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ABSTRACT. The main aim of this article is to present recent results concerning diagonal implicit
multistage integration methods (DIMSIMs) with extrapolation in solving stiff problems. Implicit
methods with extrapolation have been proven to be very useful in solving problems with stiff
components. There are many articles written on extrapolation of Runge-Kutta methods however
fewer articles on extrapolation were written for general linear methods. Passive extrapolation is
more stable than active extrapolation as proven in many literature when solving stiff problems
by the Runge-Kutta methods. This article takes the first step by investigating the performance
of passive extrapolation for DIMSIMs type-2 methods. In the variable stepsize and order codes,
order-2 and order-3 DIMSIMs with extrapolation are investigated for Van der Pol and HIRES
problems. Comparisons are made with ode23 solver and the numerical experiments showed
that implicit DIMSIMs with extrapolation has greater accuracy than the method itself without
extrapolation and ode23.
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1. INTRODUCTION

General linear methods (GLMs) was firstly considered by Butcher [11] as a system of meth-
ods for studying some important properties like the convergence, stability and consistency of
the traditional methods. There are two traditional methods considered for solving stiff ordinary
differential equations, such as backward differentiation formulas (BDF) and implicit Runge-
Kutta (RK) methods. These methods have upsides and downsides. To take the upside and
overcome the downside, a new subclasses of general linear methods are constructed for solving
stiff equations. This subclasses are called as Diagonally Implicit Multistage Integration meth-
ods abbreviate as DIMSIMs [2].

This article is aimed to describe the construction of implicit DIMSIMs methods and the
implementations of these methods with extrapolation for solving numerical solutions of initial
value problems which is given by

y′(x) = f(y(x)), x ∈ [x0, X],(1.1)

y(x0) = y0 ∈ Rm,(1.2)

where f defines as f : R→ Rm are smooth functions.

Even though in the papers [14],[9], the derivations of explicit methods for nonstiff equations
and implicit methods for stiff equations are given, it can only be constructed for a small subset
of the big family of methods that appears to exist. In this article, we study the construction of
different orders of implicit methods and the implementation of extrapolation technique to gain
higher accuracy.

The result of construction the implicit DIMSIMs with extrapolation methods based on the
Nordsieck representation for input and output. The order condition p is assumed equal to stage
order q with consider the stability properties as similar as singly diagonally implicit Runge-
Kutta methods (SDIRKS).

2. DIMSIMS

DIMSIMs are formed by abscissa vector c = (c1, c2, · · · , cs)T and the coefficient matrices
[A,B, U, V ] where

A = (aij) ∈ Rs×s, U = (uij) ∈ Rs×r, B = (bij) ∈ Rr×s, V = (vij) ∈ Rr×r.

The coefficient matrix A shows the implementation cost as same as assumed in RK meth-
ods [13]. Therefore, the phrases such as singly-implicit and diagonally-implicit can be directly
borrowed from RK methods.

To lower the high cost of implementation of DIMSIMs, then the coefficient matrix A is con-
sidered as in [3] to being a very lower triangular as similar the case for the diagonally implicit
RK methods. Moreover, if this coefficient being lower triangular with all equal of its diagonal
elements, then in this case we can evaluate Y1, Y2, · · · , Ys separately by using modified Newton
iterations.

The system of DIMSIMs are defined on the uniformly grid as follows

x(n) = x(0) + nh, n = (0, 1, · · · , N), NH = x− x(0),
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given by the following

Yi = h

s∑
j=1

aijf(Yj) +
r∑
j=1

uijy
[n−1]
i , i = 1, 2, 3, · · · , s,(2.1)

y
(n)
i = h

s∑
j=1

bijf(Yj) +
r∑
j=1

vijy
[n−1]
i , i = 1, 2, 3, · · · , s,(2.2)

where n = (1, 2, 3, · · · , N), Yi denotes internal stages are approximation of stage-order q ac-
cording to [3],

Yi = y(x(n−1) + cih) +O(hq+1), i = 1, 2, · · · , s,

where y[(n)]i denotes external stages of order condition p and are approximate by

y
[(n)]
i =

p∑
k=0

q(ik)h
ky(k)(xn) +O(h(p+1)), i = 1, 2, 3, · · · , r.

To guarantee the zero stability of DIMSIMs, then coefficient matrix V is assumed as a rank
one matrix, which is given by

V = eV T ∈ Rs, V T e = 1,

where

v = [v1v2 · · · vs](T ), e = [1, 1, · · · , 1]T ∈ Rs.

Such methods in this case will be automatically zero-stable.

As we mentioned before, the coefficient matrix A is considered by a very lower triangular
which is defined by 

λ
a(21) λ

...
... . . .

a(s1) a(s2) · · · λ

 ,
where λ ≥ 0. If (λ = 0) the methods are known as explicit methods, as considered in [13]
which is known as type one DIMSIMs. However, if (λ > 0) the methods are known as im-
plicit methods, which are known as type two DIMSIMs. This article only focuses on type two
DIMSIMs.

