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1. I NTRODUCTION

Nonlinear stochastic differential equation has come to play an important role in many branches
of natural and applied science where more and more researcher have encountered stochastic dif-
ferential equations(short for SDEs). See the references to this [2]- [9] and [10]-[16]. Also, the
problems of the approximate solution to the SDEs has become an important field of study be-
cause the solution of the SDEs does not have an explicit expression except for linear cases
as well as the question of the existence of stochastic integral part in the equations. See the
references to this [6], [11], and [12].

Xuerong Mao [11] had established the existence and uniqueness theorems and discussed the
properties of the solution for the SDEs in his book. He had introduced the stochastic differential
equations studied by previous researchers;

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t),(1.1)

on the closed interval[t0, T ], t0 ≤ T. And he obtained that if Lipschiz condition and linear
growth condition hold, then the SDEs (1.1) had a unique solutionx(t), moreover,x(t) ∈
M2([t0, T ];Rd×m) which means that we denoted byM2 the family of processes{f(t)} in
Lp such thatE

∫ T

t0
|f(t)|2dt <∞.

However, the Lipschiz condition etc. only guarantee the existence and uniqueness of the
solution and, in general, the solution does not have an explicit expression except the linear case
which were discussed in previous researchers. See the references to this [11]. In practice, we
therefore often seek the approximate solution rather than the accurate solution.

Especially, Bae at al.[2] obtained that if two condition (1.2) and (1.3) hold: For anyy, z ∈ Rd

andt ∈ [t0, T ], we assume that

|f(y, t)− f(z, t)|2 ∨ |g(y, t)− g(z, t)|2 ≤ K|y − z|2α(1.2)

whereK is a positive constant and0 < α ≤ 1 is a constant. For anyt ∈ [t0, T ] it follows that
f(0, t), g(0, t) ∈ L2([t0, T ]) it follows that

|f(0, t)|2 ∨ |g(0, t)|2 ≤ K(1.3)

whereK is a positive constant, then there exists a unique solutionx(t) to equation(1.1) and
the solution belongs toM2([t0, T ];Rd). In the this paper, by using the Picard iteration pro-
cedure, authors established the theorem on the existence and uniqueness of the solution for
d-dimensional stochastic differential equation. As the by-product, authors also obtained the Pi-
card approximate solution for the equation and following Theorem 1.1 which gives an estimate
on the difference, called the error, between the approximate and the accurate solution.

Theorem 1.1.Assume that (1.2) and (1.3) hold. Letx(t) be the unique solutionx(t) of equation
(1.1) andxn(t) be the Picard iteration. Then

E

(
sup

t0≤t≤T
|xn(t)− x(t)|2

)
≤ γ1 exp (2M(T − t0))(1.4)

for all n ≥ 1.

In practice, given the errorε > 0, one can determinen for left-hand side of (1.4) to be less
thanε, and then computex0(t), x1(t), · · · , xn(t) by the Picard iteration. According to Theorem
1.1, we have

E

(
sup

t0≤t≤T
|xn(t)− x(t)|2

)
≤ ε.
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So we can usexn(t) as the approximate solution the equation(1.1). The disadvantage of
the Picard approximations is that one needs to computex0(t), x1(t), · · · , xn−1(t) in order to
computexn(t), and this will involve a lot of calculations on stochastic integrals. More efficient
ways in this direction are Caratheodory’s approximation procedure and Cauchy-Maruyama’s.

Motivated by [5], [6], [11], and [13], one of the objectives of this paper is to get one proof
to Caratheodory’s approximation procedure for given SDEs. The other objective of this paper
is to estimate on how fast the Caratheodory’s approximation iterationsxn(t) convergence the
unique solutionx(t) of the SDEs.

