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MSF wavelets induced from an MRA is discussed and the nature of the low-pass filter associated
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1. INTRODUCTION

Joseph Fourier's remarkable works on heat conduction problems fascinated the scientific
community in many different ways since the eighteenth century. His idea was used by mathe-
maticians and physicists in many different areas for developing new theories and technologies.
During the detailed studies, people noticed some practical difficulties such as the inability of
local analysis of signals in signal processing and related areas. As a solution to this issue of
Fourier analysis, wavelet analysis has emerged since the nineteenth century. The vast applica-
tions of wavelets in fields such as signal processing, image compression, medicine and similar
fields have been an inspiration behind the growing interest in this subject. The basic idea in
wavelet theory is that using the dilates and integer translates of a single functiciiRr),
we construct a basis fat?(R). Wavelets first appeared in the thesisAlfred Haarin 1909.

In 1985, it wasMeyerwho constructed a wavelet that is continuously differentiable but lacks
the property of having compact support. Many advancements were made in this field during
this period, one major achievement was in 1988myerandMallat with the formulation of

the mathematical aspects of multiresolution analysis. These major mathematical foundations
coined by these researchers was followed by a remarkable w@r&udfechiesn 1988 with the
construction of a set of orthonormal wavelet basis functions. Details of these discussions about
wavelets and the formations of wavelet bases could be seenlin/ [19, 8] 30, 18].

Classification of wavelets has always been of great interest, and the importance of each
wavelet depends on the purpose we are dealing with. It is the reason for the classification of
wavelets based on the support of their Fourier transform and that leads to Minimally Supported
Frequency (MSF) wavelets or unimodular wavelets or s-elementary wavelets. MSF wavelets
and unimodular wavelets are defined in the same manner. The difference in their names is due
to the different authors who studied the subject independently in almost the same period. Al-
though s-elementary wavelets seem to have a similar definition, the difference is in the way they
are defined. s-elementary wavelets are defined using wavelet sets whereas MSF and unimodular
wavelets use the support of their Fourier transform. In both cases, the modulus of the Fourier
transform of these wavelets is the characteristic function of a measurable set.

Five sections of this paper study the subject in some detail, major results are examined and
included without proof but, a brief outline is mentioned for clarity wherever it is necessary.
The introductory part and the few results and definitions that are used in this paper constitutes
the first two sections. An introduction to MSF, s-elementary and unimodular wavelets along
with the construction and characterization of MSF wavelets is covered in the third section. The
fourth section is devoted to MRA MSF wavelets. MSF wavelets induced by an MRA and
the nature of the corresponding scaling function associated with the MRA is the highlight of
the fourth section. The concept of Dimension function which plays a major role in the study
of MSF wavelets is introduced and the low-pass filter associated with MRA MSF wavelets is
also discussed in this section along with a narration about the topological property of the path
connectedness of s-elementary wavelets. Some examples are studied for a better understanding
of the subject and is included in the fifth section.

2. BASIC CONCEPTS IN WAVELETS

It is a common practice among mathematicians to use an orthonormal basis for the Hilbert
space to decompose any complicated function in terms of simple functions, which are known
and easy to handle. Also, we need to overcome the drawbacks like the inability to analyse the
function locally and uncertainty in handling the position and frequency simultaneously of the
Fourier transform. In the same manner, we need to reconstruct the original function from the
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coefficients. The process of decomposing the function is termehalysis and the recon-
struction process is callexynthesis Here we provide a few basic definitions and results which
are used in this paper. We use the letfet,to denote the Lebesgue measure from this point
onwards.

Definition 2.1. [18] A function+ € L*(R) is anorthonormal wavelet if {1, }; ez iS an
orthonormal basis fof?(R), wherey; . (z) = 2//2(27x — k). Here2//? is introduced so that
norm is unaffected by the dilation and translation fi.&;; ;. [2=]| ¥ |-

2.1. MRA wavelets. MRA acts as one of the main tools in constructing wavelets.

Definition 2.2. [18] A multiresolution analysis (MRA) consists of a sequence of closed sub-
spaceqV;}, j € Z, of L*(R) satisfying
(1) V; C Vs forall j € Z

(2) f(-)eV;if and only if f(2) € Viqaforall j €Z

3) mjeZ Vi = {0}
(4) UjezV; = L*(R)

(5) function¢ € Vj exists, such thafo(- — k) : k& € Z} is an orthonormal basis fax.

The functiong¢ is called ascaling function of the given MRA. Once an MRA is obtained,
corresponding wavelets can be constructed as follows.

To construct an orthonormal wavelet from an MRA, g be the orthogonal complement of
Viin V. Since%gb(;) e V_1 C Vg, expressing it in terms of the basis functions we have

~ ~

(2.1) ¢(2¢) = ¢(¢)mo(C)
wherem,(¢) is a2r-periodic function inL?([—, 7)) satisfying the condition
(2.2) mo(Q)]* + Imo(¢ +m)[* =1, ae. CER

and is called the low-pass filter associated with the scaling fungtiémnom this low-pass filter,
we can construct an orthonormal wavelefor L?(R) if and only if

(2.3) P(20) = e“mo(C+ m)0((), a.e. (€ R.

Thus,{V; : j € Z} will generate an MRA if there exists a functienc L?(R) such that the
system{¢(- — k) : k € Z} is an orthonormal basis fdr,. The wavelet) constructed in this
manner is known aIRA wavelet. From equationg (2/1), (2.2) arid (2.3) we have

(2.4) 6QOP + [0 = [$(Q)F, a.e. ¢ € R.

On iterating equation (2.4), we obtain the relation
N

(2.5) 6O =162 + > [(2Q)), for every N > 1.
j=1

Since|p(¢)| > 1 and{zj.vzl (202 N=2,3,--- } is an increasing sequence of real num-

N
bers bounded by 1]\,}im Z 14)(27¢)|? exists which in turn implies the existence of the limit
(o] st
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lim |$(2"¢)|?. By a change of variablelim / |6(2V¢)|?d¢ = 0 and Fatou's Lemma gives

N—oo
lim 16(27¢)|? = 0. By equation[(Z}), we havie| related with the wavelet as follows:
(2.6) DO =D (2O for ae ¢ €R

Jj=1

Theorem 2.1.[18] A function¢ € L*(R) is a scaling function for an MRA if and only if there
exists a&w-periodic functionm, such that

2.7 0(20) = mo(Q)o(¢) for a.e.C €R
and
(2.8) Z |0(C + 2km)[2 =1 for ae.C € [-m, )
keZ
(2.9) lim |g?>(2_3<’)| =1 for a.e.( €R.
j—00

Although MRA wavelets are those classes of wavelets that are discussed all over, there exist
wavelets that are not induced from an MRA which are reported in the literature. Journe wavelets
and Lemarie wavelets are a few among them.

