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ABSTRACT. Some applications of Fejér’s inequality for convex functions are explored. Upper
and lower bounds for the weighted integral

b
/ (b—z)(z—a)f(z)dx

under various assumptions fgrwith applications to the trapezoidal quadrature rule are given.
Some inequalities for special means are also provided.
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2 DRAGOMIR & GOMM

1. INTRODUCTION
TheHermite-Hadamardntegral inequality for convex functions: [a, b] — R

e By e

is well known in the literature and has many applications for special means.

For related results, see for instance the research papers|[1]./[8]. 9], [10],[112],111], [13],
[14], [15], the monograph onliné[[7] and the references therein.

In 1906, Fejér, while studying trigonometric polynomials, obtained inequalities which gen-
eralize that of Hermite & Hadamard:

Theorem 1.1. Consider the integrayab h (x)w (z) dx, whereh is a convex function in the in-
terval (a,b) andw is a positive function in the same interval such that

1
wla+t)=wb-—-t), O<t§§(a+b),

i.e.,y = w(x) is a symmetric curve with respect to the straight line which contains the point
(2 (a+1b),0) and is normal to thec—axis. Under those conditions the following inequalities
are valid:

(1.1) h(“+h)lewcwdxgiébh@gwcmdxggﬁﬁﬁgiﬁﬁ?ébwcwdx

2
If 1 is concave orfa, b), then the inequalities reverse jn (IL.1).

Clearly, forw (z) = 1 on|a, b] we ge{ HH.
We observe that, if we take (z) = (b —z) (z — a) ,x € [a,b], thenw satisfies the condi-
tions in Theorem 1]1,

b
/‘w—xﬂx—@dx:é@—af
and by 1.1 we have the following inequality

1
(1.2) -h(“*b
A

b
) (b—a)’ S/ (b—z)(x—a)h(x)dx
< h(a) 4+ h (D)
- 12
for any convex functiorh : [a,b] — R. If the functionh is concave the inequalities ip (1.2)

reverse.
In this paper we establish amongst other some better bounds for the weighted integral

(b—a)’,

/ (b—2x)(x—a)h(x)de

in the case of convex functioris : [a,b] — R. We also investigate the connection with the
trapezoid rule and apply some of the obtained results for special means.

2. THE RESULTS

The following result holds.
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Theorem 2.1.Let f : [a,b] — R be a twice differentiable function dja, b) and such that the
second derivativg” is convex or{a, b) . Then

2.1) L (“_”’) (b—af < f(a) /f

12 2
f"(a ) f" (b )(
24

Proof. We know, see for instancel[7, Lemma 4, p. 38], that

<

2.2) f<a);f(b)—bia/f(x)dx:ﬁ/ (x—a)(b—1) f" (z) dz.

Sincef” is convex on(a, b) , then by [(1.2) we have

2.9 () e-ar< | b 2) (0= a) /' (2) da

@+ )
- 12

Utilising (2.7) and[(2.B) we deduce the desired res$uli (A1).

(b—a)®.

Theorem 2.2.Let f : [a,b] — R be atwice differentiable function dia, b).
If there exists a real numben such thatf” (z) > m for anyz € (a,b) , then

(2.4) —f<a+b>(b oy’ +g10m(b—a)
b
<[ 0-0-0f@d
f(a)+ f(b) 5 1 5
< -0 — Sm(b—a)’,
If there exists a real numbé¥! such thatf” (z) < M for anyz € (a,b), then
fla)+ f(b) 1

(2.5) —M (b—a)’

12 (b= >3_60
b
<[ 0-0@-afe)

1 a+b 1 5
§6f< 5 )(b— a)® +%M(b—a) :

Proof. Define the functiorh,, : [a,b] — R by

1
B () ::f(x)+§m(x—a)(b—x).
This function is twice differentiable and the second derivative is
' (z) = f"(x) —m >0, z € (a,b)

showing that:,,, is convex ofa, b] .
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If we apply the inequality (1]2) fok,,,, then we have

(2.6) é[f (“;Lb> +ém(b—a)2} (b—a)?

