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ABSTRACT. We show thate is the amount that $1 becomes when it is invested during an
arbitrary time span of lengthT , at any continuously compounded interest rates as long as their
average is equal to1/T . A purely mathematical interpretation ofe is the amount a unit quantity
becomes after any durationT when the average of its instantaneous growth rates is1/T . This
property can be shown to remain valid ifT tends to infinity as long as the integral of the growth
rates converges to unity.
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1. I NTRODUCTION

Traditionnally, calculus texts give the following interpretation ofe: it is the amount that $1
becomes after one year if it is invested during one year at a rate of interest equal to 100% per
year, continuously compounded over that year. The reason of that property is the following:
suppose that the year is divided intomperiods; after the first period, $1 becomes1+100%. 1

m
=

1 + 1
m

; at the end of the last period $1 has become(1 + 1
m

)m. Suppose now that the number
of periods tends to infinity; equivalently, this implies that the rate of interest is compounded
continuously. Then $1 becomeslimm→∞(1 + 1

m
)m = e. (In fact, this is how Jacob Bernoulli

in 1683 calculated for the first time this famous limit). However, as we will first show, the
interpretation ofe can be made much more general than that, with an arbitrary investment
horizon and highly variable interest rates throughout the investment period. Furthermore, an
interpretation ofe does not need to be located in a financial context; the numbere can be given
a purely mathematical interpretation, as we will also show.

We will proceed as follows. In Section 2 we recall the general concept of continuous com-
pounding with variable interest rates during a time span (an investment horizon) of arbitrary
length. In Section 3 we introduce a more general financial interpretation ofe. This will be put
to good use: it will enable us to answer the following question: what would be the interpretation
of e if the investment horizon was of infinite length? In Section 4 we give a completely general,
mathematical interpretation ofe, that applies in any context.

2. CONTINUOUS COMPOUNDING WITH VARIABLE INTEREST RATE

Consider a time span[0, T ]; its lengthT (equivalently, the investment horizon), is entirely
arbitrary as long as it is a positive, real number. Suppose that this time span is divided inton
intervals∆zj, j = 1, ..., n. Each of these intervals is ofarbitrary length; they are only related
by the constraint

∑n
1 ∆zj = T. To each interval∆zj corresponds an interest rate liable to be

compoundedm times over that interval. We denote this interest ratei
(m)
j ; the lower subscript

j refers to the∆zj interval the interest rate belongs to; the upper subscript(m) stands for the
number of compoundings performed within that interval. A capitalC0 invested at time 0 will
become, at the end of the first intervalC0(1+ i

(1)
1 ∆z1) if the rate of interest is compounded once

only over that first interval. If it is compoundedm times, it will becomeC0(1+ i
(m)
1

∆z1

m
)m at

the end of∆z1. Setting1
k
≡ i

(m)
1

∆z1

m
, with m = ki

(m)
1 ∆z1, this amount is equal to

(2.1) C0(1 + i
(m)
1

∆z1

m
)m = C0(1 +

1

k
)ki

(m)
1 ∆z1 .

.
If the numberm of compoundings over this first interval tends to infinity,k tends to infinity as
well becausei(m)

1 and∆z1 are finite, and we have in the limit

(2.2) lim
k→∞

C0(1 +
1

k
)ki

(m)
1 ∆z1 = C0e

i
(∞)
1 ∆z1 ≡ C0e

i1∆z1

where, to alleviate notation, we replacedi
(∞)
1 by i1; from now on, an interest rate without

an upperscript will denote a continuously compounded rate of interest. Repeating the above
process over then intervals, we get at timeT

(2.3) CT = C0e
i1∆z1 .ei2∆z2 ...ein∆zn = C0e

Pn
j=1 ij∆zj .
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3. AN EXTENDED , FINANCIAL INTERPRETATION OF e.

We recognize in the power ofe the weighted sum of the interest rates, and, since
∑n

j=1 ∆zj = T,

we can make their weighted average, denotedĪ, appear. It is equal tōI =
∑n

1 ij∆zj/
∑n

1 ∆zj =∑n
1 ij∆zj/T, and we can write

∑n
1 ij∆zj = ĪT. Therefore equation (3) can be expressed as

(3.1) CT = C0e
Pn

j=1 ij∆zj = C0e
ĪT .

It immediately appears thate is what $1 becomes if̄I, the average of the interest rates weighted
by the intervals∆zj, is equal to the inverse of the investment periodT .