Theorem 2.2(Characterization of orthonormal systenfl8] If v € L?(R), then{y(- — k) :
k € Z} is an orthonormal system if and only)f _ |¢(¢ + 2k)|* = 1for a.e. ¢ € R.
kEZ

3. MSF WAVELETS FROM MEYER’S EQUATIONS

To study MSF wavelets it would be appropriate to begin with Meyer’s equations which pro-
vide equivalent conditions for an orthonormal wavelet. These equations first appeared in [21]
without proof and details of the proof published later in [15]. It makes use of the basic orthonor-
mality properties, convergence of Cesaro sums, Lebesgue differentiation Theorem and Poisson
summation formula.

Theorem 3.1(Meyer's equations)[15] » € L*(R) is an orthonormal wavelet fok?(R) if and
only if ¢ satisfies

a) > [(¢+2km)> =1ae (ER

keZ

b) > (¢ + 2km)y) (27(C + 2km)) = 0forj > 1 ace. C R
kEZ

) Y |92 =1lae CER
JEZ

~ ok

d) Y (2 (¢ +2mm)) (2'¢) =0form € 2Z+ 1 ae. ( ER

>0
wheret)" is the complex conjugate of

Meyer’s equations help in determining whether a functiohi(R) is an orthonormal wavelet
or not. But the problem faced here is that we need to verify all four equations which are infinite
sums. Thus there arises the problem of convergence of the series. This problem can be settled
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if we could get a "nice” form for) such that the equations are converted to finite onds.| i
the characteristic function of some measurable subsif tfen this problem is reduced.

From the characterization of an orthonormal system given by Thegrem (2.2), we observe that
if 4 is an orthonormal wavelet, then cleatty(¢)| < 1 a.e. ( € R. By the oorthonormality of
¥, we have|| ¢ ||;= 1 and by Plancheral’s Theorefny ||2= 2. Thus]w( )] < 1 almost
everywhere orR together with|| ¢ ||2= 2 leads to the fact thatM (Suppt)) > 27. So it
is natural to consider the case whé(Supp zp) = 27. By method of contradiction, one can
show that onSupp ¥, |¢(¢)| = 1. For this, we assume that< |¢)(¢)| < 1 on a setE of
positive measure. Then,

B1)  2r= M(Suppd) = /S REE /erp(oﬁdc — D= 2n

which is a contradiction. For the converse, we assume ¢ig}| = 1 on Supp > which in turn
is equivalent tq¢| = xp WhereE = Supp . The orthonormality of (- — k) : k € Z} thus
gives

(3.2) M(E) = /E ac = / D) PdC = | 3= 27 || v 2= 2

Thus we have fory € L2(R) which is an orthonormal wavelet1(Supp ) is atleastr.
Equality holds here if and only )| = x for some measurable setc R with M(E) = 2.

In such cases, the wavelétis called aMinimally Supported Frequency wavelet (MSF
wavelet)and the sef is called awavelet set From this, the name 'minimally supported fre-
quency wavelets’ is cleat (Supp zL) = 27 is the minimal condition that can be attained. MSF
wavelets was introduced in [13] and as 'unimodular wavelets”in [15]. Unimodular wavelets are
defined using the functiong € L?(R) such that«(¢)| = 1 on Supp ) termed as unimodular
functions in [15].

Wheny is an MSF wavelet, the Meyer’s equations in Theorem| (3.1) eventually gets reduced
to just two equations. By Meyer’s equations one side proofis trivial. Hence it is enough to show
that if both conditionga) and(c) of Theorem|(3.[l) are satisfied together with the assumption
that fory) € L2(R) such thatjy)| = x for some measurable s&t c R, theny is an MSF
wavelet. It is shown in[[15] that for any unimodular functignin L?(R), the equation(a)
implies(d) and(c) implies(b) which in turn proves) to be an orthonormal wavelet by Theorem
31). If for a fixed¢, such that’¢ € K, then\fb(%{)\ = 1. By (a) part of Theorem[(3]1),
QL(QJC + 2km) = 0 for nonzerok which in turn implieg(d). In a similar way, if for a fixed, for
which ¢ + 2k € Supp, [{(C + 2km)| = 1. This together with the assumption (@) would
give us for nonzerg, (27 (¢ 4 2kx)) = 0 and which in turn makes each term(ln) to be zero.

Thus we have the following characterization of unimodular wavelets.

Theorem 3.2.[15] A unimodular function) in L*(R) is a wavelet if and only if

a) Z (¢4 2km)P=1ae CeR

keZ

b) Y W27 =1ae (R
JEZL
A set-theoretic equivalence of this Theorem which is very much helpful to check whether a

function is an MSF wavelet or not is given here. This Theorem is also helpful in the construction
of MSF wavelets.
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Theorem 3.3.[13] Let E be a measurable set ik and lety) € L*(R) be a function such that
|| = xx. Themy is an orthonormal wavelet if and only if

a) {E + 2kr : k € Z} is a partition ofR a.e. and
b) {2/E : j € Z} is a partition ofR a.e.

s-elementary wavelets were defined in terms of a set and are found in chapter 4 of [10]. A
wavelet setF is a measurable subset Bf if the characteristic function oF is the Fourier
transform of a wavelet and are calleeelementary waveletswhere the 's’ is used to denote
set But whether this class of wavelets and MSF wavelets are the same is not yet known. The
properties and construction of MSF wavelets or s-elementary wavelets are studied mainly in
terms of wavelet sets. Hence any study that deals with these wavelets would be incomplete
without the mention of wavelet sets. An introduction to wavelet sets could be seen along with
MSF wavelets or s-elementary wavelets in/[10,[13] 16, 17].

The importance of the characterization of wavelet sets is found In [10]. For this, two notions
such as translation congruent modtoand dilation congruent modulbare defined.

Definition 3.1. [10] Measurable setd andB are translation congruent modue if there exits
a measurable bijection: A — B such that-(z) — x = 2mmx for m € Z and for eachx € A.

Equivalently, there exists a measurable partitfoh, : n € Z} of A such that ther integer
translates of this collection forms a partition Bf

Definition 3.2. [10] Measurable setd and B are dilation congruent modu®if there exists
a measurable bijectioh : A — B such that for eackh € A there exists an integer such
thatd(s) = 2"s. Equivalently, there exists a measurable partifer, : n € Z} of A such that
{2" A, } is a measurable partition @&f.

Using these two concepts, one of the most important characterizations of wavelet set given
in [10] is as follows.

Theorem 3.4.[10] A measurable sef’ C R is a wavelet set if and only i’ is both translation
congruent td0, 27r) modulo27 and dilation congruent to—2x, —7) U [, 27) modulo2.

