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1. INTRODUCTION

Nonlinear stochastic differential equation has come to play an important role in many branches
of natural and applied science where more and more researcher have encountered stochastic dif-
ferential equations(short for SDES). See the references ta this [2]- [9] and [10]-[16]. Also, the
problems of the approximate solution to the SDEs has become an important field of study be-
cause the solution of the SDEs does not have an explicit expression except for linear cases
as well as the question of the existence of stochastic integral part in the equations. See the
references to this [6], [11], and [12].

Xuerong Maol[11] had established the existence and uniqueness theorems and discussed the
properties of the solution for the SDEs in his book. He had introduced the stochastic differential
equations studied by previous researchers;

(1.1) do(t) = f(x(t), t)dt + g(x(t), t)dB(t),

on the closed intervdk,, T1],to < 7. And he obtained that if Lipschiz condition and linear
growth condition hold, then the SDEs ([L.1) had a unique solutigf, moreover,z(t) €
M2 ([to, T); R™*™) which means that we denoted byt? the family of processe$f(t)} in
£P such thatt? [ | £(t)[*dt < oo

However, the Lipschiz condition etc. only guarantee the existence and uniqueness of the
solution and, in general, the solution does not have an explicit expression except the linear case
which were discussed in previous researchers. See the references(tolthis [11]. In practice, we
therefore often seek the approximate solution rather than the accurate solution.

Especially, Bae at al.[2] obtained that if two conditipn {1.2) dnd|(1.3) hold: Fogang R*
andt € [ty, T], we assume that

(1.2) |y, t) = f(z, 0PV gy, t) — g(z,8)]* < K|y — 2**

whereK is a positive constant aril< o < 1 is a constant. For anye< [t,, 7] it follows that
f(0,t),9(0,t) € L2([to, T)) it follows that

(1.3) [F(0,6)[* v [g(0,8)* < K

where K is a positive constant, then there exists a unique solutighto equatiorj(1J1) and

the solution belongs ta1%([ty, T]; R?). In the this paper, by using the Picard iteration pro-
cedure, authors established the theorem on the existence and uniqueness of the solution for
d-dimensional stochastic differential equation. As the by-product, authors also obtained the Pi-
card approximate solution for the equation and following Thedrein 1.1 which gives an estimate
on the difference, called the error, between the approximate and the accurate solution.

Theorem 1.1.Assume thaf (1}2) anfd (1.3) hold. Let) be the unique solution() of equation
(1.1) andz,,(¢) be the Picard iteration. Then

.4) B (sup, lon(®) = (0 ) < 705 (2M(T 1)

forall n > 1.

In practice, given the errar > 0, one can determine for left-hand side of[(1]4) to be less
thane, and then computey(t), z1(t),- - - , z,(t) by the Picard iteration. According to Theorem
[1.7, we have

E( sup |z, (t) — :c(t)\Q) <e

to<t<T
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So we can use,(t) as the approximate solution the equafiorj(1.1). The disadvantage of
the Picard approximations is that one needs to compy(te, x1(t), - - , z,_1(t) in order to
computer, (t), and this will involve a lot of calculations on stochastic integrals. More efficient
ways in this direction are Caratheodory’s approximation procedure and Cauchy-Maruyama'’s.

Motivated by [5], [6], [11], and[[13], one of the objectives of this paper is to get one proof
to Caratheodory’s approximation procedure for given SDEs. The other objective of this paper
is to estimate on how fast the Caratheodory’s approximation iteratipfi$ convergence the
unique solutione(¢) of the SDEs.

2. PRELIMINARY

Let (2, F, P), throughout this paper unless otherwise specified, be a complete probability
space with a filtratio F; }+>, satisfying the usual conditions (i.e. it is right continuous and
F:, contains allP-null sets). Let| - | denote Euclidean norm i&®". If A is a vector or a
matrix, its transpose is denoted Wy ; if A is a matri, its trace norm is represented|dy =
/trace(AT A). Assume that3(t) is anm-dimensional Brownian motion defined on complete
probability space, that i8(t) = (B (t), Ba(t), ..., B (t))T.

