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1. I NTRODUCTION

Joseph Fourier’s remarkable works on heat conduction problems fascinated the scientific
community in many different ways since the eighteenth century. His idea was used by mathe-
maticians and physicists in many different areas for developing new theories and technologies.
During the detailed studies, people noticed some practical difficulties such as the inability of
local analysis of signals in signal processing and related areas. As a solution to this issue of
Fourier analysis, wavelet analysis has emerged since the nineteenth century. The vast applica-
tions of wavelets in fields such as signal processing, image compression, medicine and similar
fields have been an inspiration behind the growing interest in this subject. The basic idea in
wavelet theory is that using the dilates and integer translates of a single function inL2(R),
we construct a basis forL2(R). Wavelets first appeared in the thesis byAlfred Haar in 1909.
In 1985, it wasMeyerwho constructed a wavelet that is continuously differentiable but lacks
the property of having compact support. Many advancements were made in this field during
this period, one major achievement was in 1988 byMeyerandMallat with the formulation of
the mathematical aspects of multiresolution analysis. These major mathematical foundations
coined by these researchers was followed by a remarkable work ofDaubechiesin 1988 with the
construction of a set of orthonormal wavelet basis functions. Details of these discussions about
wavelets and the formations of wavelet bases could be seen in [19, 8, 30, 18].

Classification of wavelets has always been of great interest, and the importance of each
wavelet depends on the purpose we are dealing with. It is the reason for the classification of
wavelets based on the support of their Fourier transform and that leads to Minimally Supported
Frequency (MSF) wavelets or unimodular wavelets or s-elementary wavelets. MSF wavelets
and unimodular wavelets are defined in the same manner. The difference in their names is due
to the different authors who studied the subject independently in almost the same period. Al-
though s-elementary wavelets seem to have a similar definition, the difference is in the way they
are defined. s-elementary wavelets are defined using wavelet sets whereas MSF and unimodular
wavelets use the support of their Fourier transform. In both cases, the modulus of the Fourier
transform of these wavelets is the characteristic function of a measurable set.

Five sections of this paper study the subject in some detail, major results are examined and
included without proof but, a brief outline is mentioned for clarity wherever it is necessary.
The introductory part and the few results and definitions that are used in this paper constitutes
the first two sections. An introduction to MSF, s-elementary and unimodular wavelets along
with the construction and characterization of MSF wavelets is covered in the third section. The
fourth section is devoted to MRA MSF wavelets. MSF wavelets induced by an MRA and
the nature of the corresponding scaling function associated with the MRA is the highlight of
the fourth section. The concept of Dimension function which plays a major role in the study
of MSF wavelets is introduced and the low-pass filter associated with MRA MSF wavelets is
also discussed in this section along with a narration about the topological property of the path
connectedness of s-elementary wavelets. Some examples are studied for a better understanding
of the subject and is included in the fifth section.

2. BASIC CONCEPTS IN WAVELETS

It is a common practice among mathematicians to use an orthonormal basis for the Hilbert
space to decompose any complicated function in terms of simple functions, which are known
and easy to handle. Also, we need to overcome the drawbacks like the inability to analyse the
function locally and uncertainty in handling the position and frequency simultaneously of the
Fourier transform. In the same manner, we need to reconstruct the original function from the
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coefficients. The process of decomposing the function is termed asanalysisand the recon-
struction process is calledsynthesis. Here we provide a few basic definitions and results which
are used in this paper. We use the letter,M to denote the Lebesgue measure from this point
onwards.

Definition 2.1. [18] A function ψ ∈ L2(R) is anorthonormal wavelet if {ψj,k}j,k∈Z is an
orthonormal basis forL2(R), whereψj,k(x) = 2j/2ψ(2jx − k). Here2j/2 is introduced so that
norm is unaffected by the dilation and translation i.e,‖ ψj,k ‖2=‖ ψ ‖2.

2.1. MRA wavelets. MRA acts as one of the main tools in constructing wavelets.

Definition 2.2. [18] A multiresolution analysis (MRA) consists of a sequence of closed sub-
spaces{Vj}, j ∈ Z, of L2(R) satisfying

(1) Vj ⊂ Vj+1 for all j ∈ Z

(2) f(·) ∈ Vj if and only if f(2·) ∈ Vj+1for all j ∈ Z

(3)
⋂
j∈Z Vj = {0}

(4) ∪j∈ZVj = L2(R)

(5) functionφ ∈ V0 exists, such that{φ(· − k) : k ∈ Z} is an orthonormal basis forV0.

The functionφ is called ascaling function of the given MRA. Once an MRA is obtained,
corresponding wavelets can be constructed as follows.

To construct an orthonormal wavelet from an MRA, letWj be the orthogonal complement of
Vj in Vj+1. Since1

2
φ( ·

2
) ∈ V−1 ⊂ V0, expressing it in terms of the basis functions we have

(2.1) φ̂(2ζ) = φ̂(ζ)m0(ζ)

wherem0(ζ) is a2π-periodic function inL2([−π, π)) satisfying the condition

(2.2) |m0(ζ)|2 + |m0(ζ + π)|2 = 1, a.e. ζ ∈ R

and is called the low-pass filter associated with the scaling functionφ. From this low-pass filter,
we can construct an orthonormal waveletψ for L2(R) if and only if

(2.3) ψ̂(2ζ) = eιζm0(ζ + π)φ̂(ζ), a.e. ζ ∈ R.

Thus,{Vj : j ∈ Z} will generate an MRA if there exists a functionφ ∈ L2(R) such that the
system{φ(· − k) : k ∈ Z} is an orthonormal basis forV0. The waveletψ constructed in this
manner is known asMRA wavelet. From equations (2.1), (2.2) and (2.3) we have

(2.4) |φ̂(2ζ)|2 + |ψ̂(2ζ)|2 = |φ̂(ζ)|2, a.e. ζ ∈ R.

On iterating equation (2.4), we obtain the relation

(2.5) |φ̂(ζ)|2 = |φ̂(2Nζ)|2 +
N∑
j=1

|ψ̂(2jζ)|2, for every N ≥ 1.

Since|φ̂(ζ)| ≥ 1 and
{∑N

j=1 |ψ̂(2jζ)|2 : N = 2, 3, · · ·
}

is an increasing sequence of real num-

bers bounded by 1,lim
N→∞

N∑
j=1

|ψ̂(2jζ)|2 exists which in turn implies the existence of the limit
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lim
N→∞

|φ̂(2Nζ)|2. By a change of variable,lim
N→∞

∫
R
|φ̂(2Nζ)|2dζ = 0 and Fatou’s Lemma gives

lim
N→∞

|φ̂(2Nζ)|2 = 0. By equation (2.4), we have|φ̂| related with the waveletψ as follows:

(2.6) |φ̂(ζ)|2 =
∞∑
j=1

|ψ̂(2jζ)|2 for a.e. ζ ∈ R.

Theorem 2.1. [18] A functionφ ∈ L2(R) is a scaling function for an MRA if and only if there
exists a2π-periodic functionm0 such that

(2.7) φ̂(2ζ) = m0(ζ)φ̂(ζ) for a.e. ζ ∈ R
and

(2.8)
∑
k∈Z

|φ̂(ζ + 2kπ)|2 = 1 for a.e. ζ ∈ [−π, π)

(2.9) lim
j→∞

|φ̂(2−jζ)| = 1 for a.e. ζ ∈ R.

Although MRA wavelets are those classes of wavelets that are discussed all over, there exist
wavelets that are not induced from an MRA which are reported in the literature. Journe wavelets
and Lemarie wavelets are a few among them.

Theorem 2.2(Characterization of orthonormal system). [18] If ψ ∈ L2(R), then{ψ(· − k) :

k ∈ Z} is an orthonormal system if and only if
∑
k∈Z

|ψ̂(ζ + 2kπ)|2 = 1 for a.e. ζ ∈ R.

3. MSF WAVELETS FROM M EYER ’ S EQUATIONS

To study MSF wavelets it would be appropriate to begin with Meyer’s equations which pro-
vide equivalent conditions for an orthonormal wavelet. These equations first appeared in [21]
without proof and details of the proof published later in [15]. It makes use of the basic orthonor-
mality properties, convergence of Cesaro sums, Lebesgue differentiation Theorem and Poisson
summation formula.