2. PRELIMINARY

Let (Ω,F , P ), throughout this paper unless otherwise specified, be a complete probability
space with a filtration{Ft}t≥t0 satisfying the usual conditions (i.e. it is right continuous and
Ft0 contains allP -null sets). Let| · | denote Euclidean norm inRn. If A is a vector or a
matrix, its transpose is denoted byAT ; if A is a matrix, its trace norm is represented by|A| =√

trace(ATA). Assume thatB(t) is anm-dimensional Brownian motion defined on complete
probability space, that isB(t) = (B1(t), B2(t), ..., Bm(t))T .

Consider thed-dimensional stochastic differential equation of Itô type

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) on t0 ≤ t ≤ T.(2.1)

with initial valuex(t0) = x0. By the definition of stochastic differential, this equation is equiv-
alent to the following stochastic integral equation:

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dB(s) on t0 ≤ t ≤ T.(2.2)

First, let us define the solution of the stochastic differential equations.

Definition 2.1. ([11]) An Rd-valued stochastic process{x(t)}t0≤t≤T is called a solution of
equation (2.1) if it has the following properties:
(i) {x(t)} is continuous andFt-adapted;
(ii) {f(x(t), t)} ∈ L1([t0, T ];Rd) and{g(x(t), t)} ∈ L2([t0, T ];Rd×m);
(iii) equation (2.1) holds for everyt ∈ [t0, T ] with probability 1.
A solution {x(t)} is said to be unique if any other solution{x̄(t)}is indistinguishable from
{x(t)}, that is

P{x(t) = x̄ for all t0 ≤ t ≤ T} = 1.

For the convenience of the reader, we state following lemmas.

Lemma 2.1. ([1, 11]) (Hölder’s inequality) If 1
p

+ 1
q

= 1 for anyp, q > 1, f ∈ Lp, andg ∈ Lq,

thenfg ∈ L1 and
∫ b

a
fgdx ≤

(∫ b

a
|f |pdx

) 1
p
(∫ b

a
|g|qdx

) 1
q
.

Lemma 2.2. ([11])(moment inequality) Letp ≥ 2. Letf ∈M2([0, T ];Rd×m) such that

E

∫ T

0

|f(s)|pds <∞.

Then

E

∣∣∣∣∫ T

0

f(s)dB(s)

∣∣∣∣p ≤ (p(p− 1)

2

) p
2

T
p−2
2 E

∫ T

0

|f(s)|pds.
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Lemma 2.3. ([11])(moment inequality) Ifp ≥ 2, f ∈M2
(
[0, T ];Rd×m

)
such that

E

∫ T

0

|f(s)|pds <∞,

then

E

(
sup

0≤t≤T

∣∣∣∣∫ t

0

f(s)dB(s)

∣∣∣∣p) ≤ ( p3

2(p− 1)

) p
2

T
p−2

p E

∫ T

0

|f(s)|pds.

Lemma 2.4. ([1]) (Stachurska’s inequality) Letx(t) andy(t) be nonnegative continuous func-
tions for t ≥ α , and letx(t) ≤ a(t) + b(t)

∫ t

α
y(s)xp(s)ds, t ∈ J = [α, β), where a

b
is

nondecreasing function and0 < p < 1. Then

x(t) ≤ a(t)

(
1− (p− 1)

[
a(t)

b(t)

]p−1 ∫ t

α

y(s)bp(s)ds

) −1
p−1

.

In order to attain the approximate solution of equation (2.1) with initial data, we propose the
following assumptions:

(H1) (Hölder condition) For anyϕ, ψ ∈ Rd andt ∈ [t0, T ], we assume that

|f(ϕ, t)− f(ψ, t)|2 ∨ |g(ϕ, t)− g(ψ, t)|2 ≤ K|ϕ− ψ|2α,

whereK is a positive constant and0 < α < 1 is a constant.

(H2) (Weakened linear growth condition) For anyt ∈ [t0, T ], it follows thatf(0, t), g(0, t) ∈
L2 such that

|f(0, t)|2 ∨ |g(0, t)|2 ≤ K1,

whereK1 is a positive constant.

