works of Eberlein, Gordon and Mao, (e.g.,

[3, 6, 7]). We have already considered these in [4] by an Algebraic-Geometric approach, espe-
cially in the category of Lie groupoids. Also, we studied a result of Gordon, Mao and Schueth
about compact 2-step nilmanifolds with symplectically conjugate flows, [7]. Then, via Poisson
cohomology and other respective notions, we presented a proof of their result which extends
not only symplectic concepts to Poisson geometry, but also2-step nilmanifolds to manifolds
with extensible momentum maps, [5].

On the other hand, many objects in Poisson geometry and of course, in groupoids, which
we used them in [4, 5], such as dual pairs, bimodules, tensor products, and Morita equivalence
have direct analogues in the realm of von Neumann algebras. Also, the theory of von Neumann
algebras replaces ordinary measure theory when one has to deal with noncommutative spaces
which naturally arise in geometry or noncommutative geometry, specially through the papers of
Connes, [2].

These links do not seem to exist withC∗-algebras on any types of analytic algebras. For
examples, for a subsetA ⊂ B(H), we define the commutantA′ to be{L ∈ B(H) : ∀a ∈
A, La = aL}. Similarly, if B is a subset of a Poisson algebraP , then its commutant isB′ =
{f ∈ P : {f,B} = 0}. On the analytic side, a dual pair(A,A′) is a pair of unital∗-subalgebras
A andA′ of B(H) that are the mutual commutants of each other. The Double Commutant
Theorem of von Neumann implies that all von Neumann algebras satisfy this condition, [2, 8].

Structure. After some preliminaries about von Neumann algebras, by recovering the action
of a locally compact Lie group from a crossed product of a von Neumann algebra, we reach
to a direct proof of one of the well-known proposition of O’Neil. This is about the properly
discontinuous group of isometries,Γ, acting on a simply connected Riemannian manifoldM .
This gives the characterization of the isometry group ofM

Γ
by normalizersN(Γ) and it is usually

used to solve problems of rigidity, [4, 5]. The exposed proof leads to an extension of it to the
ergodic actions of the countable discrete infinite groups on aσ-finite measure space. More
details can be found in Theorem 3.1.

Lastly, advanced exploration of nilmanifolds in measure spaces via special measurable func-
tionals and suitable actions of Lie groups on simply connected manifolds leads to study those
works using concepts of von Neumann algebras. This gives us the other proof of the analytic
proposition of Gordon and Mao which exposed in Theorem 3.2.

It is to be noted that proofs provided, although long and completely different from the stan-
dard proof used in existing resources have a general approach to its structure. The general
approach introduced is such that the given proposition is a special case of it. For this reason,
while providing a link between some geometric and analytic concepts (apparently unrelated), it
can include many results in each notion.
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APPLICATIONS OFVON NEUMANN ALGEBRAS TORIGIDITY PROBLEMS 3

2. M AIN CONCEPTS

2.1. Preliminaries about von Neumann Algebras.In this section we review some notions
about von Neumann algebras. We assume that the reader know the main concepts ofC∗-
algebras and von Neumann algebras which can found in [8, 10].

Let B(H), as usual, is the set of bounded operators on a Hilbert spaceH. A von Neumann
algebra is an involutive subalgebraA of the algebra ofB(H) that has the property of being
the commutant of its commutant. LetG is a group acting by automorphisms such asu on a
von Neumann algebraA and consider the vector space of finite formal sums

∑
g∈G agug with

ag ∈ A. We use the crossed productA o G which can be obtained by multiplying the sums
with the rulesuguh = ugh(andu1 = 1) andugau−1

g = g(a).
In the case of von Neumann algebras, there is a (strong continuous) unitary group represen-

tation g 7→ ug with ugAu∗g = A,∀g ∈ G. In this settingαg(x) = ugxu∗g (g ∈ G, x ∈ A),
defines an action ofG onA. Eachαg is a∗-automorphism ofA and that the mappingg → αg

is a homomorphism ofG into Aut(A). All finite linear combinations of all vector states (i.e,
positive linear functionals onA with norm equals1) onA are dense inA′. Then, the actionα
is implemented by the unitary representationug. Finally, an inner automorphism ofA is in the
form Adu(x) = uxu∗ for u a unitary inA and an outer automorphism, if the onlyg in G for
which αg is inner is the identity. Also, an actionG onA is said to be ergodic if the stabilizer
AG = Cid.