S/ (b—x)(x—a)f(x)da:+%m/ (b—2z)*(z —a)’dx

@0 o

<
- 12

Observe that

We also have

b b
/a(b—x)z(x—a)zdx:%(x—a)g(b—x)za—i—;/a (b—x)(z —a)’de
2 bt
=§[—<b—x><x—a> RSVACED dm]
1 5
:%(b—a)

Then [2.6) becomes

1,[(a+b 3 1 5
Ef( 5 )(b—a) +£m(b—a)

< [-0@-af@dnt gmne-af

60
f(a)+ f(b) 3
EEETE (b—a)

IN

which is equivalent with[(2]4).
Now define the functioth,, : [a,b] — R by

1
hy () := —f(w)—EM(x—a)(b—x).
This function is twice differentiable and
hy (x) =M — f"(x) >0, z € (a,b)

showing that,, is convex ora, b] .
If we apply the inequality{ (1]2) fok,,, then we have

i1 (457) - oo 0-
§/ab(b—x)(:v—a) {—f(x)—%M(m—a)(b—x) dx

—f(a) = f(b) 3
ST(b—@) ;
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which, by multiplication with—1, produces

éf(a;b)(b—a)?’—i-%]\/l(b—a)s
z/a (b—:c)(:c—a)f(:c)da:Jr%M/a (x—a)? (b—2)* da

fla) + [ ()

>
- 12

(b—a)’

that is equivalent with

@1 - Ly oy

12 60
b
<[ 0-0@-af@)
<3 (5 0-a s M -y

and the inequality] (2]5) is proved.

Corollary 2.3. Let f : [a,b] — R be a twice differentiable function da, b). If there exists a
K > 0suchthat f” (z)| < K foranyz € (a,b), then

(2.7) /ab(b—x)(x—a)f(x)dx—%(5_603 {f (a;—b>+f(a)-2*-f(b)H
§9—16K(b—a)5.

Proof. If we write the inequality[(2}4) forn = —K and the inequality| (2]5) foM = K we
have

(2.8) éf (”b) (b—a)’ — ——K (b—a)°

2 240

§/ (b—2x)(x—a)f(x)dex

S@HO Ly
and
2.9) W (b—a)’ — 6—101( (b—a)°

b

(b—z)(x—a)f(z)dz

f(a;b) (b—a)3+ﬁ[((b—a)5.

VAN
T~

I
[ N
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If we add the inequality (2]8) with (2.8) and divide the sumoye get

Loty gy _gpp L@EFO) s
f< >(b )° + (b—a)

1 5
54 —K(b—a)

96
b
s/ (b— ) (@ —a) f (2)da

S%f(a;b)(b_a)3+w(b )+916K(b a)’,

which is equivalent with the desired res(ilt (2.F).

Remark 2.1. We observe that the case > 0 in the inequality [(2.4) produces a better result
than [1.2).

For twice differentiable functions we can provide the followperturbed trapezoid quadra-
ture rule

(2.10) / ﬂ@dxzi@l§iQHb—@

Lomap [ (1) L L0,

DenoteRpr (f; a,b) the error in approximating the integral as.lO), namely

b
RP,T(f;a,b) Z:/ f(x)d _M(b_a)

F Lo [ () L@ 0),

The following result that provides ampriory error bound for functions whose forth derivatives
are bounded, holds.

Proposition 2.4. Let f : [a,b] — R be a four time differentiable function dia, b). If there
exists aK’ > 0 such thafl /¥ (z)| < K for anyz € (a,b), then

1
. < — — .
(2.11) [Rpr (fia,b)] < 192K(b a)’
Proof. Writing the inequality[(2.]7) for the second derivatif#éwe have

/‘@—xﬂx—@fwwdx

e [ (142) L0

1
— K (b— )
< geK (b—a)
Dividing this inequality by2 and utilizing the representation (2.2) we have
V a)+ f (b ,/f ) d
p(atby | f"(a)+ [ (D)

_24(b_a) {f ( 2 )+ 2
< L K@b-a?,

192
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and the inequality{ (2.11) is proveql.

The following result that improves the inequality (1.2) also holds.

Theorem 2.5.Let f : [a,b] — R be a convex function. Then

(2.12) —f(a+b)(b—a)3§2/ab(x—a;b) f<x+2aTM>d:c

b
<[ 0-0)e-afe)i

S/a” <x_a—2|—b)2f(x)d$+ (b;za)?’f(a—zi—b)

- <b;2a>3 {f <;b) +f(a)-2+f(b)]

@+ fw)
- 12

(b—a)’.

Proof. Denote, as usuak’ (z) := fa”“" f(t)dt, x € [a,b]. By the Hermite-Hadamard inequality
we have for any: € [a,b], = # %t that

J(E52) < EOEE s (222)]

which, by multiplication with(z — “T“’)Q > 0 implies

(2.13) f (x+a_+b> (x— a;b)Q

o r(t30)] (1)
Lo ()65
that holds for any: € [a, b] .