Theorem 3.1(Meyer’s equations). [15] ψ ∈ L2(R) is an orthonormal wavelet forL2(R) if and
only if ψ satisfies

a)
∑
k∈Z

|ψ̂(ζ + 2kπ)|2 = 1 a.e. ζ ∈ R

b)
∑
k∈Z

ψ̂(ζ + 2kπ)ψ̂
∗
(2j(ζ + 2kπ)) = 0 for j ≥ 1 a.e. ζ ∈ R

c)
∑
j∈Z

|ψ̂(2−jζ)|2 = 1 a.e. ζ ∈ R

d)
∑
l≥0

ψ̂(2l(ζ + 2mπ))ψ̂
∗
(2lζ) = 0 for m ∈ 2Z + 1 a.e. ζ ∈ R

whereψ̂
∗

is the complex conjugate of̂ψ.

Meyer’s equations help in determining whether a function inL2(R) is an orthonormal wavelet
or not. But the problem faced here is that we need to verify all four equations which are infinite
sums. Thus there arises the problem of convergence of the series. This problem can be settled
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if we could get a "nice" form for̂ψ such that the equations are converted to finite ones. If|ψ̂| is
the characteristic function of some measurable subset ofR, then this problem is reduced.

From the characterization of an orthonormal system given by Theorem (2.2), we observe that
if ψ is an orthonormal wavelet, then clearly|ψ̂(ζ)| ≤ 1 a.e. ζ ∈ R. By the orthonormality of
ψ, we have‖ ψ ‖2= 1 and by Plancheral’s Theorem‖ ψ̂ ‖2

2= 2π. Thus|ψ̂(ζ)| ≤ 1 almost
everywhere onR together with‖ ψ̂ ‖2

2= 2π leads to the fact thatM(Supp ψ̂) ≥ 2π. So it
is natural to consider the case whenM(Supp ψ̂) = 2π. By method of contradiction, one can
show that onSupp ψ̂, |ψ̂(ζ)| = 1. For this, we assume that0 < |ψ̂(ζ)| < 1 on a setE of
positive measure. Then,

(3.1) 2π = M(Supp ψ̂) =

∫
Supp ψ̂

1 dζ >

∫
R
|ψ̂(ζ)|2dζ = ‖ ψ̂ ‖2

2 = 2π

which is a contradiction. For the converse, we assume that|ψ̂(ζ)| = 1 onSupp ψ̂ which in turn
is equivalent to|ψ̂| = χE whereE = Supp ψ̂. The orthonormality of{ψ(· − k) : k ∈ Z} thus
gives

(3.2) M(E) =

∫
E

dζ =

∫
R
|ψ̂(ζ)|2dζ = ‖ ψ̂ ‖2

2= 2π ‖ ψ ‖2
2= 2π

Thus we have forψ ∈ L2(R) which is an orthonormal wavelet,M(Supp ψ̂) is atleast2π.
Equality holds here if and only if|ψ̂| = χE for some measurable setE ⊂ R with M(E) = 2π.
In such cases, the waveletψ is called aMinimally Supported Frequency wavelet (MSF
wavelet)and the setE is called awavelet set. From this, the name ’minimally supported fre-
quency wavelets’ is clear.M(Supp ψ̂) = 2π is the minimal condition that can be attained. MSF
wavelets was introduced in [13] and as ’unimodular wavelets’ in [15]. Unimodular wavelets are
defined using the functionsψ ∈ L2(R) such that|ψ̂(ζ)| = 1 onSupp ψ̂ termed as unimodular
functions in [15].

Whenψ is an MSF wavelet, the Meyer’s equations in Theorem (3.1) eventually gets reduced
to just two equations. By Meyer’s equations one side proof is trivial. Hence it is enough to show
that if both conditions(a) and(c) of Theorem (3.1) are satisfied together with the assumption
that forψ ∈ L2(R) such that|ψ̂| = χK for some measurable setK ⊂ R, thenψ is an MSF
wavelet. It is shown in [15] that for any unimodular functionψ in L2(R), the equation(a)
implies(d) and(c) implies(b) which in turn provesψ to be an orthonormal wavelet by Theorem
(3.1). If for a fixedζ, such that2jζ ∈ K, then|ψ̂(2jζ)| = 1. By (a) part of Theorem (3.1),
ψ̂(2jζ + 2kπ) = 0 for nonzerok which in turn implies(d). In a similar way, if for a fixedζ for
which ζ + 2kπ ∈ Supp ψ̂, |ψ̂(ζ + 2kπ)| = 1. This together with the assumption of(c) would
give us for nonzeroj, ψ̂(2j(ζ + 2kπ)) = 0 and which in turn makes each term in(b) to be zero.
Thus we have the following characterization of unimodular wavelets.

Theorem 3.2. [15] A unimodular functionψ in L2(R) is a wavelet if and only if

a)
∑
k∈Z

|ψ̂(ζ + 2kπ)|2 = 1 a.e. ζ ∈ R

b)
∑
j∈Z

|ψ̂(2−jζ)|2 = 1 a.e. ζ ∈ R.

A set-theoretic equivalence of this Theorem which is very much helpful to check whether a
function is an MSF wavelet or not is given here. This Theorem is also helpful in the construction
of MSF wavelets.
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Theorem 3.3. [13] LetE be a measurable set inR and letψ ∈ L2(R) be a function such that
|ψ̂| = χE. Thenψ is an orthonormal wavelet if and only if

a) {E + 2kπ : k ∈ Z} is a partition ofR a.e. and
b) {2jE : j ∈ Z} is a partition ofR a.e.

s-elementary wavelets were defined in terms of a set and are found in chapter 4 of [10]. A
wavelet setE is a measurable subset ofR, if the characteristic function ofE is the Fourier
transform of a wavelet and are calleds-elementary wavelets, where the ’s’ is used to denote
set. But whether this class of wavelets and MSF wavelets are the same is not yet known. The
properties and construction of MSF wavelets or s-elementary wavelets are studied mainly in
terms of wavelet sets. Hence any study that deals with these wavelets would be incomplete
without the mention of wavelet sets. An introduction to wavelet sets could be seen along with
MSF wavelets or s-elementary wavelets in [10, 13, 16, 17].

The importance of the characterization of wavelet sets is found in [10]. For this, two notions
such as translation congruent modulo2π and dilation congruent modulo2 are defined.

Definition 3.1. [10] Measurable setsA andB are translation congruent modulo2π if there exits
a measurable bijectionτ : A −→ B such thatτ(x)− x = 2mπ for m ∈ Z and for eachx ∈ A.
Equivalently, there exists a measurable partition{An : n ∈ Z} of A such that the2π integer
translates of this collection forms a partition ofB.

Definition 3.2. [10] Measurable setsA andB are dilation congruent modulo2 if there exists
a measurable bijectionδ : A −→ B such that for eachs ∈ A there exists an integern such
thatδ(s) = 2ns. Equivalently, there exists a measurable partition{An : n ∈ Z} of A such that
{2nAn} is a measurable partition ofB.

Using these two concepts, one of the most important characterizations of wavelet set given
in [10] is as follows.

Theorem 3.4. [10] A measurable setE ⊂ R is a wavelet set if and only ifE is both translation
congruent to[0, 2π) modulo2π and dilation congruent to[−2π,−π) ∪ [π, 2π) modulo2.