3. M AIN RESULTS

In order to obtain an approximate solution to SDEs, let us now give a definition of Caratheodory’s
approximate solutions.

For every integern ≥ 1, definexn(t) = x0 for t0 − 1 ≤ t ≤ t0 and

xn(t) = x0 +

∫ t

t0

f(xn(s− 1/n), s)ds+

∫ t

t0

g(xn(s− 1/n), s)dB(s)(3.1)

for t0 ≤ t ≤ T. Note that fort0 ≤ t ≤ t0 + 1/n, xn(t) can be computed by

xn(t) = x0 +

∫ t

t0

f(x0, s)ds+

∫ t

t0

g(x0, s)dB(s);

then fort0 + 1/n < t ≤ t0 + 2/n,

xn(t) = xn(t0 + 1/n) +

∫ t

t0+1/n

f(xn(s− 1/n), s)ds+

∫ t

t0+1/n

g(xn(s− 1/n), s)dB(s),

and so on. In other words,xn(t) can be computed step-by-step on the intervals[t0, t0 +
1/n], (t0 + 1/n, t0 + 2/n], . . . .

We need to prepare two lemmas in order to establish one of the main results.

Lemma 3.1. Letf : Rd× [t0, T ] → Rd andg : Rd× [t0, T ] → Rd×m be both Borel measurable.
Consider thed-dimensional Caratheodory’s approximate solutions (3.1). Assume that there
exist two constantsK andK1 such that
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(i) (Hölder condition) For anyϕ, ψ ∈ Rd andt ∈ [t0, T ], we assume that

(3.2) |f(ϕ, t)− f(ψ, t)|2 ∨ |g(ϕ, t)− g(ψ, t)|2 ≤ K|ϕ− ψ|2α,

whereK is a positive constant and0 < α < 1 is a constant.

(ii) (Weakened linear growth condition) For anyt ∈ [t0, T ], it follows thatf(0, t), g(0, t) ∈
L2 such that

(3.3) |f(0, t)|2 ∨ |g(0, t)|2 ≤ K1,

whereK1 is a positive constant.

Then, for alln ≥ 1, we have

sup
t0<t≤T

E|xn(t)|2(3.4)

≤ C1 := a(T )
{

1− (α− 1)
[
a(T )

]α−1[
6K(T − t0 + 1)

](
T − t0

)}−1/(α−1)

,

wherea(T ) = 3E|x0|2 + 6K1(T − t0)(T − t0 + 1).

Proof. Fix n ≥ 1 arbitrarily. It is easy to see from the definition ofxn(t) and condition (3.2)
and (3.3) that{xn(t)}t0≤t≤T ∈ M2((t0, T ];Rd). From (3.1), using the elementary inequality
(y + z + w)2 ≤ 3(y2 + z2 + w2), we have following fort0 ≤ t ≤ T

|xn(t)|2 ≤ 3|x0|2 + 3
∣∣∣ ∫ t

t0

f(xn(s− 1/n), s)ds
∣∣∣2 + 3

∣∣∣ ∫ t

t0

g(xn(s− 1/n), s)dB(s)
∣∣∣2.

By Hölder’s inequality, we can derive that

|xn(t)|2 ≤ 3|x0|2 + 3(T − t0)

∫ t

t0

|f(xn(s− 1/n), s)|2ds+ 3
∣∣∣ ∫ t

t0

g(xn(s− 1/n), s)dB(s)
∣∣∣2.

Taking the expectation on both sides and using the Lemma 2.2, we have following

E|xn(t)|2

≤ 3E|x0|2 + 3(T − t0)E

∫ t

t0

|f(xn(s− 1/n), s)|2ds+ 3E

∫ t

t0

|g(xn(s− 1/n), s)|2ds.