A study on the wavelet set of a unimodular wavelet is dong in [15]. Sihe ¢» denoted by&
is partitioned into two sets namely" andE~, whereE+ = EN(0,00) andE~ = EN(—o0, 0).
Here also characterization of unimodular wavelets is done using the concepts of translations
and dilations which are almost the same as defined in definitions (3.1), (3.2). One difference
is that these definitions which are made here are more general wheréas in [15] the sets are
restricted. In[[15], for any real number the functionr, is defined byr, : R — [a,a + 27)
ast,(r) = x + 2km where for eachr € R, there exists a unique integéfz) such that
a < x4+ 2k(x)m < a+ 27 and fora > 0, defined, : (0,00) — [a,2a) asd,(z) = 27@z,
where for eaclr € R, there exists a unique integgr) such thaty < 27®x < 2a. Fora < 0,
defined,(z) = —0_,(—x) for z < 0. Using Meyer’s equations it is proved that a function
¢ € L*(R) is a unimodular wavelet if and only if for somec R, 7, is one to one orE’ except
on a set of measure zero aM([a, a + 27) — 7,F) = 0 and for some: > 0 andb < 0, d,, I,
are one to one olv™ and £~ except on a set of measure zero respectively. Here on closely
observing this with Theoren (3.4), we can see that both characterizations are the same. This
can be obtained if we consider the translatigron £ and the dilation®, on E™ andd_, on
E~, which are the same as mentioned in Theoien]j (3.4).

This characterization of unimodular wavelets whose waveleb'sae a finite union of inter-
vals is given in[[15]. This is done using the fact that in this c&¢€a, a+27)—7,E) = 0 ifand
only if 7,E = [a,a+ 27) andr, is one to one on a set of measure zero which in turn happens if
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and only if7, is one to one oy except at finitely many points. In such casglkl = [a, a+ 27)
andr, is one to one or. Similar results are obtained féy.

Three cases are being discussed_ in [15] depending on the structure @ batid £~. The
first case deals with botB™ and £~ to be intervals, using these results it is establishedEhat
is precisely of the form

E = [2a — 47, a — 27] U[a, 2al

for some0 < a < 27. Second case is whefit consists of disjoint intervals anfl~ = —E™.
Here we discuss the case of symmetric wavelet set, fheis of the form

2 . - 2
+ J J _
ET = [2j+1 — 1,7r] U [2 m, 20T+ 7T 1]
wherej € Z*. This in turn says thak' is the union of four intervals. Third case is wher is
the disjoint union of two intervals anfl~ is an interval. Thus, the precise form Bf andE*

are given by
_ 2p+1 2p+1
£ = {‘%“m)”v—(l—m)ﬂ]

ST 2p+ )m 2(2p+ 1)m 27 2p+ ) 273 (p+ D)7
T 9itl 1 94+l _q U 2%+l 1 7 92+l _ 1
forj >2andl <p <2 —2.
Once we have the characterization of MSF wavelets, we will turn in to the construction of
these wavelets. One such important result in this construction can be found in [16].

Theorem 3.5.[13] For ¢» € L%(R) with |¢)| = xp, © is a wavelet if and only if there exists
a partition {[; };c7 of I = [—2m,—m) J[r, 27), a partition { £}, of E and two sequences
{jl}leZ: {kl}lez C 7Z such that

a) E, = 2jLIl, leZ

b) {E; + 2k;7}iez forms a partition of/.

Here we note that is the support of the Fourier transform of the Shannon wavelet and using
Theorem|(3.p) we obtain MSF wavelets from Shannon wavelet. The proof of this is obtained by
using the basic ideas of wavelets but is a bit constructive in nature. If we assume (a) and (b) of
this Theorem to hold, then usin@| = x g and our assumptions, together with Theorém|(3.2)
leadsy to be a wavelet. For the converse, we assynie be a wavelet, then by Theoreim (3.3),
we have{ E+2kr }rez and{2’ E'} ;<7 to be partitions oR. Let £, = EN(2"I) and.J, = 27" E,
forn € Z. Since{2"1},cz and{27"E},cz are partitions ofR, {E, },cz is a partition of £
and{J, }.cz forms a partition off/. For each integen, defineE, ; = E, + (I + 2jm) and
L,; = Jo+ (27" + 2jm)) for j € Z. This{E, ;}, ez forms a partition of/, by taking
(n,j) = landj = —k, completes the proof.

An example that illustrates this construction has been given here.

Example 3.1.[13] Let ] = [—27, —x) J[r, 27). We choose a partition fof and let it be{I;}

and

defined byl; = [-2r, —3n), I, = [—3m,—m), Iy = [m,37), I, = [37,2n), I, = 0. Also,
we choos€j;} to be the sequence defined hy= —1, j» = 1, j3 = 1, andj, = —1 and let
E = {2I;}. We havel, = 2]} = [-m,—2n), By = [—§7,—2m), E3 = (2, $m), and

Ey = [3n, ). Let{k;} be the sequence defined such tf@it/, + 2k}, is a partition of .
Thus if we choose songein E, + 2k, 7, then this¢ has to belong td—2r, —x) J[, 27). If
¢ € [-2m, —7) then we have

-2
=21 < —m + 2k, ?ﬂ' + 2k < —mr.
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Sincek; must be an integer satisfying these equations, we get noksuekists. Thus we have
if ( € By + 2kym then for¢ € |7, 27), we get two similar equations which givesiys= 1. In a
similar manner we get, = 2, k3 = —2andk, = —1. But by Theoren(3.5)

E = U 2] = ——7r —2) U[—ﬂ', —gﬂ') U[gﬂ', ) U[27T, 2#)

leZ
give rise to an MSF wavelet. Helkis the support of the Shannon wavelet afids that of
the Lemarie-Meyer wavelet. Thus we have constructed Lemarie-Meyer wavelet from Shannon
wavelet.

Characterization of all those orthonormal wavelets whose Fourier transform has support con-
tained inS, = [Fa, 47 — 30, 0 < a < 27 is obtained in[[16]. Also, the support need
not be symmetric about the origin. Fer= 7, we have the Lemarie-Meyer wavelet. The main
Theorem which deals with the equivalence of orthonormal wavelets proved in [16] is as follows.

Theorem 3.6.[16] For ¢» € L?(R), has support contained ifi, = [5%,47 — %], 0 <o <7
andb = \{b|. Themy is an orthonormal wavelet if and only if
a) b2(¢) +0%(5) = L ae. ¢ € [dm — 82 4 — 49]

b)b(C)zla.e.CE[w—— 4 — 8 5]
c) () + 0¥ (¢ +2m) =1 ae. ¢ € [-42, -2
d) b(¢) = b(§ + 27) a.e. ¢ € [-52, —%]

e) 1(¢) = e9p(¢) with p(¢) satistyingp(¢) + p(2(¢ — 27)) — p(¢ — 27) = (2n(C) +
)7 a.e. ¢ € Do N (Supp b) N (5Supp b), whereD,, = [2r — 22, 27 — 2¢] andn(() is
an integer-valued measurable function.

f) b(¢) =0ae. (€ [=2 21— 2] =H,

This remarkable result simply means that i |z]z| is any measurable function whose support
is contained inS,, then all such wavelet$ have a Fourier transform that can be expressed on
the rest ofS,, in terms ofb, proof of this depends mainly on Theorem (3.1) and is divided into
three sections. At first, it is obtained that for sucly avhose Fourier transform has support
contained inS,, 0 < a < T, this support is precisely contained$y — H,. The concept of
dimension function (refer definition (4.2)) is used for this. To prove this p&riis taken to
be the union ofD, and H, and is assumed to be any interval of leng@th Then using the

definition of dimension function,/ D, (¢)d¢ = 2x. By making use of these definitions of
Jo

H,, S., D,, we get

0
(3.3) Dy(Q)=1= Y [(2OF ae. (€ H,
and
(3.4) Dy(¢) =1 —[(2(¢ — m)|* a.e. ¢ € D,.