A study on the wavelet set of a unimodular wavelet is done in [15]. TheSupp ψ̂ denoted byE
is partitioned into two sets namelyE+ andE−, whereE+ = E∩(0,∞) andE− = E∩(−∞, 0).
Here also characterization of unimodular wavelets is done using the concepts of translations
and dilations which are almost the same as defined in definitions (3.1), (3.2). One difference
is that these definitions which are made here are more general whereas in [15] the sets are
restricted. In [15], for any real numbera, the functionτa is defined byτa : R −→ [a, a + 2π)
as τa(x) = x + 2kπ where for eachx ∈ R, there exists a unique integerk(x) such that
a ≤ x + 2k(x)π < a + 2π and fora > 0, defineδa : (0,∞) −→ [a, 2a) asδa(x) = 2j(x)x,
where for eachx ∈ R, there exists a unique integerj(x) such thata ≤ 2j(x)x < 2a. Fora < 0,
defineδa(x) = −δ−a(−x) for x < 0. Using Meyer’s equations it is proved that a function
ψ ∈ L2(R) is a unimodular wavelet if and only if for somea ∈ R, τa is one to one onE except
on a set of measure zero andM([a, a + 2π)− τaE) = 0 and for somea > 0 andb < 0, δa, δb
are one to one onE+ andE− except on a set of measure zero respectively. Here on closely
observing this with Theorem (3.4), we can see that both characterizations are the same. This
can be obtained if we consider the translationτ 0 onE and the dilationsδπ onE+ andδ−π on
E−, which are the same as mentioned in Theorem (3.4).

This characterization of unimodular wavelets whose wavelet setE are a finite union of inter-
vals is given in [15]. This is done using the fact that in this caseM([a, a+2π)−τaE) = 0 if and
only if τaE = [a, a+2π) andτa is one to one on a set of measure zero which in turn happens if
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and only ifτa is one to one onE except at finitely many points. In such case,τaE = [a, a+2π)
andτa is one to one onE. Similar results are obtained forδa.

Three cases are being discussed in [15] depending on the structure of bothE+ andE−. The
first case deals with bothE+ andE− to be intervals, using these results it is established thatE
is precisely of the form

E = [2a− 4π, a− 2π]
⋃

[a, 2a]

for some0 < a < 2π. Second case is whenE+ consists of disjoint intervals andE− = −E+.
Here we discuss the case of symmetric wavelet set, thenE+ is of the form

E+ =

[
2jπ

2j+1 − 1
, π

]⋃[
2jπ, 2jπ +

2jπ

2j+1 − 1

]
wherej ∈ Z+. This in turn says thatE is the union of four intervals. Third case is whenE+ is
the disjoint union of two intervals andE− is an interval. Thus, the precise form ofE− andE+

are given by

E− =

[
−2

(
1− 2p+ 1

2j+1 − 1

)
π,−

(
1− 2p+ 1

2j+1 − 1

)
π

]
and

E+ =

[
2(p+ 1)π

2j+1 − 1
,
2(2p+ 1)π

2j+1 − 1

]⋃[
2j+1(2p+ 1)π

2j+1 − 1
,
2j+2(p+ 1)π

2j+1 − 1

]
for j ≥ 2 and1 ≤ p ≤ 2j − 2.

Once we have the characterization of MSF wavelets, we will turn in to the construction of
these wavelets. One such important result in this construction can be found in [16].

Theorem 3.5. [13] For ψ ∈ L2(R) with |ψ̂| = χE, ψ is a wavelet if and only if there exists
a partition {Il}l∈Z of I = [−2π,−π)

⋃
[π, 2π), a partition {El}l∈Z of E and two sequences

{jl}l∈Z, {kl}l∈Z ⊂ Z such that
a) El = 2jlIl, l ∈ Z
b) {El + 2klπ}l∈Z forms a partition ofI.

Here we note thatI is the support of the Fourier transform of the Shannon wavelet and using
Theorem (3.5) we obtain MSF wavelets from Shannon wavelet. The proof of this is obtained by
using the basic ideas of wavelets but is a bit constructive in nature. If we assume (a) and (b) of
this Theorem to hold, then using|ψ̂| = χE and our assumptions, together with Theorem (3.2)
leadsψ to be a wavelet. For the converse, we assumeψ to be a wavelet, then by Theorem (3.3),
we have{E+2kπ}k∈Z and{2jE}j∈Z to be partitions ofR. LetEn = E∩(2nI) andJn = 2−nEn
for n ∈ Z. Since{2nI}n∈Z and{2−nE}n∈Z are partitions ofR, {En}n∈Z is a partition ofE
and{Jn}n∈Z forms a partition ofI. For each integern, defineEn,j = En + (I + 2jπ) and
In,j = Jn + (2−n(I + 2jπ)) for j ∈ Z. This {En,j}n,j∈Z forms a partition ofI, by taking
(n, j) = l andj = −kl completes the proof.

An example that illustrates this construction has been given here.

Example 3.1. [13] Let I = [−2π,−π)
⋃

[π, 2π). We choose a partition forI and let it be{Il}
defined byI1 = [−2π,−4

3
π), I2 = [−4

3
π,−π), I3 = [π, 4

3
π), I4 = [4

3
π, 2π), Il = ∅. Also,

we choose{jl} to be the sequence defined byj1 = −1, j2 = 1, j3 = 1, andj4 = −1 and let
El = {2jlIl}. We haveE1 = 2j1I1 = [−π,−2

3
π), E2 = [−8

3
π,−2π), E3 = [2π, 8

3
π), and

E4 = [2
3
π, π). Let{kl} be the sequence defined such that{2jlIl + 2klπ}l∈Z is a partition ofI.

Thus if we choose someζ in E1 + 2k1π, then thisζ has to belong to[−2π,−π)
⋃

[π, 2π). If
ζ ∈ [−2π,−π) then we have

−2π ≤ −π + 2k1π,
−2

3
π + 2k1π ≤ −π.
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Sincek1 must be an integer satisfying these equations, we get no suchk1 exists. Thus we have
if ζ ∈ E1 + 2k1π then forζ ∈ [π, 2π), we get two similar equations which gives usk1 = 1. In a
similar manner we getk2 = 2, k3 = −2 andk4 = −1. But by Theorem(3.5)

E =
⋃
l∈Z

2jlIl = [−8

3
π,−2π)

⋃
[−π,−2

3
π)
⋃

[
2

3
π, π)

⋃
[2π,

8

3
π)

give rise to an MSF wavelet. HereI is the support of the Shannon wavelet andE is that of
the Lemarie-Meyer wavelet. Thus we have constructed Lemarie-Meyer wavelet from Shannon
wavelet.

Characterization of all those orthonormal wavelets whose Fourier transform has support con-
tained inSα = [−8

3
α, 4π − 4

3
α], 0 < α < 2π is obtained in [16]. Also, the support need

not be symmetric about the origin. Forα = π, we have the Lemarie-Meyer wavelet. The main
Theorem which deals with the equivalence of orthonormal wavelets proved in [16] is as follows.

Theorem 3.6. [16] For ψ ∈ L2(R), has support contained inSα = [−8α
3
, 4π − 4α

3
], 0 < α ≤ π

andb = |ψ̂|. Thenψ is an orthonormal wavelet if and only if

a) b2(ζ) + b2( ζ
2
) = 1 a.e. ζ ∈ [4π − 8α

3
, 4π − 4α

3
]

b) b(ζ) = 1 a.e. ζ ∈ [2π − 2α
3
, 4π − 8α

3
]

c) b2(ζ) + b2(ζ + 2π) = 1 a.e. ζ ∈ [−4α
3
,−2α

3
]

d) b(ζ) = b( ζ
2

+ 2π) a.e. ζ ∈ [−8α
3
,−4α

3
]

e) ψ̂(ζ) = eιp(ζ)b(ζ) with p(ζ) satisfyingp(ζ) + p(2(ζ − 2π)) − p(ζ − 2π) = (2n(ζ) +
1)π a.e. ζ ∈ Dα ∩ (Supp b) ∩ (1

2
Supp b), whereDα = [2π − 4α

3
, 2π − 2α

3
] andn(ζ) is

an integer-valued measurable function.

f) b(ζ) = 0 a.e. ζ ∈ [−2α
3
, 2π − 4α

3
] = Hα

This remarkable result simply means that ifb = |ψ̂| is any measurable function whose support
is contained inSα, then all such waveletsψ have a Fourier transform that can be expressed on
the rest ofSα in terms ofb, proof of this depends mainly on Theorem (3.1) and is divided into
three sections. At first, it is obtained that for such aψ whose Fourier transform has support
contained inSα, 0 < α ≤ π, this support is precisely contained inSα −Hα. The concept of
dimension function (refer definition (4.2)) is used for this. To prove this part,Jα is taken to
be the union ofDα andHα and is assumed to be any interval of length2π. Then using the

definition of dimension function,
∫
Jα

Dψ(ζ)dζ = 2π. By making use of these definitions of

Hα, Sα, Dα, we get

(3.3) Dψ(ζ) = 1−
0∑

j=−∞

|ψ̂(2jζ)|2 a.e. ζ ∈ Hα

and

(3.4) Dψ(ζ) = 1− |ψ̂(2(ζ − π)|2 a.e. ζ ∈ Dα.