We assume,α : G → Aut(A) is an (continuous) action of the locally compact groupG with
(left) Haar measuredg on the von Neumann algebraA on the Hilbert spaceH. Form the Hilbert
spaceK = L2(G,H) = L2(G)⊗H and letG act onK by ug = λg ⊗ 1, λ being the left regular
representation ofG in the Hilbert spaceL2(G), i.e,(λgξ)(h) = ξ(g−1h), ∀g, h ∈ G, ξ ∈ L2(G).
The actionα of G onA is encoded by the actionA onK:

(2.1) (x̃f)(g) = αg−1(f(g)), g ∈ G, f ∈ A,

which satisfies the equivariance condition

(2.2) x̃ ◦ αg(f(g)) = λg(x̃f)(g)λ−1
g , ∀g ∈ G, f ∈ A,

particularly,ugx̃u∗g = α̃g(x). In this way, the crossed productA oα G is the von Neumann
algebra onK = L2(G)⊗H generated by{ug : g ∈ G} and{x̃ : x ∈ A}.

Equality (2.1) says that finite linear combinations
∑

g x̃gug form a dense∗-subalgebra of
A oα G. Moreover theug’s are linearly independent overA in the sense that

∑
g x̃gug = 0

result tox̃g = 0 for eachg in the sum.
When the groupG is discrete, any element of the crossed product can be uniquely written

as above formal sum, where thef = f(g),s are uniquely determined as matrix elements in the
natural basis of̀2(G), i.e, matrix of operators onK = `2(G) ⊗H. Also, since sum converges
pointwise at least on the dense set of functions of finite support fromG toH, any matrix of this
form which defines a bounded operator onK is inAoα G. This is no longer the case when the
groupG is not discrete. For more details refer to [8, 12].

2.2. Preliminaries about nilmanifolds. As the notions of [3, 6, 7], a Riemannian nilmanifold
is a quotientM

Γ
of a simply connected nilpotent Lie groupM by a discrete subgroupΓ; together

with a Riemannian metricg whose lift toM is left-invariant. A nilmanifoldM
Γ

has step sizek if
M is k-step nilpotent.

Especially, a Lie groupM is said to be two-step nilpotent if its Lie algebraM satisfies
[M, [M,M]] = 0 equivalently[M,M] is central inM. Let g be a left-invariant Riemannian
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4 A. HASAN-ZADEH AND H-R. FANAI

metric on 2-step nilpotent Lie groupM . Theng defines an inner product〈., .〉 on the Lie algebra
M of M . LetZ = [M,M] and letV denote the orthogonal complement ofZ in M relative to
〈., .〉. Note that whileZ is contained in the center ofM, it does not necessarily coincide with
the full center. Forz ∈ Z, a skew symmetric linear transformationJ(z) : V → V can be defined
by J(z)x = (ad(x))∗z for x ∈ V, wheread(x))∗ denotes the adjoint ofad(x). Equivalently,

(2.3) 〈J(z)x, y〉 = 〈[x, y], z〉, for x, y ∈ V , z ∈ Z,

and this process is reversible.
An authomorphismΦ of M is said to beΓ-almost inner ifΦ(γ) is conjugate toγ for all

γ ∈ Γ. The automorphism is said to be almost inner ifΦ(x) is conjugate tox for all x ∈ M .
A derivationϕ of the Lie algebraM is said to beΓ-almost inner, respectively almost inner, if
ϕ(X) ∈ [M, X] for all X ∈ logΓ, respectively, for allX ∈M.

3. APPLICATIONS

Theorem 3.1.([9]) LetΓ be a properly discontinuous group of isometries of a simply connected
Riemannian manifoldM . Then groupI(M

Γ
) of isometries ofM

Γ
is isomorphic toN(Γ)

Γ
, where

N(Γ) is the normalizer ofΓ in I(M).

Proof. The First Approach: LetA is a factor whose center isC1. For u =
∑

g agug in the
normalizerN(A) = {u unitary in A o G| uAu∗ = A}, there is aβ ∈ Aut(A) so that
ux = β(x)u, ∀x ∈ A. Then by Lemma 11.2.6 of [8], there can be only oneg for which ag is
different from0 and forg, ag is unitary. Therefore, the quotientN(A)/U(A) is in factG itself
whereU(A) is the unitary group as a normal subgroup. So we recoverG and its action (up to
inner automorphisms) onA.

As Radon-Nikodym Theorem, [1], the only remaining case isA = L∞(X, µ), where(X, µ)
is a localizable measure space. Similar structure concludes that on the support of the transfor-
mationag ∈ A, we haveagαg(x) = β(x), for all L∞-functionsx andβ ∈ Aut(A). Then,
by Proposition 11.2.10 of [8], there is a partition ofX into measurable subsets, one each of
which the transformation ofX agrees with some element ofG and such a transformation is
implemented by a unitary inN(L∞(X), µ).

Consider the group von Neumann algebra ofΓ. Then, the expressed structure can be applied
to M

Γ
which acting freely on simply connected Riemannian manifoldM , (because of properly

discontinuous action ofΓ on it). Lastly, a group von Neumann algebra of a discrete groupΓ,
vN(Γ), is the special case of the crossed product whenA = C and the action is trivial.