Let now the numbern of intervals∆zj tend to infinity and the maximum length of those
intervals tend to zero. If the sum

∑n
1 ij∆zj tends to a limit, we may write it as

(3.2) lim
n→∞; max∆zj→0

n∑
j=1

ij∆zj ≡
∫ T

0

i(t)dt

and therefore

(3.3) lim
n→∞; max∆zj→0

CT = C0e
R T
0 i(t)dt.

Now definingĪ as

(3.4) Ī =

∫ T

0
i(t)dt

T
,

we have

(3.5) CT = C0e
[{
R T
0 i(t)dt}/T ]T = C0e

ĪT .

We can immediately see thate is what $1 becomes when it is invested during an arbitrary
time span of lengthT , at any continuously compounded interest rates as long as their average
is equal to1/T .

For instance suppose that the horizon investmentT is equal to 25 years. The inverse ofT is
0.04/year, i.e. 4% per year. One dollar will becomeedollars if it is invested atanycontinuously
compounded interest rates as long as their average is 4% per year. There is of course an infinite
number of evolutions of the interest rate that would share this property. Note in particular
that the interest rate may very well benegativeover a number of periods during the horizon
investment.

Figures 1 and 2 give examples. We have considered possible evolutions of the interest rate
corresponding to 4 horizons: 10, 20, 50 and 100 years, all leading toe. In Figure 1, those
trajectories correspond to the family of parabolas

(3.6) i(t) =
(
6/T 3

) (
−t2 + tT

)
.

AJMAA, Vol. 16, No. 1, Art. 12, pp. 1-6, 2019 AJMAA

http://ajmaa.org
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FIGURE 1. Four members of the family of parabolasi(t) = (6/T 3) (−t2 + tT )
yielding e afterT = 10, 20, 50 and100 years, respectively. Their averages areĪ =
0.1, 0.05, 0.02, and0.01 per year.

Figure 2 presents examples where the interest rate may become negative (this can be the case if
we consider the so-called "real" interest rate, defined by the nominal interest diminished by the
inflation rate); they belong to the family of third order polynomials

(3.7) i(t) =
12

T 4

(
0.2

3
T − 1

) (
t3 − Tt2

)
− 0.1

T 2
t2 + 0.1.

Needless to say, any functioni(t) having the property
∫ T

0
i(t)dt = 1 can receive an infinite

number of variations such that the property would be preserved.
Finally, we can immediately see that the above mentionned interpretation ofeholds even for

horizons of infinite length, as long as the average of the interest rates converges to zero and
lim

T→∞

∫ T

0
i(t)dt = 1. An infinite number of functions share this property.
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FIGURE 2. Four members of the family of the third order polynomialsi(t) =
12
T 4

(
0.2
3

T − 1
)
(t3 − Tt2) − 0.1

T 2 t2 + 0.1 yielding e afterT = 10, 20, 50 and100
years, respectively. Their averages are= 0.1, 0.05, 0.02, and0.01 per year.

4. A MATHEMATICAL INTERPRETATION OF e

An interpretation ofedoes not need to belong to a financial context; it can be given a completely
general form, applying in any field. We can immediately prove the following:e is the amount a
unit quantity becomes after any durationT when the average of its instantaneous growth rates
is 1/T.

This can be seen by considering the differential equation

(4.1)
1

y

dy

dt
= g(t)

whereg(t) is the instantaneous growth rate ofy(t).With the initial conditiony(0) = 1, we have

(4.2) y(T ) = e
R T
0 g(t)dt.

Defining the average of the growth rates over[0, T ] asḡ ≡ [
∫ T

0
g(t)dt]/T we get, if ḡ = 1/T,

y(T ) = eḡT = e, which completes the proof.
Equivalently, define over period[0, T ] the growth factorof y as the ratioyT /y0. Thene is

the growth factor ofy(t) over[0, T ] if the average of its instantaneous growth ratesẏ(t)/y(t) is
1/T.

Finally, we observe that this property ofe remains valid ifT →∞; the only condition is that
the average ofg(t) tends to zero while

∫∞
0

g(t)dt = 1.
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5. CONCLUDING REMARK

The generality of the interpretation ofe given in Section 4 above comes from the fact that for
anyvalue ofT (T > 0) there is are infinite number of functionsg(t) sharing the property that
the integral

∫ T

0
g(t)dt equals unity.
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