These two equations givesDψ(ζ) ≤ 1 and clearlyDψ(ζ) ≥ 0. Since
∫
Jα

Dψ(ζ)dζ = 2π,

we haveDψ(ζ) = 1 on Jα almost everywhere. Hence using equations (3.3) and (3.4) on
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Hα,

0∑
j=−∞

|ψ̂(2jζ)|2 = 0 almost everywhere and|ψ̂ (2(ζ − π)) | = 0 almost everywhere onDα

which in turn gives uŝψ(ζ) = 0 onHα almost everywhere. Then using the Meyer’s equations
the remaining part of the Theorem is proved by considering different intervals and eliminating
those terms that does not lie in this support. The last part of the proof is to prove the converse
part. So if we are assuming all these six conditions, then to show that the given wavelet is an
MSF wavelet we use Theorem (3.2). This also makes use of the support ofψ̂ and each infinite
sums gets reduced to finite ones. Examples are provided to illustrate this.

From Theorem (3.6), we get two results given by equations (3.5) and (3.6). From condition
(a), b2(ζ)+b2( ζ

2
) = 1 a.e. ζ ∈ [4π− 8α

3
, 4π− 4α

3
]. Thenζ

2
∈ Dα a.e.which in turn is equivalent

to b2(2ζ) + b2(ζ) = 1 a.e. ζ ∈ Dα. Also, from condition(c), for ζ − 2π ∈ [−4α
3
,−2α

3
], we get

b2(ζ − 2π) + b2(ζ) = 1 a.e. ζ ∈ Dα. Thus we get

(3.5) b(2ζ) =
√

1− b2(ζ) = b(ζ − 2π) a.e. ζ ∈ Dα

Similarly using condition(d), b(ζ) = b(1
2
ζ + 2π) a.e. ζ ∈ [−8α

3
,−4α

3
] which in turn gives

(1
2
ζ + 2π) ∈ Dα a.e. Thus we get,

(3.6) b(2(ζ − 2π)) = b(ζ) a.e. ζ ∈ Dα

Theorem (3.6) is very helpful in the construction of orthonormal wavelets as shown in the
following example. To explain this, we construct Shannon wavelet using Theorem (3.6). We
takeα = π andb(ζ) = χ[π, 4

3
π] on [2

3
π, 4

3
π]. Now from condition(a), we get

(3.7) b(ζ) =

{
1 if ζ ∈ [4

3
π, 2π)

0 if ζ ∈ [2π, 8
3
π]

and thus we could extendb(ζ) to [4
3
π, 8

3
π]. Similarly, using condition(c) we have

(3.8) b(ζ) =

{
1 if ζ ∈ [−4

3
π,−π)

0 if ζ ∈ [−π, −2
3
π]

on [−4
3
π, −2

3
π]. Using condition(d), we could extend this to the interval[−8

3
π, −4

3
π] as

(3.9) b(ζ) =

{
0 if ζ ∈ [−8

3
π,−2π)

1 if ζ ∈ [−2π, −4
3
π].

Thus we have extendedb(ζ) to Sπ = [−8π
3
, 8π

3
]. Summarize the above as follows:

(3.10) b(ζ) =

{
0 if ζ ∈ [−8

3
π,−2π) ∪ [−π, −2

3
π] ∪ [2

3
π, π) ∪ [2π, 8

3
π]

1 if ζ ∈ [−2π, −4
3
π] ∪ [−4

3
π,−π) ∪ [π, 4

3
π] ∪ [4

3
π, 2π).

This is same asχ[−2π,−π)∪[π,2π) on R. Also, we have[2
3
π, 4

3
π] ∩ Supp (b) ∩ 1

2
Supp(b) = {π}

and hence by condition(e), we chooseα(ζ) = ζ
2
. This choice is made in such a way thatα(ζ) is

a measurable function satisfying the equation given in condition(e) of Theorem (3.6). Thus by
Theorem (3.6),̂ψ(ζ) = eια(ζ)b(ζ) is an orthonormal wavelet,ψ(x) = −2 sin(2πx)+cos(πx)

π(2x+1)
which

is the Shannon wavelet as in Figure 1.
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Figure 1: Shannon wavelet

4. MRA MSF WAVELETS

If a scaling functionφ exists withψ̂(ζ) = eι
ζ
2m0(

ζ
2

+ π)φ̂( ζ
2
), thenψ is anMRA wavelet.

Characterization of unimodular wavelets that are associated with MRA is discussed in [20].
Since these wavelets arise from an MRA, a scaling functionφ exists and is of the form̂φ = χM
whereM is a finite disjoint union of closed intervals. The equivalent conditions for such aφ to
be a scaling function of an MRA are that{M + 2kπ} forms a partition ofR, the dilateM

2
of M

is contained inM andM contains a neighbourhood of zero. The waveletψ that is generated
by such a scaling functionφ will be of the form |ψ̂(ζ)| = χE whereE = 2M \ M . This
characterization is true only whenM is a finite disjoint union of closed intervals. WhenM is
an infinite union of intervals, this result is not valid which is shown by taking

M =
∞⋃
k+1

[
−1

2k

(
2− 1

2k

)
π,
−π
2k

]
∪
[
0,

5

4
π

]
∪

∞⋃
k=1

[(
2− 1

2k

)
π,

(
2− 1

2k+1
(2− 1

2k+1
)

)
π

]
.

This choice ofM violates the condition thatM contains a neighbourhood of zero. Second
statement of this characterization can be easily proved by combining the fact that an MRA
waveletψ is related toφ using the relation

ψ̂(ζ) = ei
ζ
2m0

(
ζ

2
+ π

)
φ̂

(
ζ

2

)
and we have the following equality

|m0(ζ)|2 + |m0(ζ + π)|2 = 1.

SinceM ⊂ 2M , we have|ψ̂(ζ)| = χ2M\M .
A natural question that raises in our mind is whether it is possible to have the setM as disjoint

union ofn closed intervals for any natural numbern. A negative answer to this is given in [20]
by proving that forn = 2 such a set is impossible. The case whenM is a single interval is
considered first. Since it must contain a neighbourhood of the origin and is of measure2π, we
obtain thatM is precisely of the form[−a, 2π−a] for 0 < a < 2π. The waveletψ obtained from
this scaling functionφ will be ψ̂(ζ) = θ(ζ)χE(ζ) whereE = [−2a,−a] ∪ [2π − a, 4π − 2a]
and |θ(ζ)| = 1. This is same as the general form of those unimodular wavelets associated
with an MRA whose Fourier transform has a support consisting of two intervals given in [15].
To check whetherM could be the disjoint union of two intervals, takeM = [−a, b] ∪ [c, d]
where0 < b < c < d. Applying the condition1

2
M ⊂ M , we getd ≤ 2b. Using the fact
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that {M + 2kπ : k ∈ Z} is a partition ofR and simple computations gives the inequality
−a + 2(k + 1)π = d ≤ 2b = 2c − 4kπ which in turn gives−a + 6kπ + π ≤ 2c < 2d =
−2a + 4kπ + 4π which in turn produces the inequality2kπ − 2π < −a < 0 which is not
possible for a positive integerk. ThusM cannot be the disjoint union of two closed intervals.
In a similar manner, considerM as the union of three intervals and thenM is of the form
M = [−a,−b] ∪ [−c, 2π − a] ∪ [2π − b, 2π − c] where0 < c < b < a ≤ 2c < 4π. This makes
E as the union of six intervals. Also, whenM = [−a, b]∪ [c, d]∪ [e, f ], takingc− b ≥ 2π leads
to a contradiction and thusE is the union of three to five intervals as well, the details could be
seen in [20].