By the condition (3.2) and (3.3), we obtain

E|xn(t)|2

≤ 3E|x0|2 + 6K1(T − t0)(T − t0 + 1) + 6K(T − t0 + 1)E

∫ t

t0

|xn(s− 1/n)|2αds.

Consequently

sup
t0≤s≤t

E|xn(s)|2 ≤ a(T ) + 6K(T − t0 + 1)

∫ t

t0

E sup
t0≤r≤s

|xn(r)|2αds,

wherea(T ) = 3E|x0|2+6K1(T−t0)(T−t0+1). An application of the Stachurska’s inequality
(Lemma2.4) implies that

sup
t0≤s≤t

E|xn(s)|2

≤ a(T )
{

1− (α− 1)
[ a(T )

6K(T − t0 + 1)

]α−1
∫ t

t0

[3K(T − t0 + 1)]αds
}−1/(α−1)

≤ a(T )
{

1− (α− 1)
[
a(T )

]α−1[
6K(T − t0 + 1)

](
t− t0

)}−1/(α−1)
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for all t0 ≤ t ≤ T. In particular, the required inequality follows (3.4) follows whent = T. The
proof is complete.

Lemma 3.2. Under the Hölder condition (3.2) and weakened linear growth condition (3.3), for
all n ≥ 1 andt0 ≤ s < t ≤ T with t− s ≤ 1, the Caratheodory’s approximate solution has the
property

E|xn(t)− xn(s)|2 ≤ C2(t− s)(3.5)

whereC2 = 8K1 + 8KCα
1 andC1 is defined in Lemma 3.1

Proof. From (3.1), we have following fort0 ≤ s < t ≤ T

xn(t)− xn(s) =

∫ t

s

f(xn(r − 1/n), r)dr +

∫ t

s

g(xn(r − 1/n), r)dB(r).

Using the elementary inequality(y + z)2 ≤ 2(y2 + z2), we have following

|xn(t)− xn(s)|2 ≤ 2
∣∣∣ ∫ t

s

f(xn(r − 1/n), r)dr
∣∣∣2 + 2

∣∣∣ ∫ t

s

g(xn(r − 1/n), r)dB(r)
∣∣∣2.

By Hölder’s inequality, we can derive that

|xn(t)− xn(s)|2 ≤ 2(t− s)

∫ t

s

|f(xn(r − 1/n), r)|2dr + 2
∣∣∣ ∫ t

s

g(xn(r − 1/n), r)dB(r)
∣∣∣2.

Taking the expectation on both sides and using the Lemma 2.2, we have following

E|xn(t)− xn(s)|2 ≤ 2(t− s)E

∫ t

s

|f(xn(r − 1/n), r)|2dr + 2E

∫ t

s

|g(xn(r − 1/n), r)|2dr.

By the condition (3.2) and (3.3), we obtain

E|xn(t)− xn(s)|2

≤ 4(t− s)
[
E

∫ t

s

K|xn(r − 1/n)|2αdr +K1(t− s)
]

+4
[
E

∫ t

s

K|xn(r − 1/n)|2αdr +K1(t− s)
]

= 4K1(t− s)[t− s+ 1] + 4[t− s+ 1]E

∫ t

s

K|xn(r − 1/n)|2αdr

≤ 8K1(t− s) + 8E

∫ t

s

K|xn(r − 1/n)|2αdr.

Consequently

E|xn(t)− xn(s)|2 ≤ 8K1(t− s) + 8K

∫ t

s

E sup
t0≤k≤r

|xn(k)|2αdr.