These two equations gives,(¢) < 1 and clearlyD,(¢) > 0. Slnce/ Dy, (¢)d¢ = 2m,
we haveD,({) = 1 on J, almost everywhere. Hence using equatlﬁ(B 3) and (3.4) on

AIJMAA Vol. 18(2021), No. 2, Art. 17, 21 pp. AIMAA


https://ajmaa.org

A REVIEW ON MINIMALLY SUPPORTEDFREQUENCYWAVELETS 9

0
H,, Y [9(27¢)]” = 0 almost everywhere arid (2(¢ — 7)) | = 0 almost everywhere of,,
J=—00

which in turn gives u$?z(§) = 0 on H, almost everywhere. Then using the Meyer’s equations
the remaining part of the Theorem is proved by considering different intervals and eliminating
those terms that does not lie in this support. The last part of the proof is to prove the converse
part. So if we are assuming all these six conditions, then to show that the given wavelet is an
MSF wavelet we use Theorefn (B.2). This also makes use of the suppoaruf each infinite
sums gets reduced to finite ones. Examples are provided to illustrate this.

From Theorem[(3]6), we get two results given by equatipns (3.5)and (3.6). From condition
@), () +b*(5) =1 ae. ¢ € dr—582 4r—22]. Then$ € D, a.e. whichinturnis equivalent
to b?(2¢) + b*(¢) = 1 a.e. ¢ € D,. Also, from condition(c), for ( — 27 € [—2&, —22], we get
V(¢ —27m) +b*(¢) = 1 a.e. ¢ € D,. Thus we get

(3.5) b(2¢) = /1= 02(C) = b(C — 271) ace. C € Dy

Similarly using condition(d), b(¢) = b(3¢ + 2m) a.e. ¢ € [—%,—%2] which in turn gives
(3¢ +27) € D, a.e. Thus we get,

(3.6) b(2(¢ —2m)) =b(C) a.e. ¢ € D,

Theorem|[(3.p) is very helpful in the construction of orthonormal wavelets as shown in the
following example. To explain this, we construct Shannon wavelet using Theprem (3.6). We
takea = 7 andb(¢) = X, 1, ON (27, 37]. Now from condition(a), we get

if ir,om
@) ORS R

and thus we could exterid¢) to [37, 3x]. Similarly, using conditior{c) we have

-y s

3

on [=*7, =2w]. Using condition(d), we could extend this to the intervial®r, =*] as

o it ¢e[FEm —2m)
(3.9) b(é)—{1 . 6[_3%’_%7?]'

Thus we have extendéd() to S, = [T, 87]. Summarize the above as follows:

0 if ¢el[zm —2m)U[—m, F7]U]

1 if ¢ el-2m Z7U[Ftr, —m) Ulr, 37 U [3m, 27).

TS
A
A
-
™o
A
[.d]
A,

(310) () = {

This is same a§;_ s, _xujr2m ONR. Also, we haveZr, 27] N Supp (b) N § Supp(b) = {7}
and hence by conditiofe), we choosex(() = g This choice is made in such a way thédt) is
a measurable fynction satisfying the equation given in cond({gpof Theorem [(3.6). Thus by
Theorem[(BB)i)(¢) = e©)b(¢) is an orthonormal wavelet)(z) = —2% which
is the Shannon wavelet as in Figlie 1.
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Figure 1: Shannon wavelet

4. MRA MSF WAVELETS

If a scaling functiony exists with)(¢) = e“3mq(§ + m)b($), theny is anMRA wavelet.
Characterization of unimodular wavelets that are associated with MRA is discussed in [20].
Since these wavelets arise from an MRA, a scaling functiexists and is of the form = y,,
whereM is a finite disjoint union of closed intervals. The equivalent conditions for suctoa
be a scaling function of an MRA are th@t/ + 2k} forms a partition oft, the dilate’ of A/
is contained inV/ and M contains a neighbourhood of zero. The waveldhat is generated
by such a scaling function will be of the form |4 (¢)] = x, whereE = 2M \ M. This
characterization is true only whe¥! is a finite disjoint union of closed intervals. Whaih is
an infinite union of intervals, this result is not valid which is shown by taking

M= G {;—,} (2—%) w;—ﬂ U [O,Zﬂ'] uD {(2—2—1) m, (2—2k1+1(2—2k1+1)) n}

k+1 k=1

This choice of M violates the condition that/ contains a neighbourhood of zero. Second
statement of this characterization can be easily proved by combining the fact that an MRA
wavelety is related tap using the relation

56 = (5 +7)(5)

and we have the following equality
mo(Q)* + |mo(C + m)[* = 1.

SinceM C 2M, we haved(C)] = Xann -

A natural question that raises in our mind is whether it is possible to have thé asdisjoint
union ofn closed intervals for any natural numberA negative answer to this is given in [20]
by proving that forn = 2 such a set is impossible. The case wliénis a single interval is
considered first. Since it must contain a neighbourhood of the origin and is of m@asuve
obtain that)/ is precisely of the forni—a, 2r—a] for 0 < a < 27. The wavelet) obtained from
this scaling functionp will be 1 (¢) = 0(¢)x(¢) whereE = [—2a, —a] U [21 — a, 47 — 2d]
and|f(¢)| = 1. This is same as the general form of those unimodular wavelets associated
with an MRA whose Fourier transform has a support consisting of two intervals givenlin [15].
To check whethel/ could be the disjoint union of two intervals, také = [—a,b] U [c, d]
where0 < b < ¢ < d. Applying the condition%M C M, we getd < 2b. Using the fact
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that {M + 2kr : k € Z} is a partition ofR and simple computations gives the inequality
—a+2(k+ 1)m = d < 2b = 2¢ — 4k7 which in turn gives—a + 6k + 71 < 2¢ < 2d =
—2a + 4km + 47 which in turn produces the inequaliBkm — 2r < —a < 0 which is not
possible for a positive integér. ThusM cannot be the disjoint union of two closed intervals.
In a similar manner, considev/ as the union of three intervals and théh is of the form

M = [—a,—bU[—c,2m —a] U [2m — b,2m — c] where0 < ¢ < b < a < 2¢ < 47. This makes

E as the union of six intervals. Also, whéd = [—a,b]U|[c,d] U e, f], takingc — b > 27 leads

to a contradiction and thug is the union of three to five intervals as well, the details could be
seen in[[20].