Integrating the inequality (2:13) on the interyalb] we get
(2.14) /b(x a;rb>2f<x+2aib)dx
</ab Fla (a+b)}( a+b)dx
5[{“@ (5] (- 15) o
[ () s (5 05

IA

<
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Now, observe that

(552 [0 (=5 s
SR

f(z)dx

1 b
5[ o-DE-as@d
and by [2.14) we have
b a+b\> x—l—‘%b
/a(:c— 5 )f( 5 )dx
1 b
<5 [ -0 f @

AL G e (232 252

which proves the second and the third inequality in (2.12).
a+b
The functiong () := f (”22 > is convex ora, b] andw (z) := (z — “—*”)2 is nonnegative
and symmetric orfu, b] . Applying Fejér’s first inequality we have

2
atb | atb b 2 b atb 2
() [ (-t s [ (252) (-5
(b—a)’, [a+Db b a+b\°  [z+ ot
() [ (-5 (552

which proves the first inequality ifi (2.]12).

From the Fejér’s second inequality for the convex funcffidanction and the weight (x) :=
(z— “T“’)Q we also have

[(e 552 s s L0 [ (oY

F@+F0)
P - ap,

which proves the fourth inequality i (2]12).
The last inequality is obvious
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Corollary 2.6. Let f : [a,b] — R be a twice differentiable function dua, ) and such that the
second derivativg” is convex or{a, b) . Then

(2.15) 112f” (GTM) (b—a)? < /b (x _ ; b>2f” (#) dz
f(); - /f ) da
§/b<x a—2¢—b)2 (m)dx_i_(b;f)gf,,(a—;—b)
_ O a>3{ (;b) f”(a);f”(b)]

f"(a) + 1" () 3
< 51 (b—a)’.

We observe that the inequalify (2]15) is a better result than (2.1).

3. APPLICATIONS FOR SPECIAL MEANS
Let us recall the following means for two positive numbers.
(1) The Arithmetic mean

a+b
2 )

A= A(a,b) = a,b > 0;

(2) The Geometric mean

G =G (a,b) :== Vab, a,b> 0;
(3) The Harmonic mean

H=H(a,b) = 2ibb, a,b > 0;
(4) The Logarithmic mean
a if a=0b
L= L(a,b):= , a,b>0,
1n11;:ilna if a0
(5) The Identric mean
a if a=0b
I =1(a,b):= . , a,b>0;

(6) Thep-Logarithmic mean

L,=L,(a,b): = ) , a,b>0.
o] i e
The following inequality is well known in the literature:
(3.2) H<GLSLLI<A
It is also known thaf,, is monotonically increasing overc R, denotingL, = I andL_; = L.
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Consider the functiorf : [a,b] C (0,00) — (0,00), f(z) = 2P for p > 3. We have the
fourth derivative of the function given by

fP@) =p-1)(p—-2)(p—3)a""
which shows that the second derivatif/eis convex onja, b] . Applying the inequality[(2]1) we

have
1 a+b\"? 9 _al + P 1 b
- — — < _ p
P (P U(z) (b-a) < —5 b—a/axdx
a/p72 _|_ bpfz 9
< 1 )= (p—
which in terms of the special means define above can be written as
1
(32) ﬁp (p - 1) AP~? (aa b) (b B CZ)2 <A (ap’ bp) - Lg (aa b)

< po-DA@ ) (- a),

that holds for any:, b > 0 andp > 3.
Consider the functiorf : [a,b] C (0,00) — (0,00), f(z) = L. Thenf”(z) = % and
f® (z) = 2 showing that the second derivative is convex|erb] . Applying the inequality

(2.7) we have

1(b—a)? 2+1 1Inb—Ina
Z < _
6 A3 (a,b) = 2

which is equivalent with

1(b—a)’ _ L(a,b)— H(ab)
6 A3 (a,b) = L(a,b) H (a,b)
that holds for any:, b > 0.

Consider the functiorf : [a,b] C (0,00) — (0,00), f (x) = —Inz. Thenf” (x) = 5%2 and
f® (z) = 5 showing that the second derivative is convex|erb] . Applying the inequality

(2.7) we have

(b= a)’

1
(33) 6 H (a3, %)

<

1(b—a)2<—1na—lnb+ 1 /bl J
12 A% (a,b) = 2 b—a), T
11
el 2
<t )
Observe that
1 b 1 b
b_a/alnxdx = b_a[xlnﬂa—(b—a)]—
po\ /(0-a)
= ln(—) — 1| =In1(a,b),
aa
and
—Ina—1Inb 1
=1In :
2 G (a,b)
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Then we get
1 (b—a)’ I(a,b) 1 (b—a)’
: —— < < 7
(3:4) DA (@) =™ <G(a, b)) = 12 H (a2, b?)
that holds for any:, b > 0.

The interested reader may apply the inequality (2.11]) or|2.15) to obtain other similar results.
However, the details are omitted here.
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