Consider thel-dimensional stochastic differential equation of It type

(2.1) dx(t) = f(x(t),t)dt + g(z(t),t)dB(t) on to <t <T.

with initial valuez(t,) = zo. By the definition of stochastic differential, this equation is equiv-
alent to the following stochastic integral equation:

(2.2) x(t) = xo + /tt f(z(s),s)ds + /tg(x(s),s)dB(s) on tg<t<T.

to

First, let us define the solution of the stochastic differential equations.

Definition 2.1. ([11]) An R?-valued stochastic procegs:(t)}, << is called a solution of
equation|[(2.1) if it has the following properties:

(i) {=(¢t)} is continuous ancF;-adapted;

(1) {f(x(t), 1)} € L2([to. T); RY) and{g(x(t),1)} € L2([to, T]; R™™);

(iit) equation[(2.]1) holds for evetye [t,, T'| with probability 1.

A solution {z(t)} is said to be unique if any other solutidr(¢)}is indistinguishable from
{z(t)}, that is

P{zx(t)=2 for all ty <t <T}=1.
For the convenience of the reader, we state following lemmas.

Lemma 2.1. ([1, 11]) (Holder's inequality) If > + - = 1 foranyp,q > 1, f € L?, andg € L,
thenfg € £! andfab fgdx < <fab |f|pdx>; (fab |g|qu>5.

Lemma 2.2. ([LI])(moment inequality) Let > 2. Let f € M?2([0, T]; R¥*™) such that

T
E/O 1 (s)[Pds < oo,

' (p(p; ”)ST’?E / s s

Then
FE

[ s
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Lemma 2.3. ([11])(moment inequality) If > 2, f € M? ([0, T]; R™™) such that

T
B [ 1rpds < .

e (g [ s ) < () 7 [

Lemma 2.4. ([1]) (Stachurska’s inequality) Lai( ) andy( ) be nonnegative continuous func-
tions fort > o, and letz(t) < a f y(s)aP(s)ds, t € J = [, 3), where$ is
nondecreasing function artd< p < 1 Then

then

—1

2(t) < alt) (1 —(p—1) [%rl /a ty(s)bp(s)ds> o

In order to attain the approximate solution of equatjon|(2.1) with initial data, we propose the
following assumptions:
(H1) (Holder condition) For any, v € R? andt € [ty, T], we assume that

[flp.t) = F(. O] V]g(p,t) — g, )P < Kl — p*?,
whereK is a positive constant anid< « < 1 is a constant.

[ iti 0 ) . y V) )
(H2) (Weakened linear growth condition) For any [t,, 7, it follows that f(0,t), g(0,t) €
L? such that
|f(07t)|2 \ |g(07t>|2 < Klv

wherek; is a positive constant.

3. MAIN RESULTS

In order to obtain an approximate solution to SDEs, let us now give a definition of Caratheodory’s

approximate solutions.
For every integen. > 1, definez,,(t) = zo fort, — 1 <t < ¢, and

(3.1) x,(t) = xo +/t fzn(s—1/n),s)ds —|—/ g(x,(s —1/n),s)dB(s)

to

forty <t < T. Note that forty <t < ¢, + 1/n, z,(t) can be computed by

T, (t) :xo—ir/t:f(xo,s)ds—l—/t (xq, $)dB(s);

to

then forty +1/n <t <ty +2/n,
t

%@:%w+um+/ fmm—vm@w+/ g(a(s — 1/n), s)dB(s),

to+1/n to+1/n
and so on. In other words;,(¢) can be computed step-by-step on the interyalst, +
1/n], (to +1/n,to +2/n],....

We need to prepare two lemmas in order to establish one of the main results.
Lemma3.l.Letf : R x [ty, T] — R%andg : R?x [ty, T| — R*™™ be both Borel measurable.
Consider thed-dimensional Caratheodory’s approximate solutiopns](3.1). Assume that there
exist two constant&” and K, such that
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(i) (Holder condition) For anyp, v € R? andt € [ty, T], we assume that

(3.2) [flp.t) = F(. )] Vgl t) — g, )P < Kl — p*?,
whereK is a positive constant antl< « < 1 is a constant.

(i) (Weakened linear growth condition) For ahy [t, T, it follows thatf(0, ), g(0,t) €
L? such that

(3.3) £(0.8)]* vV 1g9(0,1)|* < K,
wherek; is a positive constant.
Then, for alln > 1, we have

(3.4) sup Elx,(t)]?