Study of MSF wavelets associated with an MRA were done by many authors. A detailed
characterization of unimodular wavelets can be found in section four of [20]. It is proved that
for any MRA unimodular waveletψ with scaling functionφ is also unimodular and|φ̂(ζ)| = χM
whereM =

⋃
j<0

2jE is a disjoint union. To prove this, we make use of the equations (2.1), (2.2)

and (2.3). Thus we obtain|ψ̂(ζ)|2 = |φ̂( ζ
2
)|2 − |φ̂(ζ)|2. Rest of the proof can be completed

easily by using the facts|φ̂(ζ)|2 =
∑
j<0

χ2jE(ζ) and
∑
j∈Z

χ2jE(ζ) = 1 which we can obtain from

the definition ofφ.
Use the set theoretic equivalence of Meyer’s equations for unimodular wavelets. An equiv-

alent condition forψ such that|ψ̂| = χE to be an MRA unimodular wavelet is given as⋃
l∈Z
⋃
j<0(2

jE + 2lπ) = R. The properties that must be satisfied by the support of the Fourier
transform of the scaling function and the result which implies this scaling function to be uni-
modular is used to prove this.

An important characterization of MRA MSF wavelet was made in [13]. Ifψ ∈ L2(R) is an
MSF wavelet, then|ψ̂| = χE whereM(E) = 2π. DefineEs =

⋃∞
j=1(2

−jE), by Theorem (3.3)
the sets in this union are all mutually disjoint almost everywhere and also note that

(4.1) M(Es) = 2π.

Now if we considerψ to be an MRA wavelet, then we have the relation

(4.2) |φ̂(ζ)|2 =
∞∑
j=1

|ψ̂(2jζ)|2 a.e. ζ ∈ R

which implies

(4.3) |φ̂| = χEs .

By the orthonormality of
{
φ0,k : k ∈ Z

}
, we get

(4.4)
∑
k∈Z

|φ̂(ζ + 2kπ)|2 = 1 a.e. ζ ∈ [−π, π).

Thus from (4.1),(4.3) and (4.4), we get

(4.5) M (Es ∩ (Es + 2kπ)) = 2πδk,0 k ∈ Z.
In fact, this condition is proved to be a sufficient condition for an MSF wavelet to be associated
with an MRA. Quadrature mirror filter (QMF) method explained in [12] is used to achieve this.
We assumêψ(ζ) = |ψ̂(ζ)|eια(ζ) whereα being a real valued measurable function onE along
with the criteria (4.5). Also, using equation (4.3), we defineφ̂(ζ) = |φ̂(ζ)|eιβ(ζ) = eιβ(ζ)χEs .
Since the sets in that union are all disjoint for almost everyζ ∈ Es, by the definition ofEs and
by Theorem (3.3), it is possible to find a uniquel ≥ 1 such thatζ ∈ 2−lE and thereby we define
β(ζ) = 21−lα(2lζ). Thus by equation (4.4), we can see that the integer translates ofφ forms
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an orthonormal system. We define the low-pass filterm0 onEs as given in equation (4.6) and
extend it to a2π-periodic function onR using equation (4.5) which is our assumption. Herem1

is also defined and extended in a similar manner. Thus we havem0 andm1 as

(4.6) m0(ζ) =

{
0 if ζ ∈ 1

2
E ⊂ Es

eι2
1−jα(2jζ) if ζ ∈ 2−jE for unique j ≥ 2

(4.7) m1(ζ) =

{
1 if ζ ∈ 1

2
E ⊂ Es

0 if ζ ∈ 2−1Es

and since the supports of bothm0 andm1 are disjoint,

(4.8) m0(ζ)m1(ζ) +m0(ζ + π)m1(ζ + π) = 0 a.e. ζ ∈ [−π, π).

Taking into consideration the two casesζ ∈ 1
2
E andζ /∈ 1

2
E, it can be easily shown that

(4.9) ψ̂(2ζ) = m1(ζ)φ̂(ζ) a.e. ζ ∈ R.

The equation (2.1) being equivalent to equation (4.10) given by,

(4.10) φ̂(ζ) =
∞∏
j=1

m0(2
−jζ) a.e. ζ ∈ R

the later is proved using some simple calculations. By the orthonormality of
{
φ0,k : k ∈ Z

}
given by equation (4.4) and by equation (2.1) we have

(4.11) |m0(ζ)|2 + |m0(ζ + π)|2 = 1 a.e. ζ ∈ [−π, π).

Proceeding in a similar manner, the orthonormality of
{
ψ0,k : k ∈ Z

}
and by equation (4.9) we

obtain

(4.12) |m1(ζ)|2 + |m1(ζ + π)|2 = 1 a.e. ζ ∈ [−π, π)

which in turn givesm0,m1 ∈ L∞([−π, π)). In fact, from equation (4.11) we getm1(ζ) =

λ(ζ)m0(ζ + π) whereλ(ζ) is 2π-periodic andλ(ζ) + λ(ζ + π) = 0 a.e. ζ ∈ [−π, π). Thus
there exists a2π-periodic functionν such thatλ(ζ) = eιζν(2ζ), ζ ∈ [−π, π) andm1(ζ) =

eιζν(2ζ)m0(ζ + π) where equation (4.12) implies|ν(ζ)|2 = 1 a.e. ζ ∈ [−π, π). Thus we have
shown that(m0,m1) is a Quadrature Mirror Filter (QMF) pair and the last part of the proof is
devoted in showing thatφ is a scaling function forV0 = span{φ(· − k) : k ∈ Z} which is done
by provingV0 = V0. This makes use of equations (4.9) and (4.4) and orthonormality.

One useful characterization of MRA MSF wavelets that is given in [13] is the following.

Theorem 4.1. [13] For an MSF waveletψ with |ψ̂| = χE, the following conditions are equiva-
lent:

a) ψ is associated with an MRA.

b) M (Es ∩ (Es + 2kπ)) = 2πδk0 k ∈ Z whereEs =
⋃∞
j=1(2

−jE).

c) {Es + 2kπ : k ∈ Z} forms a partition ofR.

d) M ((E + 4kπ) ∩ (2−jE)) = 0 for every k ∈ Z, j ≥ 1.
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Outline of the proof of the equivalence of the first two statements has already been mentioned.
The equivalence of second and third is trivial and it is enough to show that (b) and (d) are
equivalent. Using the fact that{2jE}j∈Z forms a partition ofR, both the L.H.S of (b) and (d)
are zero and hence equal. The converse part is proved using the fact that{E + 2kπ}k∈Z forms
a partition ofR. Using the statement (d), it is shown in examples that Lemarie and Journe
wavelets are non-MRA wavelets. Also, using Theorem (4.1), Shannon wavelets are shown to
be associated with an MRA.

Results proved in [1] could be seen as an extension of the results found in [15], here the
symmetric class of MSF wavelets are considered. Because of the symmetric nature, it is enough
to consider forE+. The case whereE+ is the disjoint union of two intervals and the case of
just one interval could be seen in [15, 20], a general method is put forward whenE+ is a finite
disjoint union of intervals of more than two intervals. IfE+ is just one interval, then the only
symmetric wavelet set is the Shannon wavelet set. The idea of MSF polygon is introduced to
give a geometric insight to construction and then relates this with wavelet sets.

Definition 4.1. [1] Consider the first quadrant of the Cartesian plane, letD be the set of
points P such that for somem ∈ N ∪ {0} and λ ∈ Z, P ≡ P [λ,m] = (2−λ, 2−λm).
Let P = (P1, P2, · · · , Pn) be an ordered sequence of points inD wherePj = P [λj,mj] for
j = 1, 2, · · · , n. For j = 1, 2, · · · , n − 1, defineaj as the negative of the slope of the straight

line throughPj andPj+1 giving aj = −mj2
−λj−mj+12−λj+1

2−λj−2−λj+1
. Thus the polygonP formed is said

to be anMSF polygon if λ1 = 0, 4m1 = 2−λn(2mn + 1) and0 < a0 < a1 < · · · < an = 1
2
.