Study of MSF wavelets associated with an MRA were done by many authors. A detailed
characterization of unimodular wavelets can be found in section four of [20]. It is proved that
for any MRA unimodular wavelet with scaling functionp is also unimodular anpié(g)| = Xum
whereM = U 2/ F is a disjoint union. To prove this, we make use of the equat[onk (2.1), (2.2)

§<0
and [2.3). Thus we obtaifi:(¢)]> = [4(5)]*> — |¢(¢)[>. Rest of the proof can be completed
easily by using the facts)(¢)|* = > x2i(¢) and) _ x»5(¢) = 1 which we can obtain from

j<0 jez
the definition ofp.

Use the set theoretic equivalence of Meyer’s equations for unimodular wavelets. An equiv-
alent condition fory) such that|{b| = xp to be an MRA unimodular wavelet is given as
Uiez Uj<0(2jE + 2Im) = R. The properties that must be satisfied by the support of the Fourier
transform of the scaling function and the result which implies this scaling function to be uni-
modular is used to prove this.

An important characterization of MRA MSF wavelet was madeé in [13}) ¥ L*(R) is an
MSF wavelet, them))| = x, whereM (E) = 2x. DefineE* = U2, (277 E), by Theorem[(3.3)
the sets in this union are all mutually disjoint almost everywhere and also note that

(4.1) M(E®) = 27.
Now if we consider) to be an MRA wavelet, then we have the relation

(4.2) DO =D (2P ae (R
j=1

which implies

(4.3) W = XEs-

By the orthonormality oi{gbO,k ke Z}, we get

(4.4) > 16(¢ + 2km) P =1 ae. ¢ € [~7,7).
keZ

Thus from [4.1)[(413) and (4.4), we get

(4.5) M (E° N (E® 4 2km)) =216 k € Z.

In fact, this condition is proved to be a sufficient condition for an MSF wavelet to be associated
with an MRA. Quadrature mirror filter (QMF) method explainedin/[12] is used to achieve this.
We assume)(¢) = [¢(¢)[e**©) wherew being a real valued measurable function/@rmlong

with the criteria [4.5). Also, using equatidn (4.3), we defiffe) = [¢(()[e#©) = ¢8Oy ..

Since the sets in that union are all disjoint for almost evegy E*, by the definition of£* and

by Theorem[(3]3), it is possible to find a unigue 1 such that, € 2-'E and thereby we define
B(¢) = 211« (2!¢). Thus by equatiorf (4.4), we can see that the integer translate$oofns
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an orthonormal system. We define the low-pass filtgron E* as given in equation (4.6) and
extend it to &r-periodic function orR using equatior] (4]5) which is our assumption. Here
is also defined and extended in a similar manner. Thus wehgwandm,; as

i 1 s
(4.6) mo(¢) = {Sﬂl_ja@jo hl°f QCGE;?EC bfjor unique j > 2
) TR S e
and since the supports of bath, andm; are disjoint,
(4.8) mo($)my(C) + mo(C + m)ymy((+7) = 0 ace. ¢ € [, ).
Taking into consideration the two cases %E and¢ ¢ %E it can be easily shown that
(4.9) D(20) = mi()(C) ae. C €R.

The equation(Z2]1) being equivalent to equatfon (4.10) given by,
(4.10) 5(¢) = [[mo(279¢) ae. C€R
j=1

the later is proved using some simple calculations. By the orthonormali{yb@,g ke Z}
given by equatior (4]4) and by equatipn {2.1) we have

(4.11) mo(Q)P + mo(C + m? = 1 awe. ¢ € [~m,7).

Proceeding in a similar manner, the orthonormality ¢f,,. : k¥ € Z} and by equatiori (4}9) we
obtain

(4.12) Im1(O)]? + |mi(C+7))> =1 ae. ¢ € [-m, )

which in turn givesmg, m; € L®(|—,7)). In fact, from equation[(4.11) we get,(¢) =
A(Q)mo(¢ + ) whereA(() is 2m-periodic and\(¢) + A(( +7) = 0 a.e. ( € [—m, ). Thus
there exists &r-periodic functionv such that\(¢) = e“v(2(), ¢ € [—7,7) andm,({) =
e“v(2¢)mo(¢ + 7) where equatior (4.12) implies(¢)|> = 1 a.e. ¢ € [-7, 7). Thus we have
shown that(mg, m;) is a Quadrature Mirror Filter (QMF) pair and the last part of the proof is
devoted in showing that is a scaling function fok, = spaf ¢(- — k) : k € Z} which is done
by provingl; = V4. This makes use of equatiofs (4.9) and](4.4) and orthonormality.

One useful characterization of MRA MSF wavelets that is given in [13] is the following.

Theorem 4.1.[13] For an MSF wavelet) with W)| = X, the following conditions are equiva-
lent:

a) 1 is associated with an MRA.
b) M (E* N (E* + 2km)) =210, k€ Z whereE* = [J72, (277 E).
c) {E° + 2kw : k € Z} forms a partition ofR.

d) M(E+4kr)N(277E)) =0 forevery keZ, j>1.
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Outline of the proof of the equivalence of the first two statements has already been mentioned.
The equivalence of second and third is trivial and it is enough to show Ihatnd @) are
equivalent. Using the fact thd’ F'} ;7 forms a partition ofR, both the L.H.S oflf) and ()
are zero and hence equal. The converse part is proved using the faicEthakr} e, forms
a partition of R. Using the statement, it is shown in examples that Lemarie and Journe
wavelets are non-MRA wavelets. Also, using Theorgm|(4.1), Shannon wavelets are shown to
be associated with an MRA.

Results proved inJ1] could be seen as an extension of the results found in [15], here the
symmetric class of MSF wavelets are considered. Because of the symmetric nature, it is enough
to consider forE*. The case wher&™ is the disjoint union of two intervals and the case of
just one interval could be seen In[15/ 20], a general method is put forward whéma finite
disjoint union of intervals of more than two intervals. Af* is just one interval, then the only
symmetric wavelet set is the Shannon wavelet set. The idea of MSF polygon is introduced to
give a geometric insight to construction and then relates this with wavelet sets.

Definition 4.1. [1] Consider the first quadrant of the Cartesian plane,l}ebe the set of
points P such that for somen € NuU {0} and\ € Z, P = P[\,;m] = (27*,27*m).
LetP = (P, P»,---, P,) be an ordered sequence of pointsiirwhere P; = P[\;, m;] for

j=12,--- n Forj=1,2---,n—1, defineq; as the negative of the slope of the straight
A A
line throughP; and P;, giving a; = —mj22,§;zjjijil """ Thus the polygor® formed is said

to be anMSF polygonif A, = 0, 4m; = 27*(2m,, + 1) and0 < ap < a1 < -+ < a, = 3.
On observing the definition of MSF polygons, we see that the vertices lie only on the portion

of Iines{(2*%‘,y) N €L,y € R} shownin Figure@Zb) in the first quadrant. We note that the

slopes of the straight lines joining afy and P;; are decreasing and lies ﬂn%, 0]. We have

plotted a few MSF polygons for the case= 3 in Figure [2a). In this FigureAABC refers

to the case where we choosg = 1, A\; = 0, Ay, = —6, my = 0 and 3 = —4, thus obtaining

my = 12. For the case = 3 in Figure @a), we choose; = % for each triangle to be an MSF

polygon. FOrAPQR, A = —5 and\3 = —3 thereby obtainingn; = 6 and the values ok,

ms, mz andas are same as that @k ABC. Also, for AUV'W the only change made was that

we considered; = —2 and )\, = —4 and thereby obtaining:; = 3.