<= a1 - @@= Da(D]" KT -t + )T 1)},
wherea(T') = 3E|zo|* + 6K (T — to)(T — to + 1).

Proof. Fix n > 1 arbitrarily. It is easy to see from the definition ©f(¢) and condition[(3]2)

and [3.8) that{x,,(t) }o<icr € M3((to, T); RY). From [3.1), using the elementary inequality
(y + 2z +w)? < 3(y* + 22 + w?), we have following fort, < ¢ < T

/t f(zn(s —1/n),s)ds / g(xn(s —1/n),s)dB(s) ’

to
By Hdlder’s inequality, we can derive that

2
|z (1) < 3|z0* + 3 +3

/tg(;pn(s — 1/n)’5)dB(3)‘2.

to

2n (O] < 3”& 3(T — to) / F(@a(s — 1/n), 5)[ds + 3

Taking the expectation on both sides and using the Lemma 2.2, we have following
Ela,(t)[?

< 3E|xo|* + 3(T — tg)E/t |f(z,(s —1/n),s)|*ds + SE/t lg(x,(s — 1/n), s)|*ds.

By the condition[(3.R) and (3.3), we obtain
Elza ()]

t
< 3Blwol + 6K (T — to)(T — to + 1) + 6K (T — fo + 1)E/ (s — 1/m)[2ds.
to
Consequently

t
sup Elz,(s)|* < a(T) +6K(T —to + 1)/ E sup |z, (r)]**ds,
to<s<t to to<r<s
wherea(T) = 3E|xo|*+ 6K, (T —t)(T —to+1). An application of the Stachurska’s inequality
(Lemm&2.4) implies that
sup El|x,(s)]?

to<s<t

a(T) ~1/(a-1)

< a(T){l —(a—1) [6K(T S 1)]a1 /t[3K(T — o+ 1)]%15}

to

< a(T){l —(a—=D)[a(D)]* T [6K(T —to+ 1)] (t - to)}—l/(a—l)
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for all t, < ¢ < T. In particular, the required inequality follow/s (B.4) follows whea: T'. The
proof is completen

Lemma 3.2. Under the Holder conditiorj (3] 2) and weakened linear growth condifion (3.3), for
alln > 1andty < s <t <Twitht—s < 1, the Caratheodory’s approximate solution has the

property
(3.5) Bz, (t) — 2a(s)? < Colt — 5)
whereC, = 8K + 8Ky and(, is defined in Lemma 3.1

Proof. From (3.1), we have following fofy < s < ¢ < T

T (t) — xp(s) = / flzn(r—1/n),r)dr +/ g(xn(r —1/n),r)dB(r).

Using the elementary inequality + 2)? < 2(y* + 2?), we have following

2 (£) — an(5)]? < 2 4o / g(an(r — 1/n),r)dB(r)‘2.

/St f(xn(r —1/n),r)dr

By Hoélder’s inequality, we can derive that

2

|@a(t) — 2a(s)* < 2(t - 8)/ [f(wn(r = 1/n),7)*dr + 2 / g(xn(r —1/n),r)dB(r)

Taking the expectation on both sides and using the Lemma 2.2, we have following

Elry(t) — za(s)]* < 2(t - s)E/ [f(@a(r = 1/n),r)[Pdr + 2E/ lg(zn(r = 1/n),r)|"dr.
By the condition[(3.R) and (3.3), we obtain
Elza(t) = za(s)]”

<At —s) [E /t Kl|walr — 1/n)[2%dr + K;(t — s)}
+4 [E /t Kl|zn(r — 1/n)|2dr + K, (t — s)}
=4K(t —s)[t —s+ 1] +4[t — s+ 1]E/tK|xn(r — 1/n)[**dr
< 8K, (t—s)+8E /t K|z, (r — 1/n)|**dr.
Consequently 8
Elz,(t) — z,(s)]* < 8Ky (t — s) + 8K /tE sup |z (k)|>dr.