Hence, an application of Lemma3.1 implies that

E|xn(t)− xn(s)|2 ≤ 8K1(t− s) + 8KCα
1 (t− s)

for all t0 ≤ s < t ≤ T. The proof is complete.
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Theorem 3.3. Assume that the Hölder condition (3.2) and the weakened linear growth con-
dition (3.3), hold. Letx(t) be the unique solution of thed-dimensional stochastic differential
equation (2.1) of Itô type andxn(t) be the Caratheodory’s approximate solution. Then, for all
n ≥ 1, such that

E
(

sup
t0≤t≤T

|xn(t)− x(t)|2
)
≤ C3

1

nα
(3.6)

where0 < α < 1, C3 = b(T ){1 − (α − 1)[b(T )]α−1[4K(T − t0 + 1)](t − t0)}−1/(α−1),
b(T ) = 4K(T − t0 + 4)Cα

2 , andC2 is defined in Lemma 3.2

Proof. From the definition ofx(t) andxn(t), it is not difficult to derive that

xn(t)− xn(s)

=

∫ t

t0

[f(xn(s− 1/n), s)− f(x(s), s)]ds+

∫ t

t0

[g(xn(s− 1/n), s)− g(x(s), s)]dB(s).

Using the elementary inequality(y + z)2 ≤ 2(y2 + z2) and Hölder’s inequality, we have fol-
lowing

sup
t0≤r≤t

|xn(r)− x(r)|2

≤ 2(t− t0)

∫ t

t0

|f(xn(s− 1/n), s)− f(x(s), s)|2ds

+2 sup
t0≤r≤t

∣∣∣ ∫ r

t0

[g(xn(s− 1/n), s)− g(x(s), s)]dB(s)
∣∣∣2.

Taking the expectation on both sides and using the Lemma 2.3, we have following

E
(

sup
t0≤r≤t

|xn(r)− x(r)|2
)

≤ 4(t− t0)E

∫ t

t0

[|f(xn(s), s)− f(xn(s− 1/n), s)|2 + |f(xn(s), s)− f(x(s), s)|2ds

+16E

∫ t

t0

[|g(xn(s), s)− g(xn(s− 1/n), s)|2 + |g(xn(s), s)− g(x(s), s)|2]ds.

By the condition (3.2) and (3.3), we obtain

E
(

sup
t0≤r≤t

|xn(r)− x(r)|2
)

≤ 4K(t− t0 + 4)E

∫ t

t0

|xn(s)− xn(s− 1/n)|2αds

+4K(t− t0 + 4)E

∫ t

t0

sup
t0≤r≤s

|xn(r)− x(r)|2αds.

But, an application of Lemma3.2 implies that

E|xn(s)− xn(s− 1/n)|2 ≤ C2
1

n

if s ≥ t0 + 1/n, otherwise ift0 ≤ s < t0 + 1/n, we have

E|xn(s)− xn(s− 1/n)|2 = E|xn(s)− xn(t0)|2 ≤ C2(s− t0) ≤ C2
1

n
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Therefore, it follows from the above inequality that

E
(

sup
t0≤r≤t

|xn(r)− x(r)|2
)

≤ 4K(t− t0 + 4)Cα
2

( 1

n

)α

+ 4K(t− t0 + 4)

∫ t

t0

(
E sup

t0≤r≤s
|xn(r)− x(r)|2

)α

ds.

An application of the Stachurska’s inequality (Lemma2.4) implies that

E
(

sup
t0≤r≤t

|xn(r)− x(r)|2
)

≤ b(t)
( 1

n

)α{
1− (α− 1)

[
b(t)
]α−1[

4K(t− t0 + 1)
](
t− t0

)}−1/(α−1)

,

whereb(t) = 4K(t − t0 + 4)Cα
2 . In particular, the required inequality follows (3.6) follows

whent = T. The proof is complete.

In other words, the authors in ([13]) established the existence and uniqueness theorem using
the condition (3.7) and (3.8). Moreover, under quite general conditions, we are still able to show
that the Caratheodory’s approximate solutions converge to the unique solution of equation (2.1).
This is described as follows.