18 C {16,16) 0
12 7 A (1,12) Wi i i i

R (8.8) i

ar A 100 il i i i i i

e B i i i

sp(P(16) B0 Qi i i i
| el N

linrras i 60 Ki
W (4,4)~ =
e, Ty

U3 S e 40 Hi
N o ~ N || ! ! ! ! !
2 g 2o il Qi i i i
N B (64.0) Wi i i i
vV (16.0) ~.Q (32,0 S s : : :

ot : s el ) : — - : - - - :

10 20 30 40 50 60 70 0 10 20 30 40 50 60

€Y (b)

Figure 2: (a) MSF polygonfon =3 (b) Lines{(27%,y):\; €Z, y € R}
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It is shown in [1] that if? is an MSF polygon and; is defined ad; = [a;_1, a;] + m; for
j=1,2--- n,thenk = E*UE~ whereEt =1, Ul,U---U I,, isa symmetric wavelet
set of L?(R) and thusF is a disjoint union ofn intervals. Also, distinct MSF polygons give
rise to distinct wavelet sets. In the case®E/VWW, a; = 1, a; = 3 and thereby obtaining
ET = [3,2]U [} 3] U[5, 3] In the third section, corresponding to eacheachn-tuple
e = (e, - ,€6,) € {—1,1}" and for each permutation € S, ; on1,2,--- ,n — 1, there is
a family M(n, ¢, 7) of symmetric wavelet sets df?(R) associated with it and a necessary and
sufficient condition for a symmetric sét which is a finite union of intervals to be wavelet set
in L*(R) is also provided. An example of a wavelet set which is symmetric and have zero as
an accumulation point is included in [1]. Also, it is proved that there exists uncountably many
symmetric wavelet sets ih*(R).

We have four interval symmetric wavelet setdRirof the formE, = Ef | J E- whereE =
22r+1

[57—=m ™) U [2’"7T,m7r> and since being symmetric givés- = —EF, » € N. For
r = 2, we get the Journe wavelet set. Also, the generalized Journe wavelet set is given by

2"' , , 27"
mﬂ-v_2 m™+2 5T)U[_7T+ﬁr7—m
2T T T T 2r
U[mﬂ-7ﬂ+ﬁr)U[2 T+ 276, 2" + mﬂ)

wherer € N andg, € (557, 71— )- Using the characterization of wavelet set, we define

three maps that are measurable bijections, one of this is translation congruent Rwoaulo
Js, 10 [—7 + B,, 7 + B,), a dilation onJ{ to [5A—, 72+ ) and another dilation od;

to [~ 5247, —54—7). This is an equivalent characterization of wavelet set and hépnde

shown to be a wavelet set. It is shown thigt is an MRA wavelet set and for # 1, J; is a
non-MRA wavelet set, and this result is proved using the concept of dimension function in [25].

Jp, = [-2'm — )

(4.13)

Definition 4.2. [6] The dimension function of an orthonormal wavelet € L?(R) is defined
as

Dy(Q) =D D [+ k)P
j=1 keZ

Dimension function was introduced liyuido Weiss It is also referred to as multiplicity
function in literature, using this notion of dimension function, characterization of wavelets was
easily made possible. This definition does not always hold for non-integer dilations in one
dimension, but there are two cases where it is valid. The first one having a rational dilation
factor and the other being MSF wavelet detail can be seen in [7]. A characterization of MRA
wavelet given in[[6] has proved that for a functigrto be an MRA wavelet, it is necessary and
sufficient thatD,,(¢) = 1 for a.e. ¢ € R. Using this concept of dimension function, it is shown
that in [16] any orthonormal wavelet whose Fourier transform has support contaifgasian
MRA wavelet. Here we show thd?, (¢) = 1 almost everywhere. Sind,(() is 27-periodic,
restriction is made t®,, U H,. Using equation (3]4) and) of Theorem|(3.6), it is shown that
D,(¢) = 1on D, almost everywhere. Then using equation|(3.3) &idit is possible to show
Dy(¢) = 1on H, almost everywhere.

As the Fourier transform of these wavelets is characteristic functions that are discontinuous,
they lack good regularity properties which makes them less applicable. But these classes of
wavelets can be used to derive certain other wavelets with good regularity properties. This
could be seen in [17] where we obtain smoother low-pass filters for an MRA by mollifying
the low-pass filters of MSF wavelets. This in turn leads to an approximation of MSF wavelets
by smoother wavelets of any degree of smoothness. Cohen’s characterization in [9] deals with

AIJMAA Vol. 18(2021), No. 2, Art. 17, 21 pp. AIMAA


https://ajmaa.org

A REVIEW ON MINIMALLY SUPPORTEDFREQUENCYWAVELETS 15

thoseC* filters which are associated with MRA's. But for an MSF wavelet, filtexs¢ C”
and as a result, this characterization cannot be directly used for them. Cohen’s characterization
is the following.

Theorem 4.2.[18] Let m, be a2n-periodic function inC™™(R) for r = 0,1, -, co which
satisfiesmy(0) = 1. Thenm, is a low-pass filter for a wavelet if and only i, satisfies
|mo(C)|* + |mo(¢ +7)]2 =1 a.e. ¢ € R and there exists a séf C R such thatE is congruent
to [, 7| modulo2r.

Characterization of the low-pass filter of a wavelet is given_ in [17], this together with Theo-
rem (4.3) leads to results concerning MSF wavelet.

Theorem 4.3.[17] Suppose that is an MSF MRA wavelet for Whiqlﬁ>| is continuous at zero
and|¢(0)| = 1. Then the low-pass filter,, associated with this wavelet must be of the form
|mo| = x gz, WhereE C R is a measurable set such thBt= F + 27 and x5 () + xg(( +7) =

1 ae. ¢ € R. Alsothe seb = (| 2/E is the support of, |¢| = x5, M(S) = 2, S contains
j=1
0 in its interior and satisfiesz: Xs(C+2r) =1 ae. (€ Rand|mo(277¢)|=1ae. €S
leZ
andallj > 1.

This result can be established easily using the basic facts. The equgtions (2.1) together with
(2.8) implies thatm,| = xy for some measurable sét C R As my is 2m-periodic, we

get x5(¢) + xg(C +7) = 1 ae. ¢ € R. Sinced(¢ Hmo (277¢), we obtain|¢| =

Xs and|mg(277¢)| = 1 a.e. ¢ € S. Applying Plancherels Theorerm/l( ) = 27 and the
orthonormality of{¢(z — k) : k € Z} leads toz Xs(C +2im) = 1 a.e. ¢ € R. Finally

I€Z
we need only to show thdt lies in the interior ofS. This can be proved by the method of

contradiction using the continuity ¢|. The importance of Theorer (4.3) is that it leads to the
characterization of the low-pass filter for an MSF wavelet.