to<k<r

Hence, an application of LeminaB.1 implies that
Bz, (t) — z,(s)|> < 8K (t — 5) + 8KC(t — s)

forall ty < s <t <T.The proofis completeg
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Theorem 3.3. Assume that the Holder condition (B.2) and the weakened linear growth con-
dition (3.3), hold. Let:(t) be the unique solution of thédimensional stochastic differential
equation|(2.]L) of 1t6 type and, (¢) be the Caratheodory’s approximate solution. Then, for all

n > 1, such that

(3.6) B( sup_[ra(t) -~ 2(t)P) < ot
to<t<T ne
where0 < a < 1, O3 = b(T){1 — (a — D[B(T)]*HAK(T — to + D)](t — to)} V@b,
W(T) =4K(T —to +4)Cs, andC, is defined in Lemnfa 3.2
Proof. From the definition of:(¢) andz,,(t), it is not difficult to derive that
Tn(t) — zn(s)
t t
= [ 1faals = 1)) = ol s)ds + [ lalals = 1/m).s) = g(als). S)BG)
to to
Using the elementary inequality + 2)? < 2(y* + 2?) and Holder’s inequality, we have fol-
lowing

sup |, (r) — x(r)[?
to<r<t

<2t~ to) / F@als = 1/n), ) = f(a(s), ) ds

2

/r[g(xn(s —1/n),s) — g(z(s), s)|dB(s)| .

to

+2 sup

to<r<t

Taking the expectation on both sides and using the Lemna 2.3, we have following

E( sup |z, (r) —a:(r)]2>

to<r<t

<At - to)E/ [f(xn(s), 8) = f(@nls = 1/n),8)[* + [ f(2a(s), ) — f(a(s),s)]*ds

to

+16E/ lg(@n(s), ) = glan(s — 1/n), s)I* + |g(@n(s), 5) — g(x(s), 5)[*]ds.

to

By the condition[(3.R) and (3.3), we obtain
B( sup |wa(r) = z(r)?)

to<r<t
t
<AK(t—to+ 4)E/ |Zn(s) — xn(s — 1/n)|**ds

to
t

+AK (t —to + 4)E/ sup |x,(r) — z(r)[**ds.
to to<r<s
But, an application of Lemmag3.2 implies that
1
Elz,(s) —x,(s — 1/n)|> < Co—
n
if s > tg+ 1/n, otherwise ifty < s < to + 1/n, we have

E|z,(s) — zn(s — 1/n)]? = Elz,(s5) — 2,(to)]* < Ca(s —ty) < C’g%
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Therefore, it follows from the above inequality that

E( sup |aa(r) — 2(r)?)

to<r<t
o 1\« t 2\ @
<AK(L—to+ )05 () +4K(—to+4) [ (B sup |aa(r) = a(r)?) ds.
n to to<r<s
An application of the Stachurska’s inequality (Lenim&2.4) implies that
B( sup fra(r) = o(r)]?)

to<r<t

~1/(a-1)

< b(#) (%)a{1 (=D (0] Kt + )] (1~ 1)} ,

whereb(t) = 4K (t — t, + 4)CS. In particular, the required inequality followfs (B.6) follows
whent = T. The proof is completexs

In other words, the authors i ([13]) established the existence and uniqueness theorem using
the condition[(3.J7) andl (3.8). Moreover, under quite general conditions, we are still able to show
that the Caratheodory’s approximate solutions converge to the unique solution of equation (2.1).
This is described as follows.

Lemma3.4.Letf : R x [ty, T] — R¥andg : R?x [ty, T] — R™™ be both Borel measurable.
Consider thed-dimensional Caratheodory’s approximate solutions](3.1). Assume that there
exist a constanf(; such that

(i) Foranyy, € R*andt € [ty, T], we assume that
(3.7) [fp,t) = F(, )PV [g(e,t) — g(i0, )P < w(lp — *),

where0 < « < 1 and«(+) is a concave non-decreasing function frégtm to R, such
thatx(0) =0, x(u) > 0foru > 0.

(i) Foranyt € [ty, T), it follows thatf(0,¢), g(0,t) € L? such that
(3.8) [£0,1)]* V [g(0, 8)]* < K,
whereK; is a positive constant.
Then, for alln > 1, we have

(39)  sup Elu, ()]

< Cumd{1 - (0~ D[] KT o+ DT -10)} T
whered(T) = a(T) + 6a(T — to)(T — to + 1) anda(T) is defined in Lemn{a 3.1.