On observing the definition of MSF polygons, we see that the vertices lie only on the portion
of lines

{
(2−λj , y) : λj ∈ Z, y ∈ R

}
shown in Figure (2b) in the first quadrant. We note that the

slopes of the straight lines joining anyPj andPj+1 are decreasing and lies in[−1
2
, 0]. We have

plotted a few MSF polygons for the casen = 3 in Figure (2a). In this Figure,4ABC refers
to the case where we choosem3 = 1, λ1 = 0, λ2 = −6, m2 = 0 andλ3 = −4, thus obtaining
m1 = 12. For the casen = 3 in Figure (2a), we choosea3 = 1

2
for each triangle to be an MSF

polygon. For4PQR, λ2 = −5 andλ3 = −3 thereby obtainingm1 = 6 and the values ofλ1,
m2, m3 anda3 are same as that of4ABC. Also, for4UVW the only change made was that
we consideredλ3 = −2 andλ2 = −4 and thereby obtainingm1 = 3.

(a) (b)

Figure 2: (a) MSF polygon forn = 3 (b) Lines
{
(2−λj , y) : λj ∈ Z, y ∈ R

}
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It is shown in [1] that ifP is an MSF polygon andIj is defined asIj = [aj−1, aj] + mj for
j = 1, 2, · · · , n, thenE = E+ ∪ E− whereE+ = I1 ∪ I2 ∪ · · · ∪ In, is a symmetric wavelet
set ofL2(R) and thusE is a disjoint union of2n intervals. Also, distinct MSF polygons give
rise to distinct wavelet sets. In the case of4UVW , a1 = 1

5
, a2 = 1

3
and thereby obtaining

E+ = [3, 16
5
] ∪ [1

5
, 1

3
] ∪ [4

3
, 3

2
]. In the third section, corresponding to eachn, eachn-tuple

ε = (ε1, · · · , εn) ∈ {−1, 1}n and for each permutationτ ∈ Sn−1 on 1, 2, · · · , n− 1, there is
a family M(n, ε, τ) of symmetric wavelet sets ofL2(R) associated with it and a necessary and
sufficient condition for a symmetric setE which is a finite union of intervals to be wavelet set
in L2(R) is also provided. An example of a wavelet set which is symmetric and have zero as
an accumulation point is included in [1]. Also, it is proved that there exists uncountably many
symmetric wavelet sets inL2(R).

We have four interval symmetric wavelet sets inR of the formEr = E+
r

⋃
E−
r whereE+

r =[
2r

2r+1−1
π, π

)⋃[
2rπ, 22r+1

2r+1−1
π
)

and since being symmetric givesE−
r = −E+

r , r ∈ N. For

r = 2, we get the Journe wavelet set. Also, the generalized Journe wavelet set is given by

Jβr
= [−2rπ − 2r

2r+1 − 1
π,−2rπ + 2rβr)

⋃
[−π + βr,−

2r

2r+1 − 1
π)⋃

[
2r

2r+1 − 1
π, π + βr)

⋃
[2rπ + 2rβr, 2

rπ +
2r

2r+1 − 1
π)

(4.13)

wherer ∈ N andβr ∈ ( −π
2r+1−1

, π
2r+1−1

). Using the characterization of wavelet set, we define
three maps that are measurable bijections, one of this is translation congruent modulo2π on
Jβr

to [−π + βr, π + βr), a dilation onJ+
βr

to [ 2r

2r+1−1
π, 2r+1

2r+1−1
π) and another dilation onJ−βr

to [− 2r+1

2r+1−1
π,− 2r

2r+1−1
π). This is an equivalent characterization of wavelet set and henceJβr

is
shown to be a wavelet set. It is shown thatJβ1

is an MRA wavelet set and forr 6= 1, Jβr
is a

non-MRA wavelet set, and this result is proved using the concept of dimension function in [25].

Definition 4.2. [6] The dimension function of an orthonormal waveletψ ∈ L2(R) is defined
as

Dψ(ζ) =
∞∑
j=1

∑
k∈Z

|ψ̂(2j(ζ + k))|2

Dimension function was introduced byGuido Weiss. It is also referred to as multiplicity
function in literature, using this notion of dimension function, characterization of wavelets was
easily made possible. This definition does not always hold for non-integer dilations in one
dimension, but there are two cases where it is valid. The first one having a rational dilation
factor and the other being MSF wavelet detail can be seen in [7]. A characterization of MRA
wavelet given in [6] has proved that for a functionψ to be an MRA wavelet, it is necessary and
sufficient thatDψ(ζ) = 1 for a.e. ζ ∈ R. Using this concept of dimension function, it is shown
that in [16] any orthonormal wavelet whose Fourier transform has support contained inSα is an
MRA wavelet. Here we show thatDψ(ζ) = 1 almost everywhere. SinceDψ(ζ) is 2π-periodic,
restriction is made toDα ∪Hα. Using equation (3.4) and(f) of Theorem (3.6), it is shown that
Dψ(ζ) = 1 onDα almost everywhere. Then using equation (3.3) andHα, it is possible to show
Dψ(ζ) = 1 onHα almost everywhere.

As the Fourier transform of these wavelets is characteristic functions that are discontinuous,
they lack good regularity properties which makes them less applicable. But these classes of
wavelets can be used to derive certain other wavelets with good regularity properties. This
could be seen in [17] where we obtain smoother low-pass filters for an MRA by mollifying
the low-pass filters of MSF wavelets. This in turn leads to an approximation of MSF wavelets
by smoother wavelets of any degree of smoothness. Cohen’s characterization in [9] deals with

AJMAA, Vol. 18 (2021), No. 2, Art. 17, 21 pp. AJMAA

https://ajmaa.org


A REVIEW ON M INIMALLY SUPPORTEDFREQUENCYWAVELETS 15

thoseC∞ filters which are associated with MRA’s. But for an MSF wavelet, filtersm0 /∈ Cr

and as a result, this characterization cannot be directly used for them. Cohen’s characterization
is the following.

Theorem 4.2. [18] Letm0 be a2π-periodic function inCr+1(R) for r = 0, 1, · · · ,∞ which
satisfiesm0(0) = 1. Thenm0 is a low-pass filter for a wavelet if and only ifm0 satisfies
|m0(ζ)|2 + |m0(ζ + π)|2 = 1 a.e. ζ ∈ R and there exists a setE ⊂ R such thatE is congruent
to [−π, π] modulo2π.

Characterization of the low-pass filter of a wavelet is given in [17], this together with Theo-
rem (4.3) leads to results concerning MSF wavelet.

Theorem 4.3. [17] Suppose thatψ is an MSF MRA wavelet for which|φ̂| is continuous at zero
and |φ̂(0)| = 1. Then the low-pass filterm0 associated with this wavelet must be of the form
|m0| = χE, whereE ⊂ R is a measurable set such thatE = E+2π andχE(ζ)+χE(ζ+π) =

1 a.e. ζ ∈ R. Also the setS =
∞⋂
j=1

2jE is the support of̂φ, |φ̂| = χS,M(S) = 2π, S contains

0 in its interior and satisfies
∑
l∈Z

χS(ζ + 2lπ) = 1 a.e. ζ ∈ R and |m0(2
−jζ)| = 1 a.e. ζ ∈ S

and all j ≥ 1.

This result can be established easily using the basic facts. The equations (2.1) together with
(2.6) implies that|m0| = χE for some measurable setE ⊂ R. As m0 is 2π-periodic, we

get χE(ζ) + χE(ζ + π) = 1 a.e. ζ ∈ R. Since φ̂(ζ) =
∞∏
j=1

m0(2
−jζ), we obtain|φ̂| =

χS and |m0(2
−jζ)| = 1 a.e. ζ ∈ S. Applying Plancherel’s Theorem,M(S) = 2π and the

orthonormality of{φ(x − k) : k ∈ Z} leads to
∑
l∈Z

χS(ζ + 2lπ) = 1 a.e. ζ ∈ R. Finally

we need only to show that0 lies in the interior ofS. This can be proved by the method of
contradiction using the continuity of|φ̂|. The importance of Theorem (4.3) is that it leads to the
characterization of the low-pass filter for an MSF wavelet.