Lemma 3.4. Letf : Rd× [t0, T ] → Rd andg : Rd× [t0, T ] → Rd×m be both Borel measurable.
Consider thed-dimensional Caratheodory’s approximate solutions (3.1). Assume that there
exist a constantK1 such that

(i) For anyϕ, ψ ∈ Rd andt ∈ [t0, T ], we assume that

(3.7) |f(ϕ, t)− f(ψ, t)|2 ∨ |g(ϕ, t)− g(ψ, t)|2 ≤ κ(|ϕ− ψ|2α),

where0 < α < 1 andκ(·) is a concave non-decreasing function fromR+ to R+ such
thatκ(0) = 0, κ(u) > 0 for u > 0 .

(ii) For anyt ∈ [t0, T ], it follows thatf(0, t), g(0, t) ∈ L2 such that

(3.8) |f(0, t)|2 ∨ |g(0, t)|2 ≤ K1,

whereK1 is a positive constant.

Then, for alln ≥ 1, we have

sup
t0<t≤T

E|xn(t)|2(3.9)

≤ C4 := d(T )
{

1− (α− 1)
[
d(T )

]α−1[
6K(T − t0 + 1)

](
T − t0

)}−1/(α−1)

,

whered(T ) = a(T ) + 6a(T − t0)(T − t0 + 1) anda(T ) is defined in Lemma 3.1.

Proof. Fix n ≥ 1 arbitrarily. It is easy to see from the definition ofxn(t) and condition (3.7)
and (3.8) that{xn(t)}t0≤t≤T ∈ M2((t0, T ];Rd). From (3.1), using the elementary inequality
(y + z + w)2 ≤ 3(y2 + z2 + w2), we have following fort0 ≤ t ≤ T

|xn(t)|2 ≤ 3|x0|2 + 3
∣∣∣ ∫ t

t0

f(xn(s− 1/n), s)ds
∣∣∣2 + 3

∣∣∣ ∫ t

t0

g(xn(s− 1/n), s)dB(s)
∣∣∣2.

By Hölder’s inequality, we can derive that

|xn(t)|2 ≤ 3|x0|2 + 3(T − t0)

∫ t

t0

|f(xn(s− 1/n), s)|2ds+ 3
∣∣∣ ∫ t

t0

g(xn(s− 1/n), s)dB(s)
∣∣∣2.
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Taking the expectation on both sides and using the Lemma 2.2, we have following

E|xn(t)|2

≤ 3E|x0|2 + 3(T − t0)E

∫ t

t0

|f(xn(s− 1/n), s)|2ds+ 3E

∫ t

t0

|g(xn(s− 1/n), s)|2ds.

By the condition (3.7) and (3.8), we obtain

E|xn(t)|2

≤ a(t) + 6(t− t0 + 1)E

∫ t

t0

κ(|xn(s− 1/n)|2α)ds,

wherea(t) = 3E|x0|2 +6K1(t− t0)(t− t0 +1). Sinceκ(·) is concave and nondecreasing, there
must exit a positive numbera such that

κ(u) ≤ a(1 + u)(3.10)

onu ≥ 0. Consequently

sup
t0≤s≤t

E|xn(s)|2 ≤ d(t) + 6a(t− t0 + 1)

∫ t

t0

E sup
t0≤r≤s

|xn(r)|2αds,

whered(t) = a(t) + 6a(T − t0)(T − t0 + 1). An application of the Stachurska’s inequality
(Lemma2.4) implies that

sup
t0≤s≤t

E|xn(s)|2

≤ d(T )
{

1− (α− 1)
[ d(T )

6a(T − t0 + 1)

]α−1
∫ t

t0

[6a(T − t0 + 1)]αds
}−1/(α−1)

≤ d(T )
{

1− (α− 1)
[
d(T )

]α−1[
6a(T − t0 + 1)

](
t− t0

)}−1/(α−1)

for all t0 ≤ t ≤ T. In particular, the required inequality follows (3.9) follows whent = T. The
proof is complete.