Proof. Fix n > 1 arbitrarily. It is easy to see from the definition ©f(¢) and condition[(3]7)

and [3.8) tha{z,,(t) }y<i<r € M?((to, T); RY). From [3.]), using the elementary inequality
(y + 2z +w)? < 3(y* + 22 + w?), we have following fort, < ¢t < T

/t:f(:pn(s - 1/n),s)ds‘2 +3

By Hoélder’s inequality, we can derive that

2

/tg(xn(s ~1/n), s)dB(s)‘ .

to

2a (D] < Bl +3

en(®F < 3faof? + 3T~ t0) [ 1 anls =1/ 5)Fds+3] [ gtants = 1/n), 9B

to
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Taking the expectation on both sides and using the Lemna 2.2, we have following
Elza(t)]”
t t
< 3E|zo* + 3(T — tO)E/ |f(z,(s —1/n),s)|*ds + 3E/ lg(2,(s — 1/n), s)|?ds.
to to

By the condition|(3.]7) and (3.8), we obtain
Elza(t)[*
< alt) +6(t—to+ 1)E/tm(\xn(s 1 n)2)ds,
to
wherea(t) = 3E|zo|? + 6 K1 (t —to)(t —to+ 1). Sincex(-) is concave and nondecreasing, there
must exit a positive numbersuch that
(3.10) r(u) < a(l+u)

onu > 0. Consequently

t

sup El|z,(s)|* < d(t) + 6a(t —to + 1)/ E sup |z,(r)|**ds,
to<s<t to to<r<s

whered(t) = a(t) + 6a(T — to)(T — to + 1). An application of the Stachurska’s inequality

(Lemmé&2.4) implies that

sup E|q:n(s)|2

to<s<t

= d(T){l ~la—1) [6a(Td—(7;z n 1)]a1 /t:[ﬁa(T —to + 1)]%15}1/(‘””

= d(T){l —(a-1) [d(Tﬂa_l [6G(T —to + 1)] (t - to) }_1/(a_1)

for all t, < ¢ < T. In particular, the required inequality follows (B.9) follows whea: T'. The
proof is completeg

Lemma 3.5. Under the condition[(3]7) and weakened linear growth conditjon| (3.8), for all
n > landty < s <t <Twitht—s <1, the Caratheodory’s approximate solution has the

property
(311) E|wn(t) _In($)|2 < 05(t_5)7
whereCs = 8K + 8a + 8aCY, a is positive constant, and is defined in Lemmja 3.4.

Proof. From ), using the elementary inequality+ 2)? < 2(y* + 2?), we have following
2 2
|2, (1) — 20 (5)]? < 2 + 2 :

/ F@n(r — 1/n), r)dr / gl — 1/n), 1)dB(r)

By Hdlder’s inequality, we can derive that

2

oa(t) = an(s) <200 =) [ 1ol = 1/0)0)Fdr 42| [ gl = 1/n),r)B
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Taking the expectation on both sides and using the Lemna 2.2, we have following
Elza(t) — za(s)[*

t

<4t =s)E [ [[f(@alr —1/n),7) = f(0,7)[* + [ f(0,7)*]dr

HE [ lglanlr = 1/m).r) = 9(0.0)F +19(0,1)ldr.
By the condition|(3.]7) and (3.8), we obtain
Elan(t) — za(s)[*

<at-9)[E /: (laar = 1/m)*)dr + Kot — 5)]
+alB /St (lar = 1/m))dr + Kt~ 5)]
4K (t - )]t — s+ 1+ At — s+ 1]E/:/s(|a:n(r 1/n)2)dr
< 8K\ (t— 5) + SE /: i(ln(r — 1/n))dr:
From the definition of:(-) and the inequality(3:10), we have following that

t
Bz, (t) — 2,(s)|* < 8K (t — s) + Sa(t — s) + SK/ E sup |z, (k)|[**dr.