3. EXTRAPOLATION

Extrapolation for explicit DIMSIMs have been proven to improve the accuracy in solving
nonstiff problems. This article extended the extrapolation technique for implicit DIMSIMs for
solving stiff problems. Extrapolation is a technique to increase the accuracy of the method as
considered by L.F. Richardson in [15]. This technique is also called as Richardson extrapolation
given in the following the form

Ti,j = Ti,(j−1) +
Ti,(j−1) − T(i−1),(j−1)

( mi

mi−(j+1)
)p − 1

,(3.1)

where i = j = 2, · · · , n. Extrapolation can be carried out in two efficient ways. Active ex-
trapolation happens when the determined value of extrapolation utilized to propagate the next
computation whereas the passive extrapolation is not utilized in any subsequent computations.
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In another meaning, with possible conditions for the error Ti,1 − y(x(0) +H) have an approxi-
mation expansion in power ofH2. However, the highly orders approximation of quantities T(i,k)
to y(x0 +H) are formed from T(i,1) via the extrapolation formula. In this article, we will focus
on the implicit methods using passive extrapolation to solve the stiff equations. We consider
polynomial extrapolation rather than rational extrapolation since according to [7], rational ex-
trapolation has more restrictions on the stepsize and it also lose its translation invariance while
the polynomial extrapolation is more stable and therefore is more preferable.

4. IMPLICIT DIMSIMS

In this section, the formulation of implicit methods is reviewed, which will be efficient for
stiff problems especially in a conventional environment. Implicit methods were considered by
Butcher [4] for solving the stiff problems and also for differential-algebraic problems of RK
methods. However, these methods are proven to have high implementation cost and more com-
plicated to carried out as the stage value which required to be located by an iterative computation
[5]. Despite these disadvantages, implicit methods was considered better than other methods
like explicit methods to solve the stiff problems, because it gives better stability and it is com-
puted by fewer stages with the same order [5]. The implicit methods of DIMSIMs (type two)
which are poses stability considered exactly same the stability of the singly diagonally implicit
Runge-Kutta methods.

In this paper, it is assumed the order condition p is equal to stage order q of DIMSIMs. Then,
the internal stage values in this case satisfied by

Yi = y(x(n−1) + cih) +O(h(p+1)).

The other two integers s, r are known as: the number of internal sages of DIMSIMs, the number
of incoming and outgoing respectively. These integers assumed as r = s = p+1. Therefor, the
quantities moved step to another step have the following forms

y
[n−1]
i =

p∑
k=0

a(ik)y
(k)(x(n−1)) +O(h(p+1)),

y
[n]
i =

p∑
k=0

a(ik)y
(k)(x(n)) +O(h(p+1)).

In order to make the implementation more easier since the way of change the step-size to a
straightforward rescaled by the quantities of external-approximations, then these methods rep-
resents in the Nordsieck representation. Nordsieck vectors were defined by Nordsieck in 1962
[10] with Adams methods. DIMSIMs using the above representations will be considered as
zero-stable for all selecting of variable mesh [6]. Therefore, the DIMSIMs represents in Nord-
sieck representation is given as follows:

Y [n] = hn(A⊗ Im)F (Y [n]) + (PD(δn)⊗ Im)z[n−1],
z[n] = hn(G⊗ Im)F (Y [n]) + (QD(δn)⊗ Im)z[n−1],

where hn−1 = xn−1 − xn−2, n = 1, 2, 3, · · · , N , and z[n]i = hi−1n yi−1(xn) + O(hp+1
n ), i =

1, 2, · · · , r, A, P, G and Q are defined as coefficient matrices with the following dimension
s× s, s× r, r × s and r × r, respectively.

AJMAA, Vol. 17 (2020), No. 1, Art. 13, 10 pp. AJMAA

https://ajmaa.org


ACCURACY OF IMPLICIT DIMSIMS WITH EXTRAPOLATION 5

Now, in order to construct the implicit DIMSIMs (type two), we have the stability matrix
assumed as

M(z) = V + zB(I − zA)−1,

= V +
z

1− λz
B(I − z

1− λz
(A− λI)−1,

and substituting ẑ = z
1−λz and Â = A− λI in the stability matrix. Then, it tends the following

M̂(ẑ) = V + ẑB(I − ẑÂ)−1.
Construction these methods depend on the assumption of the stability polynomial p̂(w, ẑ) as

referred in [[9],[3]] satisfying the following

p̂(w, ẑ) = ws−1(w − R̂(ẑ)),

where R̂(ẑ) known here as the stable function which is has same structure as in SDIRK
method. This function considered as

R(z) = R̂(
z

1− λz
) =

P (z)

(1− λz)s
,

where

P (z) = (−1)s
s∑
j=0

L(s−j)
s (

1

λ
)(λz)j,

and Ls is Laguerre polynomial given by

Ls(x) =
s∑
j=0

(−1)j
(
s
j

)
xj

j!
.

The order condition very important to construct the exist methods, So the following lemma
which proved by [2] explains this case.