Theorem 4.4. [17] Letm0 be a2π-periodic measurable function defined onR such thatm0 is
continuous at0 and |m0(0)| = 1. Thenm0 is a low-pass filter for an MSF wavelet if and only
if |m0| = χE, E ⊂ R is a measurable set such that

(4.14) χE(ζ) + χE(ζ + π) = 1 a.e. ζ ∈ R

(4.15) m0

(
∞⋂
j=1

2jE

)
= 2π.

By Theorem (4.3), one side can be easily obtained. If we assume|m0| = χE with equations
(4.14) and (4.15) we need to show thatm0 is a low-pass filter. For this, we definêφ(ζ) =
∞∏
j=1

m0(2
−jζ). Then we get|φ̂| = χS whereS =

∞⋂
j=1

2jE. The orthonormality of{φ(x − k) :

k ∈ Z} is proved since the setsS + 2kπ for k ∈ Z are disjoint. By the continuity assumption
on m0, we have the continuity of|φ̂| and |φ̂(0)| = 1. From the definition of̂φ, we obtain
φ̂(2ζ) = m0(ζ)φ̂(ζ). Thus by Theorem (2.1),φ is a scaling function associated with an MRA
and hencem0 is a low-pass filter for a wavelet.
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A procedure to obtain new low-pass filter for an MRA with a smooth scaling function from
a given low-pass filter is seen in [17]. Even though the construction is shown for bandlimited
MSF wavelets, it is applicable in general to MSF which are not bandlimited also. Ifψ is the
bandlimited MRA MSF wavelet with low-pass filterm0(ζ) =

∑
k∈Z

χF (ζ + 2kπ), whereF =

n⋃
l=1

Il is a finite disjoint union of intervals contained in(−π, π) and the scaling functionφ is

chosen such that̂φ(ζ) =
∞∏
j=1

m0(2
−jζ). A functionmε is constructed with any desired degree

of smoothness. For any positive real numberε, sε ∈ Cr r = 1, 2, · · · ,∞ be defined onR
such thatsε(x) = 0 for all x < −ε and for every real numberx, s2

ε(x) + c2ε(x) = 1, where
cε(x) ≡ sε(−x). ChooseIl = (al, bl) l = 1, 2 · · · , n andε is so small such that

−π < a1 − ε < · · · < a1 + ε < bl − ε < bl + ε < al+1 − ε < · · · < bn + ε < π.

Assumption is made so as0 is in some interval(al0 , bl0) andε ≤ min{−al0 , bl0}. Using these
sε andcε, a2π-periodic functionmε is defined as

mε(ζ) =
∑
k∈Z

{
n∑
l=1

sε(ζ − al + 2kπ)cε(ζ − bε + 2kπ)

}
.

Thenmε(0) = 1 and|mε(ζ)|2 + |mε(ζ+π)|2 = 1 a.e. ζ ∈ R. ChooseE = Supp φ̂ andψ being
bandlimited gives

∑
l∈Z χE(ζ + 2lπ) = 1 for all ζ ∈ R andm0(2

−jζ) 6= 0 for all ζ ∈ E and all
j ∈ N. If mε ∈ Cr+1, a scaling function is obtained frommε asφ̂ε(ζ) =

∏∞
j=1mε(2

−jζ) and a

waveletψε is also obtained, both belongs toCr. By showing thatφ̂ε tends toφ̂ in theL2-norm
andψ̂ε tends toψ̂ in theL2-norm asε goes to zero, we getmε tends tom0 in theL2-norm.

Also, it is shown in [16] that non MRA wavelet cannot be approximated by MRA wavelets
in the L2-norm. Hence ifψ is a wavelet which is not an MRA wavelet then it is isolated
from the MRA wavelets in theL2-norm. This in turn leads to the fact that the collection of
all MRA wavelets as a subset of the set of all wavelets is open in theL2-norm. It is already
established that if{ψn : n = 1, 2, · · · } is a sequence of MRA wavelets converging in theL2-
norm to a waveletψ, thenψ must be an MRA wavelet. The proof of this result is done by
showing that the dimension functionDψ(ζ) = 1 almost everywhere. By using the property of

dimension function, for any intervalJ of length2π, we have
∫
J

Dψ(ζ) dζ = 2π, it is obtained

that
∫ 2π

0

Dψ(ζ) dζ = 2π‖ψ‖2
2. Using this, we have∫ 2π

0

Dψn−ψ(ζ)dζ = 2π‖ψn − ψ‖2
2.

This when followed by Fatou’s Lemma and the inequality

Dψ(ζ) ≤ Dψn−ψ(ζ) +Dψn(ζ) + 2
√
Dψn−ψ(ζ)Dψn(ζ) a.e ζ ∈ R,

together with simple calculations leads to the result. This means that the collection of all MRA
wavelets is closed as a subset of the set of all wavelets. Thus, it can be concluded that the set of
all MRA wavelets as a subset of the set of all wavelets inL2(R) is both closed and open set and
hence is not connected.
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Another interesting fact mentioned in [16] is that if we considerS as the set of all wavelets
as a subset of the unit sphere inL2(R), thenS is not closed inL2(R). For this, we consider the
waveletψα with

ψ̂α = χ[−2α,−α]∪[2π−α,4π−2α], 0 < α < 2π.

Then asα tends to zero,̂ψα goes toψ̂H whereψ̂H = χ[2π,4π]. But by Theorem (3.3),ψH is not
a wavelet.

The connectedness of different class of wavelet sets has always been of interest. The con-
nectedness of the collection of s-elementary wavelets has been dealt in the paper [27]. The main
result that we have, regarding the connectivity of this class of wavelets is the following.

Theorem 4.5. [27] The s-elementary wavelets form a path connected subset ofL2(R).

Here onwards,λ denotes Lebesgue measure onR and µ denote the measure defined by
µ(A) =

∫
χA(x)dλ|x| . Also, letM(A) be the collection of all measurable subsetsB ofA such that

λ(B) < ∞ andµ(B) < ∞. To establish the path connectivity, first it is shown that the collec-
tion of wavelet sets is path connected in the symmetric difference metric. This metric is defined
asdλ(A,B) = λ(A∆B), for measurable setsA andB of R. For this, the first step is to construct
a path of subsets of wavelet sets. Then for each set in the path, we find a wavelet superset which
depends continuously on the subset. DefineRt to be a subset ofW such thatRt is translation2π
congruent to[−π−t,−π)

⋃
[π, π+t) wheret ∈ [0, π] andPt is another subset ofW which is2-

dilation congruent to[−2π,−2π−t)
⋃

[2π−t, 2π) andQt = [−2π+t,−π−t)
⋃

[π+t, 2π−t).
Then the path of these sets is defined by

St =

{
[(Qt

⋃
Rt) \ (τ(Rt)

⋂
Qt)] \ Pt if 0 ≤ t ≤ π/2

Rt \ Pt if π/2 ≤ t ≤ π.

The continuity of dilations, translations and set operations concerning this metric justifies the
continuity of this path. Then a recursive construction of setsMi of continuous functions oft
such thatSt

⋃
(
⋃∞
i=0Mi) = Wt is a wavelet set for eacht is made. This construction is even

shown to be continuous. When the symmetric difference metric is restricted to s-elementary
wavelets, it is equivalent to theL2(R) metric and thus s-elementary wavelets form a path con-
nected subset ofL2(R).

Combining the result ofAuscherin [2], with the one regarding the convergence of MRA
wavelets in [16], we obtain that any orthonormal non-MRA wavelet cannot be approximated by
those in Schwartz class. In particular, the Journe wavelet cannot be approximated by those in
the Schwartz class. The result from [2] is as follows.

Theorem 4.6. [2] Supposeψ is an orthonormal wavelet that satisfies|ψ̂| is continuous onR
and|ψ̂(ζ)| = O

(
(1 + |ζ|)−α−1/2

)
at infinity and for someα > 0. Thenψ is an MRA wavelet.

Thus we obtain the fact that any sequence of wavelets from the Schwartz class will be MRA
wavelets and any sequence of MRA wavelets if it converges to a wavelet, then the limit is also
an MRA wavelet.