Theorem 4.4.[17] Letm, be a2r-periodic measurable function defined Brsuch thatn,, is
continuous ab and |m(0)| = 1. Thenm, is a low-pass filter for an MSF wavelet if and only
if |mo| = xz F C R is a measurable set such that

(4.14) Xe(Q)+xp(+7m)=1ae (eR

(4.15) mo (ﬁ 2jE) = 27.

j=1
By Theorem([(4.8), one side can be easily obtained. If we assuigle= x ; with equations
(]21;17,) and[(4.15) we need to show that is a Iow pass filter. For this, we defing(¢) =

Hmo ~i¢). Then we getp| = x4 whereS = ﬂ 2/ E. The orthonormality off ¢(z — k) :

k e Z} is proved since the sefs+ 2kn for k € Z are disjoint. By the contlnwty assumption
on me, we have the continuity ofp| and |$(0)] = 1. From the definition ofs, we obtain

$(2¢) = mo(¢)3(¢). Thus by Theoren (2.1} is a scaling function associated with an MRA
and hencen, is a low-pass filter for a wavelet.
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A procedure to obtain new low-pass filter for an MRA with a smooth scaling function from
a given low-pass filter is seen in [17]. Even though the construction is shown for bandlimited
MSF wavelets, it is applicable in general to MSF which are not bandlimited also.idfthe

bandlimited MRA MSF wavelet with low-pass filten,({) = ZXF(C + 2km), whereF =

kEZ
n

UI, is a finite disjoint union of intervals contained {r-7, ) and the scaling functiom is

=1
00

chosen such tha(¢) = Hmo(TjC)- A function m, is constructed with any desired degree
j=1

of smoothness. For any positive real numbgs, € C" r = 1,2,--- , 00 be defined orR

such thats.(z) = 0 for all z < —¢ and for every real numbet, s?(x) + ¢?(x) = 1, where

ce(r) = se(—x). Choosel; = (a;,b;) | =1,2---  ,nandeis so small such that
—T<a—€e< - <ate<b—e<bte<a—€e<---<b,+e<m.

Assumption is made so &sis in some intervala,,, b;,) ande < min{—aq,,, b;,}. Using these
s. andc,, a2r-periodic functionm, is defined as

me(¢) = Z {Z $e(C — ay + 2km)c (¢ — be + 2/{57?)} :

keZ =1

Thenm(0) = 1 and|m.(¢)|2+ |mc((+7)2 = 1 a.e. ¢ € R. ChooseE = Supp ¢ andi) being
bandlimited gives _,_, x (¢ +2i7) = 1forall { € R andm0(2*j<") # 0forall ( € £ and all

j € N. If m, € C™1, a scaling function is obtained from, as¢_(¢) = [T | m¢(27¢) and a

waveletzp is also obtained, both belongsdd. By showing thaﬁ) tends tog in the L2-norm

and@b tends tod) in the L?-norm ase goes to zero, we get, tends tom, in the L2-norm.

Also, it is shown in[[16] that non MRA wavelet cannot be approximated by MRA wavelets
in the L?-norm. Hence ify is a wavelet which is not an MRA wavelet then it is isolated
from the MRA wavelets in thd.>-norm. This in turn leads to the fact that the collection of
all MRA wavelets as a subset of the set of all wavelets is open i .theorm. It is already
established that ify" : n = 1,2,---} is a sequence of MRA wavelets converging in ftte
norm to a wavelety, thenty) must be an MRA wavelet. The proof of this result is done by
showing that the dimension functidn,,({) = 1 almost everywhere. By using the property of

dimension function, for any interval of length2r, we have/ Dy (¢) d¢ = 2m, it is obtained
J

2
that/ Dy (¢) d¢ = 2||v]|5. Using this, we have
0

[ Don-stcric = 2rlr — vl

This when followed by Fatou’s Lemma and the inequality

Dy(C) < Dyry(Q) + Dy () + 2/ Dy (D () ae CER,

together with simple calculations leads to the result. This means that the collection of all MRA
wavelets is closed as a subset of the set of all wavelets. Thus, it can be concluded that the set of
all MRA wavelets as a subset of the set of all wavelets4(R) is both closed and open set and
hence is not connected.
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Another interesting fact mentioned in [16] is that if we consifeas the set of all wavelets
as a subset of the unit spherelif(R), thenS is not closed in.?(R). For this, we consider the
wavelety,, with

~

wa = X[f2a,fa]u[27rfa,4ﬂ'f2a]7 0<a <27

Then asx tends to zeroy),, goes toy,; wheret; = Xy, 4. But by Theorem[(3]3)y; is not
a wavelet.

The connectedness of different class of wavelet sets has always been of interest. The con-
nectedness of the collection of s-elementary wavelets has been dealt in the paper [27]. The main
result that we have, regarding the connectivity of this class of wavelets is the following.

Theorem 4.5.[27] The s-elementary wavelets form a path connected sub&é{Rj.

Here onwards\ denotes Lebesgue measure Rrand ;. denote the measure defined by
wA) = [ XA(x)%. Also, letM (A) be the collection of all measurable subsBtsf A such that
A(B) < oo andu(B) < oo. To establish the path connectivity, first it is shown that the collec-
tion of wavelet sets is path connected in the symmetric difference metric. This metric is defined
asdy (A, B) = \(AAB), for measurable set$ andB of R. For this, the first step is to construct
a path of subsets of wavelet sets. Then for each set in the path, we find a wavelet superset which
depends continuously on the subset. Defipéo be a subset di such thatR, is translatior2r
congruent td—= —t, —m) J[r, m+t) wheret € [0, 7] andP, is another subset ¥ which is2-
dilation congruent to—2m, —27 —t) | J[27 — ¢, 27) andQ; = [—27+t, —7 —t) [+, 27 —1).
Then the path of these sets is defined by

S_{[(QtURt)\(ﬂRt)ﬂQt)]\Pt if 0 <t <m/2
! R\ P if w/2 <t <.

The continuity of dilations, translations and set operations concerning this metric justifies the
continuity of this path. Then a recursive construction of 9diof continuous functions of

such thatS, J(U;2, M;) = W, is a wavelet set for eachis made. This construction is even
shown to be continuous. When the symmetric difference metric is restricted to s-elementary
wavelets, it is equivalent to the?(R) metric and thus s-elementary wavelets form a path con-
nected subset df?(R).

Combining the result oAuscherin [2], with the one regarding the convergence of MRA
wavelets in[[16], we obtain that any orthonormal non-MRA wavelet cannot be approximated by
those in Schwartz class. In particular, the Journe wavelet cannot be approximated by those in
the Schwartz class. The result from [2] is as follows.