The Second Approach: An Extension.Consider(G, X, µ) which G denoted a countable
discrete infinite group and(X, µ) be a standardσ-finite measure space on whichG acts ergod-
ically. Let [g] denote the group of all Borel automorphismsα of X such that(α(x), x) ∈ g
for everyx ∈ X. For an ergodic transformation group(G, X, µ), the normalizerN [g] is the
group of all non-singular transformationsT on{X, µ} such thatTGx = GTx for almost every
x ∈ X. As in the relation (2.1) of before section, eachα ∈ N [g] will be identified with the
automorphism ofA = L∞(X, µ) defined by(αf)(x) = f(α−1x).

In this case, by using the relations (2.1) and (2.2) of before section, the normalizerN(A) of
A is precisely the image{λg : g ∈ [g]}. Then, an automorphismα ∈ Aut(A) can be extended
to an element ofAut(Aoα G) if and only if α ∈ N [g]. Specially for a properly discontinuous
group of isometries of a simply connected Riemannian manifoldM we have the isomorphism
N(Γ)

Γ
∼= I(M

Γ
) of isometries ofM

Γ
, whereN(Γ) is the normalizer ofΓ in I(M).
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Finally, the definition of von Neumann algebras based on a commutant assumption lead us to
the probably another proof of some results about the commutative assumptions. In this way, we
give the other proof of a proposition of Gordon and Mao which has been used in some rigidity
problems for 2-step nilmanifolds and we used it in [4, 5].

Theorem 3.2. ([6]) LetM be a 2-step nilpotent Lie algebra with an inner product〈·, ·〉 andϕ
be an almost inner derivation of continuous type onM sayϕ(x) = [σ(x), x] with σ continuous
onM\{0}. Letz ∈ Z(M) andy ∈ ker(J(z)). Then

〈ϕ(x), z〉 = 〈[σ(y), x], z〉, ∀x ∈M,

where,J(z) : V → V, defined by equation(2.3), is a skew symmetric linear transformation
defined byJ(z)x = (ad(x))∗z for x ∈ V.
In special case, if the center ofM properly contains the derived algebra, then every almost
inner derivation of continuous type onM is inner.

Proof. It is to be noted thatΓ-almost inner derivations ofM, AID(M), endowing with the
topology of pointwise norm convergence is a von Neumann algebra. Also, sinceM is 2-step
nilpotent,AID(M) will be 1-step nilpotent, i.e, its commutant (as a derivation, too) is abelian.
If considerAID(M) ⊆ Der(M) as a von Neumann algebra, which its commutant is abelian,
then as an result of [11] (Theorem 2.5.3), any derivation implemented by an (fixed) element.
This automatically result to the innerness of derivations.

REFERENCES

[1] C. D. ALIPRANTIS, Principles of Real Analysis, Academic Press, 1990.

[2] A. CONNES,Noncommutative Geometry, Academic Press, 2000.

[3] P. EBERLEIN, Geometry of two-step nilpotent groups with a left invariant metric,Ann. Sci. École
Norm. Sup., 27 (1994) pp. 611–660.

[4] H. R. FANAI and A. HASAN-ZADEH, An application of Lie groupoids to a rigidity problem of
2-step nilmanifolds,Mathematica Bohemica, 144(2019) pp. 1–12.

[5] H. R. FANAI and A. HASAN-ZADEH, A symplectic rigidity problem for 2-step nilmanifolds,
Houston J. Math., 2 (2017) pp. 363–374.

[6] C. S. GORDON and Y. MAO, Geodesic conjugacy of two-step nilmanifolds,Mich. Math. J., 45
(1998) pp. 451–481.

[7] C. S. GORDON, Y. MAO and D. SCHUETH, Symplectic rigidity of geodesic flows on two-step
nilmanifolds,Ann. Sci. École Norm. Sup., 30 (1997) pp. 417–427.

[8] V. F. R. JONES,Von Neumann Algebras, UC Berkely Mathematics, 2009.

[9] B. O’NEILL, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.

[10] W. RUDIN, Functional Analysis, McGraw-Hill, Inc Publisher, 1982.

[11] S. SAKAI, Operator Algebras in Dynamical Systems, Cambridge Univ. Press, 1991.

[12] J. A. WOLF, Infinite Dimensional Multiplicity Free Spaces II: Limits of Commutative Nilmani-
folds, New developments in Lie theory and geometry,Contemp. Math., 491(2009) pp. 179–208.

AJMAA, Vol. 17 (2020), No. 1, Art. 3, 5 pp. AJMAA

https://ajmaa.org

	1. Introduction
	2. Main Concepts
	2.1.  Preliminaries about von Neumann Algebras.
	2.2. Preliminaries about nilmanifolds

	3. Applications
	References