Lemma 3.5. Under the condition (3.7) and weakened linear growth condition (3.8), for all
n ≥ 1 and t0 ≤ s < t ≤ T with t − s ≤ 1, the Caratheodory’s approximate solution has the
property

E|xn(t)− xn(s)|2 ≤ C5(t− s),(3.11)

whereC5 = 8K1 + 8a+ 8aCα
4 , a is positive constant, andC4 is defined in Lemma 3.4.

Proof. From (3.1), using the elementary inequality(y + z)2 ≤ 2(y2 + z2), we have following

|xn(t)− xn(s)|2 ≤ 2
∣∣∣ ∫ t

s

f(xn(r − 1/n), r)dr
∣∣∣2 + 2

∣∣∣ ∫ t

s

g(xn(r − 1/n), r)dB(r)
∣∣∣2.

By Hölder’s inequality, we can derive that

|xn(t)− xn(s)|2 ≤ 2(t− s)

∫ t

s

|f(xn(r − 1/n), r)|2dr + 2
∣∣∣ ∫ t

s

g(xn(r − 1/n), r)dB(r)
∣∣∣2.
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Taking the expectation on both sides and using the Lemma 2.2, we have following

E|xn(t)− xn(s)|2

≤ 4(t− s)E

∫ t

s

[|f(xn(r − 1/n), r)− f(0, r)|2 + |f(0, r)|2]dr

+4E

∫ t

s

|g(xn(r − 1/n), r)− g(0, r)|2 + |g(0, r)|2]dr.

By the condition (3.7) and (3.8), we obtain

E|xn(t)− xn(s)|2

≤ 4(t− s)
[
E

∫ t

s

κ(|xn(r − 1/n)|2α)dr +K1(t− s)
]

+4
[
E

∫ t

s

κ(|xn(r − 1/n)|2α)dr +K1(t− s)
]

= 4K1(t− s)[t− s+ 1] + 4[t− s+ 1]E

∫ t

s

κ(|xn(r − 1/n)|2α)dr

≤ 8K1(t− s) + 8E

∫ t

s

κ(|xn(r − 1/n)|2α)dr.

From the definition ofκ(·) and the inequality (3.10), we have following that

E|xn(t)− xn(s)|2 ≤ 8K1(t− s) + 8a(t− s) + 8K

∫ t

s

E sup
t0≤k≤r

|xn(k)|2αdr.

Hence, an application of Lemma3.4 implies that

E|xn(t)− xn(s)|2 ≤ [8K1 + 8a+ 8aCα
4 ](t− s)

for all t0 ≤ s < t ≤ T. The proof is complete.

Theorem 3.6.Letx(t) be the unique solution of thed-dimensional stochastic differential equa-
tion (2.1) of Itô type andxn(t) be the Caratheodory’s approximate solution. Assume that the
weakened linear growth condition (3.8) and the following weakened Hölder condition hold. For
anyϕ, ψ ∈ Rd andt ∈ [t0, T ], we assume that

(3.12) |f(ϕ, t)− f(ψ, t)|2 ∨ |g(ϕ, t)− g(ψ, t)|2 ≤ κ(|ϕ− ψ|2α),

where0 < α < 1 and κ(·) is a concave non-decreasing function fromR+ to R+ such that
κ(0) = 0, 0 < κ(u) ≤ βu for u > 0 and a constantβ(> 0). Then, for alln ≥ 1, such that

E
(

sup
t0≤t≤T

|xn(t)− x(t)|2
)
≤ C6

1

nα
,(3.13)

where0 < α < 1, C6 = h(T ){1− (α− 1)[h(T )]α−1[4β(t− t0 + 1)](t− t0)}−1/(α−1), h(T ) =
4β(T − t0 + 4)Cα

5 , andC5 is defined in Lemma 3.5.
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Proof. From the definition ofx(t) andxn(t), using the elementary inequality(y+z)2 ≤ 2(y2 +
z2) and Hölder’s inequality, we have following

sup
t0≤r≤t

|xn(r)− x(r)|2

≤ 2(t− t0)

∫ t

t0

|f(xn(s− 1/n), s)− f(x(s), s)|2ds

+2 sup
t0≤r≤t

∣∣∣ ∫ r

t0

[g(xn(s− 1/n), s)− g(x(s), s)]dB(s)
∣∣∣2.