to<k<r
Hence, an application of LeminaB.4 implies that
Elz,(t) — 2,(s))* < [8K; + 8a + 8aCS](t — s)

forall ty < s <t < T. The proof is completeg

Theorem 3.6.Letx(¢) be the unique solution of thedimensional stochastic differential equa-
tion (2.3) of I1td type and:,(¢) be the Caratheodory’s approximate solution. Assume that the
weakened linear growth condition (B.8) and the following weakened Hélder condition hold. For
anyp, 1 € R andt € [t, T], we assume that

(3.12) [f(e,t) = f, ) Vgl t) — g, )] < k(e — ¥*),

where0 < a < 1 andk(-) is a concave non-decreasing function fratn to R, such that
x(0) = 0,0 < k(u) < fuforu > 0and a constant(> 0). Then, for alln > 1, such that

(3.19 B sup (1)~ 2(0)?) < G

to<t<T

where0 < o < 1, Cs = h(T){1 — (a — D))" 4B(t — to + D)]|(t — to)}" V@D, K(T) =
48(T — to + 4)Cg, and C; is defined in Lemmfa 3.5.
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Proof. From the definition of:(¢) andz,,(¢), using the elementary inequality + 2)* < 2(y* +

2?) and Holder's inequality, we have following
sup |z,(r) — a(r)|?
to<r<t

<2t - to)/t |[f(zn(s = 1/n), 5) = f(a(s), s)]"ds

2

/r[g(xn(s —1/n),s) — g(z(s), s)|dB(s)| .

to

Taking the expectation on both sides and using the Lemna 2.3, we have following

E( sup |aa(r) = x(r)]?)

to<r<t

+2 sup

to<r<t

<At - to)E/ [f(xn(s),8) = f(@nls = 1/n),8)]* + [ f(za(s), 5) = f(a(s),s)]*ds

to

+16F /T[|g(xn(s), s) — g(zn(s — 1/n),8)[* + |g(zn(s), 5) — g(x(s), 5)|*]ds.

to

By the condition|(3.B) and (3.12), we obtain
E( sup |z, (r) — x(r)]2>

to<r<t

<At —to+ 4)E/ k(|2 (s) — 2,(s — 1/n)|**)ds

to

+4(t —to + 4)E/T k(|2 (r) — 2(r)**)ds.

to

From the definition of(-), we have following that

B( sup [a,(r) - o(r)?)

to<r<t

< 4B(t —to+ 4)E /t () — an(s — 1/m)[2ds

to

ARt + 4)E/T 2 (r) — 2(r)2ds.

to
But, an application of Lemmag3.5 implies that
Blra(s) — aals — 1/m)? < Co
if s > tg+ 1/n, otherwise ifty < s < tg + 1/n, we have
Bz, (s) — zn(s — 1/n)]? = Elz,(5) — 2,(t0)]* < Cs(s — tg) < 05%.
Therefore, it follows from the above inequality that

E( sup |z, (r) —x(r)|2>

to<r<t

<A4B(t —to+4)CF (%)a +48(t —tog+4) /t (E sup |z, (r) — :E(r)|2)ads.

to to<r<s
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An application of the Stachurska’s inequality (Lenim&2.4) implies that
E( sup |z,(r) — x(r)\2>

<h (D) - - Do) s - 0] - 1))

whereh(t) = 45(t — to + 4)Cg. In particular, the required inequality follows (3]13) follows
whent = T'. The proof is completex

4. CONCLUSION

Using the Holder’s condition and weakened linear growth condition, in the Thgor¢m 3.3, we
have shown that the Caratheodory’s approximate soluttdt) converge to the unique solution
z(t) of equation [(2]1) for rational number. In practice, given the errar > 0, one can let
n® be a large number thatk; /e and then compute,,(¢) over the intervalsty, to + 1/n], (to +
1/n,ty+2/n],--- , step by step. Theoreln 3.3 guarantees thatth(s) is closed enough to the
accurate solutior(¢) in the sense

E( sup |zn(t) —a:(t)|2> <e
to<t<T

In the Theorenj 3]6, using the weakened Holder’s condition and weakened linear growth
condition, we have shown that a dynamic movement relationship between the Caratheodory’s
approximate solutionr”(¢) and the unique solutior(t) of equation [(2.l). In other words,
Theorent 3.6 guarantees that thig(t) is closed enough to the accurate solutign) in the
same sense in Theorém13.3.
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