5. EXAMPLES OF MSF AND NON MSF WAVELETS

There are a variety of examples for MSF wavelets. Some of the frequently mentioned ones
are listed below. Here most of them are defined in terms of their Fourier transform. So those
wavelets whose modulus of the Fourier transform is a characteristic function of a measurable
set are easily seen to be MSF wavelets.
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1) Shannon waveletψs such that|ψ̂s| = χI with I = [−2π,−π)∪[π, 2π). Using the equiv-
alent conditions for an MRA MSF wavelet, we can easily show that Shannon wavelet is
one such wavelet. For this, we denoteIs =

⋃∞
j=1 2−jI. Hence

Is =

{
[−π, −π

2
) ∪ [

π

2
, π)

}⋃{
[
−π
2
,
−π
4

) ∪ [
π

4
,
π

2
)

}⋃
· · ·

ThusIs = [−π, π) which is of length2π. SoIs + 2kπ = [−π + 2kπ, π + 2kπ) and we
getM(Is

⋂
Is + 2kπ) = 2πδk,0. Thus Shannon wavelet is an MRA MSF wavelet by

Theorem (4.1).
2) Lemarie wavelet given by|ψ̂L| = χL whereL = [−8π

7
, −4π

7
)
⋃

[4π
7
, 6π

7
)
⋃

[24π
7
, 32π

7
). This

can be shown to be a non-MRA wavelet. For this, consider(L− 4π)
⋂

(1
2
L). We get

L− 4π = [
−36π

7
,
−32π

7
)
⋃

[
−24π

7
,
−22π

7
)
⋃

[
−4π

7
,
4π

7
)

and
1

2
L = [

−4π

7
,
−2π

7
)
⋃

[
2π

7
,
3π

7
)
⋃

[
12π

7
,
16π

7
).

Then[2π
7
, 3π

7
) ∈ (L − 4π)

⋂
(1

2
L) and hence its measure is nonzero. This implies that

ψL is a non-MRA MSF wavelet by Theorem (4.1).
3) Journe wavelet given byψE is a non MRA MSF wavelet. Here|ψ̂E| = χE where

E = [
−32π

7
,−4π]

⋃
[−π,−4π

7
]
⋃

[
4π

7
, π]
⋃

[4π,
32π

7
].

We have

E − 4π = [
−60π

7
,−8π]

⋃
[−5π,−32π

7
]
⋃

[
−24π

7
,−3π]

⋃
[0,

4π

7
]

and
E

2
= [

−16π

7
,−2π]

⋃
[
−π
2
,
−2π

7
]
⋃

[
2π

7
,
π

2
]
⋃

[2π,
16π

7
]

Thus,(E−4π)
⋂

E
2

= [2π
7
, π

2
] whose measure is nonzero and hence a non-MRA wavelet.

4) Theorem (3.3) can be used to show that the functionψH given byψ̂H = χ[2π,4π] is not
a wavelet as this would violate the condition b of the Theorem. The dyadic dilations of
[2π, 4π] form a partition of(0,∞) only.

5) Using Theorem (3.5), a positive answer is provided to the question of whether there
exists an MSF wavelet which is not bandlimited. A construction of such a wavelet is
made possible in [13]. For this, a symmetric setE = E+

⋃
E− whereE− = −E+ is

considered. We decomposeI+ = [π, 2π) to [π, x0)
⋃

[x0, 2π). Let {Lj} and{Rj} be
partitions of[π, x0) and [x0, 2π) respectively. ThusI+ =

⋃∞
j=1(Lj

⋃
Rj). We try to

obtain an unbounded setE+. For this, we dilate eachLj by 2j for somelj ≥ 1 with

lim
j→∞

lj = ∞ and dilate eachRj by 2−1. HenceE+ = (
∞⋃
j=1

2ljLj)
⋃

(2−1

∞⋃
j=1

Rj). So it

is enough to find conditions on{lj : j ≥ 1} which makesE+ = [−2π,−π)(mod 2π).
This is done in such a way that the Lebesgue measure is preserved at each stage. Hence
we get for eachj ≥ 1,

2lj M (Lj) + 2−1M(Rj) = M
(
Lj
⋃

Rj

)
= M(Lj) +M(Rj).

(5.1)

AJMAA, Vol. 18 (2021), No. 2, Art. 17, 21 pp. AJMAA

https://ajmaa.org


A REVIEW ON M INIMALLY SUPPORTEDFREQUENCYWAVELETS 19

LetM(Lj) = pjM(Lj
⋃
Rj) andM(Rj) = qjM(Lj

⋃
Rj), hence

pj + qj = 1

2ljpj + 2−1qj = 1.

Thus equation (5.1) is equivalent to above set of equations. This can be solved by
converting it into matrix form. Thus on solving, we getpj = 1

2lj+1−1
andqj = 2lj+1−2

2lj+1−1
.

SinceM (I+) = π, we have
∑

M(Lj
⋃
Rj) = π. Since

∞∑
j=1

2−jπ = π, we can choose

M (Lj
⋃
Rj) = 2−jπ. Then we getM (Lj) = αj andM (Rj) = βj in terms oflj.

Choosel1 ≥ 2 and obtainlj+1 = 2lj + 1. This is obtained by definingL1 = [π, π + α1)
andR1 = [2π − β1, 2π). Also, we define

Lj = [π +

j−1∑
n=1

αn, π +

j∑
n=1

αn)

and

Rj = [2π −
j∑

n=1

βn, 2π −
j−1∑
n=1

βn).

Since
⋃
Rj = (x0, 2π], we getx0 = 2π −

∞∑
j=1

βj = π +
∞∑
j=1

αj. Now we express2ljLj

in terms oflj and simple computation gives the desired result. Thus asj tends to∞, lj
goes to infinity and hence we get unboundedE+.

Similar studies have been carried out in higher-dimensional cases as well. Corresponding to
the concept of wavelet set inL2(R), we have the concept ofA−wavelet set inRn, details could
be seen in [11]. A method to produce all wavelet sets inRn for an expansive matrix with integral
entries is provided in [3] and the construction of compact wavelet sets inRn could be seen in
[14]. MSF multiwavelet of order L in [6] could be considered as an extension of the concept of
MSF wavelet in a one-dimensional setting. Analogous version of Meyer’s equations, equivalent
conditions for an orthonormal wavelet inL2(Rn) could be seen in [11]. The definitions (3.1),
(3.2) and the set-theoretic equivalent conditions of a wavelet set as in Theorem (3.4) is extended
to n-dimensional in [26], this is used in the construction of an unbounded wavelet set in higher
dimensions, but the construction in single dimension is appeared in [13]. Classification of
orthonormal wavelets whose Fourier transform has support contained inSα is seen in Theorem
(3.6) could not be generalized to the higher dimensional case is shown in [26]. Interconnections
of s-elementary wavelets and MSF wavelets have been studied in higher dimensions is found in
[27], the major result found in this work is that the collection of all n-dimensional wavelet set is
path connected in the symmetric difference metric. Path connectedness of the set ofA−wavelet
collection of sets for an arbitrary expansive matrixA in Rd is dealt in [23]. Also, in [22], the
space of MSF wavelets associated with an MRA and the set of its associated scaling functions is
shown to be path-connected and in [4], construction of scaling sets along with MSF orthonormal
wavelets in higher dimension could be seen.

Although MSF wavelets or s-elementary wavelets lack good regularity properties, many of
the MSF wavelets serve as good counter examples. From MSF wavelets many more interesting
non-MSF wavelets can also be constructed which could be seen in [28, 29, 24]. Although it
has been proved that for any expansive matrixA ∈ GLn(R) and for any latticeΓ ⊂ Zn, there
exists a wavelet set(A,Γ), the characterization of this pair(A,Γ) in general remains as an open
question mentioned in [5]. For the casen = 2, such a characterization is made possible. The
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study regarding the topological properties other than the connectivity of this class of wavelets
provides scope for future research. Also, the characterization of MSF wavelets based on the
spectral properties of the dilation matrices in higher dimensions can be developed further.
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