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ABSTRACT. We show thate is the amount that $1 becomes when it is invested during an
arbitrary time span of lengtf, at any continuously compounded interest rates as long as their
average is equal to/T . A purely mathematical interpretation efs the amount a unit quantity
becomes after any duratidn when the average of its instantaneous growth ratég1s This
property can be shown to remain validliftends to infinity as long as the integral of the growth
rates converges to unity.
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1. INTRODUCTION

Traditionnally, calculus texts give the following interpretationeofit is the amount that $1
becomes after one year if it is invested during one year at a rate of interest equal to 100% per
year, continuously compounded over that year. The reason of that property is the following:
suppose that the year is divided imperiods; after the first period, $1 becomes100%.L =

1+ %; at the end of the last period $1 has became- %)m. Suppose now that the number

of periods tends to infinity; equivalently, this implies that the rate of interest is compounded
continuously. Then $1 becomés,,, ...(1 + %)m = e. (In fact, this is how Jacob Bernoulli

in 1683 calculated for the first time this famous limit). However, as we will first show, the
interpretation ofe can be made much more general than that, with an arbitrary investment
horizon and highly variable interest rates throughout the investment period. Furthermore, an
interpretation ot does not need to be located in a financial context; the numban be given

a purely mathematical interpretation, as we will also show.

We will proceed as follows. In Sectign 2 we recall the general concept of continuous com-
pounding with variable interest rates during a time span (an investment horizon) of arbitrary
length. In Section|3 we introduce a more general financial interpretatienTdfis will be put
to good use: it will enable us to answer the following question: what would be the interpretation
of eif the investment horizon was of infinite length? In Secfibn 4 we give a completely general,
mathematical interpretation ef that applies in any context.

2. CONTINUOUS COMPOUNDING WITH VARIABLE INTEREST RATE

Consider a time spaf0, 77; its lengthT" (equivalently, the investment horizon), is entirely
arbitrary as long as it is a positive, real number. Suppose that this time span is divided into
intervalsAz;, j = 1,...,n. Each of these intervals is afbitrary length; they are only related
by the constraind | Az; = T. To each intervalAz; corresponds an interest rate liable to be
compoundedn times over that interval. We denote this interest nélfbé; the lower subscript

j refers to theAz; interval the interest rate belongs to; the upper subs¢riptstands for the
number of compoundings performed within that interval. A cagifainvested at time 0 will
become, at the end of the first interéaj(1+ igl)Azl) if the rate of interest is compounded once
only over that first interval. If it is compounded times, it will becomeCy(1+ iﬁm)%)m at

the end ofAz,. Settingl = i{"™ 22 with m = ki{"™ Az, this amount is equal to

(m) Azt L pitmas
(2.1) Co(1 4 4 >71) = Co(1+ )4

If the numberm of compoundings over this first interval tends to infinitytends to infinity as

well because'gm)andAzl are finite, and we have in the limit

2.2 lim Co(1+ )%™ 551 = Coeli™am = gpenon
k k

where, to alleviate notation, we replacé&a) by i;; from now on, an interest rate without
an upperscript will denote a continuously compounded rate of interest. Repeating the above
process over the intervals, we get at timé’

(2.3) Cp = CoetA#1 gi2B%2  ginBin — Ce2ij=118%
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3. AN EXTENDED, FINANCIAL INTERPRETATION OF e.

We recognize in the power efthe weighted sum of the interest rates, and, sﬁc?gl Az; =T,

we can make their weighted average, dendteppear. Itisequaltb= Y} i;Az;/ > 1 Az; =
> 1 i;Az;/T, and we can writé " i;Az; = IT. Therefore equation (3) can be expressed as

(3.1) Cr = Coexi=1%% = Cpe!T.

It immediately appears thatis what $1 becomes if, the average of the interest rates weighted
by the intervalsAz;, is equal to the inverse of the investment periad

Let now the number. of intervals Az; tend to infinity and the maximum length of those
intervals tend to zero. If the suln} i;Az; tends to a limit, we may write it as

n

T
(3.2) . rl%g}AZjHOszAzj E/O i(t)dt

and therefore

(3.3) im Gy = Cyelo {®,

n—oo0; MaxAz; —0

Now defining! as

_ [Ti(t)at
34 [ — 0
(3.4) s
we have
(3.5) Cp = Cyelllo i0d/TT _ o0 IT

We can immediately see thatis what $1 becomes when it is invested during an arbitrary
time span of lengtfi’, at any continuously compounded interest rates as long as their average
is equal tol /T .

For instance suppose that the horizon investrfieistequal to 25 years. The inverseDfis
0.04/year, i.e. 4% per year. One dollar will becoeuwllars if it is invested aanycontinuously
compounded interest rates as long as their average is 4% per year. There is of course an infinite
number of evolutions of the interest rate that would share this property. Note in particular
that the interest rate may very well begativeover a number of periods during the horizon
investment.

Figureq 1 andl]2 give examples. We have considered possible evolutions of the interest rate
corresponding to 4 horizons: 10, 20, 50 and 100 years, all leadieg to Figure[], those
trajectories correspond to the family of parabolas

(3.6) i(t) = (6/T°) (—¢* +1T).
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FIGURE 1. Four members of the family of parabolag) = (6/17) (—t* +tT)
yielding e afterT" = 10, 20,50 and100 years, respectively. Their averages &re-
0.1, 0.05, 0.02, and0.01 per year.

Figure[2 presents examples where the interest rate may become negative (this can be the case if
we consider the so-called "real" interest rate, defined by the nominal interest diminished by the
inflation rate); they belong to the family of third order polynomials

12 (0.2 1
(3.7) i(t) = — <O—T — 1) (= T¢) — 0T—2t2 +0.1.

Needless to say, any functioi(t) having the propert)foTi(t)dt = 1 can receive an infinite
number of variations such that the property would be preserved.

Finally, we can immediately see that the above mentionned interpretatedmodds even for
horizons of infinite length, as long as the average of the interest rates converges to zero and

lim fOT i(t)dt = 1. Aninfinite number of functions share this property.

T—o0
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FIGURE 2. Four members of the family of the third order polynomialg) =
2 (%2T — 1) (88 — Tt?) — 35¢* + 0.1 yielding e after T = 10, 20, 50 and 100
years, respectively. Their averages aré®).1, 0.05, 0.02, and0.01 per year.

4. A MATHEMATICAL INTERPRETATION OF ¢

An interpretation oe does not need to belong to a financial context; it can be given a completely
general form, applying in any field. We can immediately prove the follomeig:the amount a
unit quantity becomes after any durati@hwhen the average of its instantaneous growth rates

is1/T.
This can be seen by considering the differential equation
1 dy
4.1 —— =gt
(4.1) , i g(t)

whereg(t) is the instantaneous growth rateydt).With the initial conditiony(0) = 1, we have
4.2) y(T) = elo 9t

Defining the average of the growth rates ojefl’| asg = [fOTg(t)dt]/T we get, ifg = 1/7T,
y(T) = €97 = e, which completes the proof.

Equivalently, define over period, 7] the growth factorof y as the ratioyr/yo. Thene is
the growth factor ofy(t) over |0, 7] if the average of its instantaneous growth rajt@s/y(t) is
1/T.

Finally, we observe that this property @femains valid ifl” — oo; the only condition is that
the average of(¢) tends to zero whilg;* g(¢)dt = 1.
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5. CONCLUDING REMARK

The generality of the interpretation efjiven in Sectiof 4 above comes from the fact that for
anyvalue of " (T' > 0) there is are infinite number of functiop$t) sharing the property that

the integraIfOT g(t)dt equals unity.
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