Taking the expectation on both sides and using the Lemma 2.3, we have following

E
(

sup
t0≤r≤t

|xn(r)− x(r)|2
)

≤ 4(t− t0)E

∫ t

t0

[|f(xn(s), s)− f(xn(s− 1/n), s)|2 + |f(xn(s), s)− f(x(s), s)|2ds

+16E

∫ r

t0

[|g(xn(s), s)− g(xn(s− 1/n), s)|2 + |g(xn(s), s)− g(x(s), s)|2]ds.

By the condition (3.8) and (3.12), we obtain

E
(

sup
t0≤r≤t

|xn(r)− x(r)|2
)

≤ 4(t− t0 + 4)E

∫ t

t0

κ(|xn(s)− xn(s− 1/n)|2α)ds

+4(t− t0 + 4)E

∫ r

t0

κ(|xn(r)− x(r)|2α)ds.

From the definition ofκ(·), we have following that

E
(

sup
t0≤r≤t

|xn(r)− x(r)|2
)

≤ 4β(t− t0 + 4)E

∫ t

t0

|xn(s)− xn(s− 1/n)|2αds

+4β(t− t0 + 4)E

∫ r

t0

|xn(r)− x(r)|2αds.

But, an application of Lemma3.5 implies that

E|xn(s)− xn(s− 1/n)|2 ≤ C5
1

n

if s ≥ t0 + 1/n, otherwise ift0 ≤ s < t0 + 1/n, we have

E|xn(s)− xn(s− 1/n)|2 = E|xn(s)− xn(t0)|2 ≤ C5(s− t0) ≤ C5
1

n
.

Therefore, it follows from the above inequality that

E
(

sup
t0≤r≤t

|xn(r)− x(r)|2
)

≤ 4β(t− t0 + 4)Cα
5

( 1

n

)α

+ 4β(t− t0 + 4)

∫ t

t0

(
E sup

t0≤r≤s
|xn(r)− x(r)|2

)α

ds.
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An application of the Stachurska’s inequality (Lemma2.4) implies that

E
(

sup
t0≤r≤t

|xn(r)− x(r)|2
)

≤ h(t)
( 1

n

)α{
1− (α− 1)

[
h(t)

]α−1[
4β(t− t0 + 1)

](
t− t0

)}−1/(α−1)

,

whereh(t) = 4β(t − t0 + 4)Cα
5 . In particular, the required inequality follows (3.13) follows

whent = T. The proof is complete.

4. CONCLUSION

Using the Hölder’s condition and weakened linear growth condition, in the Theorem 3.3, we
have shown that the Caratheodory’s approximate solutionxn(t) converge to the unique solution
x(t) of equation (2.1) for rational numberα. In practice, given the errorε > 0, one can let
nα be a large number thanC3/ε and then computexn(t) over the intervals[t0, t0 + 1/n], (t0 +
1/n, t0 +2/n], · · · , step by step. Theorem 3.3 guarantees that thisxn(t) is closed enough to the
accurate solutionx(t) in the sense

E
(

sup
t0≤t≤T

|xn(t)− x(t)|2
)
< ε.

In the Theorem 3.6, using the weakened Hölder’s condition and weakened linear growth
condition, we have shown that a dynamic movement relationship between the Caratheodory’s
approximate solutionxn(t) and the unique solutionx(t) of equation (2.1). In other words,
Theorem 3.6 guarantees that thisxn(t) is closed enough to the accurate solutionx(t) in the
same sense in Theorem 3.3.
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