Theorem 4.6. [2] Suppose) is an orthonormal wavelet that satisfiﬁé| is continuous ok
and|y(¢)| = O ((1 +[¢])~*"/2) atinfinity and for somer > 0. Theny is an MRA wavelet.

Thus we obtain the fact that any sequence of wavelets from the Schwartz class will be MRA
wavelets and any sequence of MRA wavelets if it converges to a wavelet, then the limit is also
an MRA wavelet.

5. EXAMPLES OF MSF AND NON MSF WAVELETS

There are a variety of examples for MSF wavelets. Some of the frequently mentioned ones
are listed below. Here most of them are defined in terms of their Fourier transform. So those
wavelets whose modulus of the Fourier transform is a characteristic function of a measurable
set are easily seen to be MSF wavelets.
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1) Shannon wavelet, such thaty,| = y; with I = [—27, —7)U[r, 2). Using the equiv-
alent conditions for an MRA MSF wavelet, we can easily show that Shannon wavelet is
one such wavelet. For this, we dendte= [ J;2, 271. Hence

r={in PG U{F v iU

ThusI® = [—m, ) which is of lengtter. Sol° + 2km = [—7 + 2kn, 7 + 2k7) and we
get M (1°(I® + 2km) = 2w, 0. Thus Shannon wavelet is an MRA MSF wavelet by
Theorem|[(4.]).

2) Lemarie wavelet given blys, | = x, whereL = [=5% =i) | J[4z 6m)| |2z 321 This
can be shown to be a non-MRA wavelet. For this, consfder 47) (5 L). We get

1
2

36 —327 —24m =221 —4m 4r
L—dr = -
and
1 —Ar =27 2 31 1270 167
L =[— = 2T 2n i
Then[%, %) € (L — 47)(\(3L) and hence its measure is nonzero. This implies that

¢, is a non-MRA MSF wavelet by Theorefn (4.1).
3) Journe wavelet given by is a non MRA MSF wavelet. Here) ;| = x5z where

B— [_372”, 4] U[—w,—‘%ﬂ] U[‘%ﬁ,ﬂ g 327”].

We have

B dr = [_670”, —s] | JI-5m, —327”] U[_Qfﬂ, 371 JJ0. 47”]

and

E —16m - =27 2r 167
E = [ 7 7_27(]U[77T]U[77§]U[27T7 7]
Thus,(E—47)( £ = [%, 7] whose measure is nonzero and hence a non-MRA wavelet.

4) Theorem[(3]3) can be used to show that the funatigrgiven by, = X[2r 4] 1S NOt
a wavelet as this would violate the condition b of the Theorem. The dyadic dilations of
[27, 47| form a partition of(0, co) only.

5) Using Theorem[(3]5), a positive answer is provided to the question of whether there
exists an MSF wavelet which is not bandlimited. A construction of such a wavelet is
made possible in [13]. For this, a symmetric 8= E* | J E~ whereE~ = —FEt is
considered. We decompo$e = [, 2m) to [m, zo) J[zo, 27). Let{L,} and{R;} be
partitions of[r, o) and [z, 27) respectively. Thud* = (JZ,(L; U R;). We try to
obtain an unbounded sét*. For this, we dilate each by 27 for somel; > 1 with

lim [; = oo and dilate eactk; by 2~'. HenceE+ = U 25L) | J2 ' [ JR)). Soit

—00
J =1

7j=1
is enough to find conditions ofi; : j > 1} which makesE™ = [—27, —7)(mod 27).
This is done in such a way that the Lebesgue measure is preserved at each stage. Hence
we get for each > 1,

2l M (L;) + 27  M(R, ( UR)
:M( Lj) + M(R;).

(5.1)
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Let M(L;) = p; M(L; U R;) and M(R;) = ¢; M(L; U R;), hence
pitqg =1
2ljpj + 271(13‘ =1.
Thus equation[(5]1) is equivalent to above set of equations. This can be solved by

- .. . . li+1
converting it into matrix form. Thus on solving, we get= _-— andg; = >7=.

SinceM (I") = m, we have) , M(L; | R;) = 7. Sincez 277 = 7, we can choose
j=1

=
M (L;UR;) = 2777. Then we getM (L;) = a; and M (R;) = (3, in terms ofl;.
Choosd; > 2 and obtairl;,; = 2[; + 1. This is obtained by defining, = [r, 7+ a1)
andR, = [2m — 3, 27). Also, we define

Jj—1 J
L;= [7T+Zozn,7r—|— Zan)
n=1 n=1
and

J Jj—1
Ry=[21r =) B,.2m=> B,
n=1 n=1

Sincel R; = (o, 27], we getzg = 27 — Y B, =7+ Y ;. Now we express’i L;
j=1 j=1

in terms ofl; and simple computation gives the desired result. Thystasds toco, /;

goes to infinity and hence we get unbounded

Similar studies have been carried out in higher-dimensional cases as well. Corresponding to
the concept of wavelet set it¥ (R), we have the concept of — wavelet setinR”, details could
be seenin[11]. A method to produce all wavelet sef®’iffor an expansive matrix with integral
entries is provided in |3] and the construction of compact wavelet sék$ icould be seen in
[14]. MSF multiwavelet of order L in [6] could be considered as an extension of the concept of
MSF wavelet in a one-dimensional setting. Analogous version of Meyer’s equations, equivalent
conditions for an orthonormal wavelet it¥ (R") could be seen iri[11]. The definitiors (B3.1),
(3.2) and the set-theoretic equivalent conditions of a wavelet set as in Théorém (3.4) is extended
to n-dimensional in[26], this is used in the construction of an unbounded wavelet set in higher
dimensions, but the construction in single dimension is appeared in [13]. Classification of
orthonormal wavelets whose Fourier transform has support contairtedisnseen in Theorem
(3.8) could not be generalized to the higher dimensional case is shown in [26]. Interconnections
of s-elementary wavelets and MSF wavelets have been studied in higher dimensions is found in
[27], the major result found in this work is that the collection of all n-dimensional wavelet set is
path connected in the symmetric difference metric. Path connectedness of thd setafelet
collection of sets for an arbitrary expansive matfixn R? is dealt in [23]. Also, in[[22], the
space of MSF wavelets associated with an MRA and the set of its associated scaling functions is
shown to be path-connected and ih [4], construction of scaling sets along with MSF orthonormal
wavelets in higher dimension could be seen.

Although MSF wavelets or s-elementary wavelets lack good regularity properties, many of
the MSF wavelets serve as good counter examples. From MSF wavelets many more interesting
non-MSF wavelets can also be constructed which could be seénlin [28,129, 24]. Although it
has been proved that for any expansive matrix GL,,(R) and for any latticd” C Z", there
exists a wavelet sét4, I'), the characterization of this pdif, I') in general remains as an open
guestion mentioned in [5]. For the case= 2, such a characterization is made possible. The
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study regarding the topological properties other than the connectivity of this class of wavelets
provides scope for future research. Also, the characterization of MSF wavelets based on the
spectral properties of the dilation matrices in higher dimensions can be developed further.
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