Lemma 4.1. A general linear methods formed in Nordsieck representation with coefficient ma-
trices A,U,B and V , of order conditions p as same as stage order q iff

exp(cz) = zA exp(cz) + UZ +O(zp+1),

exp(z)Z = zB exp(cz) + V Z +O(zp+1),

exp(cz) denotes here as a vector of components given by
exp(c1z)
exp(c2z)

...
exp(csz)

 .
The implementation of the existing methods given by the Matlab code dim13xtrap.m

based on applying the extrapolation technique (3.1) with implicit DIMSIMs, where this code
starts by order one p1 = 1 and initial stepsize h1 is given by h1 =

√
2/ ‖d2‖sc where

d2 = (f (y0 + h0f (y0))− f (y0)) /h0,
where

h0 = 1/ ‖f (y0)‖sc ,
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denotes the stepsize of methods of order zero. Besides, the standard step changing strategy is
computed as similar as for explicit DIMSIMs and Runge-Kutta methods. The estimation of the
local discretization error of implicit methods is computed by

err = ‖est∗ (xn, pn)‖sc ,

with

scj = Atolj +max
{∣∣∣z[n−1]1,j

∣∣∣ , ∣∣∣z[n]1,j

∣∣∣}Rtolj .

This consideration bring us to know the decision about the new order which is relied on the
following ratio

ratio =
‖est∗ (xn, pn)‖sc
‖est∗ (xn, pn − 1)‖sc

.

This ratio is important also to know the step is rejected or accepted when applying the existing
methods on the test problems which is given in the next.

5. NUMERICAL EXPERIMENTS

In this section, the numerical experiments are given for two well-known problems such as
Van der Pol (VDP) and Hires problems. The first problem considered in [1] as the following

y′1 = y2,

y′2 = (1− y21)y2 − y1,

with initial values given by y2(0) = 2 and y2(0) = 0, [0, 3].
The notations used in all the plots is given in Table 5.1.

Table 5.1: Notations for the plots given in numerical results.
Notations Definitions

dim12s implicit DIMSIM method of order-2
dim12xtrap implicit DIMSIM method of order-2 with extrapolation

dim13s implicit DIMSIM method of order-3
dim13xtrap implicit DIMSIM method of order-3 with extrapolation

ode23s modified Rosenbrock formula of order 2
ode23t trapezoidal rule using a "free" interpolant
ode23tb implicit trapezoidal formula (first stage) together with

backward differentiation formula (second stage) of order-2

In Figure 1, it can be shown that implicit DIMSIM of order-2 and order-3 with extrapolation
is more accurate than the implicit DIMSIM without extrapolation. Furthermore, the error of
dim13s corresponding to tol = 10−6 is larger than dim13xtrap.

In the second part of Figure 1, the global error against step size h is plotted. Both meth-
ods examined with two and three orders which agrees totally with the predicted order of using
accuracy and extrapolation of implicit DIMSIMs is more accurate for the same step size than
implicit DIMSIMs without extrapolation.
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Figure 1: Numerical results for VDP problem, error via tolerance & step-size.

The second problem which is the HIRES problem as in [12] is given by

y′1 = −1.71 · y1 + 0.43 · y2 + 8.32 · y3 + 0.0007,

y′2 = 1.71 · y1 − 8.75 · y2,
y′3 = −10.03 · y3 + 0.43 · y4 + 0.035 · y5,
y′4 = 8.32 · y2 + 1.71 · y3 − 1.12 · y4,
y′5 = 1.745 · y5 + 0.43 · y6 + 0.43 · y7,
y′6 = −280 · y6y8 + 0.69 · y4 + 1.71 · y5 − 0.43 · y6 + 0.69 · y7,
y′7 = −y′7.

Similarly, we can also see in Figure 2, that dim13xtrap and dim12xtrap are more accurate than
dim12s and dim13s and others for most the tolerances. Furthermore, the error of dim12s and
dim13s corresponding to tol = 10−6 is also larger than dim12xtrap and dim12xtrap. In the
second part of Figure 2, the global error against step size h for HIRES problem is plotted. We
can also see clearly the extrapolation of implicit DIMSIMs is more accurate for the same step
size than implicit DIMSIMs without extrapolation.

Furthermore, Figure 3 and Figure 4 denote the results of global error versus cputime for
VDP and HIRES test problems. The cputime is measured using tic and toc build-in functions
in Matlab. The results show that implicit DIMSIMs with extrapolation is more efficient than
methods without extrapolation.
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Figure 2: Numerical results for HIRES problem, error via tolerance & step-size.
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Figure 3: Numerical results for VDP problem, error via CPU times.

6. CONCLUSION

This paper discuss the issues related to the efficient development of solving the ordinary
differential equation for the implicit DIMSIMs with extrapolation in solving stiff differential
equations. These issues includes the implementation of extrapolation and the choice of initial
step-size, order changing strategies and local error estimation. Future work will contains various
implementation related to these methods of high order such as select of initial step-size, local
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Figure 4: Numerical results for HIRES problem, error via CPU times.

error estimation, construction of starting procedures, as well as using variable stepsize variable
order derived with these methods.
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